NASA Technical Memorandum 104566, Vol. 12

SeaWiFS Technical Report Series

Stanford B. Hooker and Elaine R. Firestone, Editors

Volume 12, SeaWiFS Technical Report Series Cumulative Index: Volumes 1–11

Elaine R. Firestone and Stanford B. Hooker

August 1993

NASA Technical Memorandum 104566, Vol. 12

SeaWiFS Technical Report Series

Stanford B. Hooker, Editor NASA Goddard Space Flight Center Greenbelt, Maryland

Elaine R. Firestone, Technical Editor General Sciences Corporation Laurel, Maryland

Volume 12, SeaWiFS Technical Report Series Cumulative Index: Volumes 1–11

Elaine R. Firestone General Sciences Corporation Laurel, Maryland

Stanford B. Hooker NASA Goddard Space Flight Center Greenbelt, Maryland

National Aeronautics and Space Administration

Goddard Space Flight Center Greenbelt, Maryland 20771

1993

Abstract

The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an eight-year mission. SeaWiFS is expected to be launched in 1994, on the SeaStar satellite, being built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC), has undertaken the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. This documentation, entitled the *SeaWiFS Technical Report Series*, is in the form of NASA Technical Memorandum Number 104566. All reports published are volumes within the series. This particular volume serves as a reference, or guidebook, to the previous 11 volumes and consists of 6 sections including: an errata, an addendum (a summary of the SeaWiFS Working Group Bio-optical Algorithm and Protocols Subgroups Workshops), an index to key words and phrases, a list of all references cited, and lists of acronyms and symbols used. It is the editors' intention to publish a cumulative index of this type after every five volumes in the series. This will cover the topics published in all previous editions of the indices, that is, each new index will include all of the information contained in the preceeding indices.

1. INTRODUCTION

This second in a series of indices, published as a separate volume in the Sea-viewing Wide Field-of-view (Sea-WiFS) Technical Report Series, covers information found in the first 11 volumes of the series. The Report Series is written under the National Aeronautics and Space Administration's (NASA) Technical Memorandum (TM) Number 104566. The volume numbers, authors, and titles are as follows:

- Vol. 1 S.B. Hooker, W.E. Esaias, G.C. Feldman, W.W. Gregg, and C.R. McClain, An Overview of SeaWiFS and Ocean Color.
- Vol. 2 W.W. Gregg, Analysis of Orbit Selection for SeaWiFS: Ascending vs. Descending Node.
- Vol. 3 C.R. McClain, W.E. Esaias, W. Barnes, B. Guenther, D. Endres, S.B. Hooker, B.G. Mitchell, and R. Barnes, SeaWiFS Calibration and Validation Plan.
- Vol. 4 C.R. McClain, E. Yeh, and G. Fu, An Analysis of GAC Sampling Algorithms: A Case Study.
- Vol. 5 J.L. Mueller and R.W. Austin, Ocean Optics Protocols for SeaWiFS Validation.
- Vol. 6 E.R. Firestone and S.B. Hooker, SeaWiFS Technical Report Series Cumulative Index: Volumes 1–5.
- Vol. 7 M. Darzi, Cloud Screening for Polar Orbiting Visible and IR Satellite Sensors.
- Vol. 8 S.B. Hooker, W.E. Esaias, and L.A. Rexrode, *Proceedings of the First SeaWiFS Science Team Meeting.*

- Vol. 9 W.W. Gregg, F. Chen, A. Mezaache, J. Chen, and J. Whiting, *The Simulated Sea-WiFS Data Set.*
- Vol. 10 R.H. Woodward, R.A. Barnes, W.E. Esaias, W.L. Barnes, A.T. Mecherikunnel, Modeling of the SeaWiFS Solar and Lunar Observations.
- Vol. 11 F.S. Patt, C.M. Hoisington, W.W. Gregg, and P.L. Coronado, Analysis of Selected Orbit Propagation Models.

This volume within the series serves as a reference, or guidebook, to the aforementioned volumes. It consists of the four main sections included with the first index published, Volume 6, in the series: a cumulative index to key words and phrases, a glossary of acronyms, a list of symbols used, and a bibliography of all references cited in the series. In addition, starting with this volume, errata and addendum sections have been added to address issues and needed corrections that have come to the editors' attention since the volumes were first published.

The nomenclature of the index is a familiar one, in the sense that it is a sequence of alphabetical entries, but it utilizes a unique format since multiple volumes are involved. Unless indicated otherwise, the index entries refer to some aspect of the SeaWiFS instrument or project, for example, the *mission overview* index entry refers to an overview of the SeaWiFS mission. An index entry is composed of a keyword or phrase followed by an entry field which directs the reader to the possible locations where a discussion of the keyword can be found. The entry field is normally made up of a volume identifier shown in bold face, followed by a pages identifier, which is always enclosed in parentheses:

keyword, **volume**(pages).

If an entry is the subject of an entire volume, the volume field is shown in slanted type with no page field:

keyword, Vol. #.

Figures or tables that provide particularly important summary information are also indicated as separate entries in the pages field. In this case, the figure or table number is given with the page number on which it appears.

2. ERRATA

- 1. Vol. 5: In Table 1, page 5 under the first section, *Primary Optical Measurements*, the third item down reads: "Upwelled Spectral Irradiance." It should read: *Upwelled Spectral Radiance*.
- 2. Vol. 6: The authorship of this volume was incorrectly printed as: "Stanford B. Hooker and Elaine R. Firestone." It should read: *Elaine R. Firestone and Stanford B. Hooker*.
- 3. Vol. 7: The title of this volume was incorrectly printed as: "Cloud Screening for Polar Orbiting and Infrared (IR) Satellite Sensors." The title of this volume should read: "Cloud Screening for Polar Orbiting and IR Satellite Sensors."
- 4. Note: The expected SeaWiFS launch date has been changed, as of this volume, to 1994.
- 5. Note: It had been expected that SeaWiFS would utilize the ozone measurement data obtained from the NIM-BUS Total Ozone Mapping Spectrometer (TOMS). In May 1993, however, this instrument ceased operations. To date, an alternative sensor that will provide equivalent or similar data for the SeaWiFS mission is being investigated.
- 6. Note: Since the issuance of previous volumes, a number of the references cited have changed their publication status, i.e., they have gone from "submitted" or "in press" to printed matter. In other instances, some part (or parts) of the citation has changed, for example, the title or year of publication. Listed below are the references in question as they were originally cited in one or more of the first 11 volumes in the series, along with how they now appear in the references section of this volume.

Original Citation

Abel, P., B. Guenther, R. Galimore, and J. Cooper, 1991: Calibration results for NOAA-11 AVHRR channels 1 and 2 from congruent aircraft observations, J. Atmos. and Ocean. Technol., (submitted).

Revised Citation

Abel, P., B. Guenther, R. Galimore, and J. Cooper, 1993: Calibration results for NOAA-11 AVHRR channels 1 and 2 from congruent aircraft observations, J. Atmos. and Ocean. Technol., 10(4), 493– 508.

Original Citation

Austin, R.W., Gulf of Mexico, 1980: Ocean-color surface-truth measurements. Bound.-Layer Meteor., 18, 269–285.

Revised Citation

Austin, R.W., 1980: Gulf of Mexico, Ocean-color surface-truth measurements. *Bound.-Layer Meteor.*, 18, 269–285.

Original Citation

Burlov-Vasiljev, K.A., E.A. Gurtovenko, and Y.B. Matvejev, 1991: The Solar Radiation Between 310–680 nm. SOLARS-22 Conference Proceedings, Boulder, Colorado, (in preparation).

Revised Citation

Burlov-Vasiljev, K.A., E.A. Gurtovenko, and Y.B. Matvejev, 1992: The Solar Radiation Between 310–680 nm. Proceedings of the Workshop on the Solar Electromagnetic Radiation Study for Solar Cycle 22, R.E. Donnelly, Ed., U.S. DOC/NOAA Environmental Research Laboratory, Boulder, Colorado, 49–53.

Original Citation

Hay, B.J., C.R. McClain, and M. Petzold, 1991: Phytoplankton pigment assessment in the Arabian Sea comparing satellite data and *in situ* data. *Remote Sens. Environ.*, (in press).

Revised Citation

Hay, B.J., C.R. McClain, and M. Petzold, 1993: An assessment of the NIMBUS-7 CZCS Calibration for May 1986 using satellite and *in situ* data from the Arabian Sea. *Remote Sens. Environ.*, **43**, 35–46.

Original Citation

McClain, C.R., G. Feldman, and W. Esaias, 1991: A review of the Nimbus-7 Coastal Zone Color Scanner data set and remote sensing of biological oceanic productivity. *Global Change Atlas*, C. Parkinson, J. Foster and R. Gurney, Eds., Cambridge University Press, (in press).

Same, Also Cited As

McClain, C.R., G. Feldman, and W. Esaias, 1992: Oceanic primary production, *Global Change Atlas*, C. Parkinson, J. Foster, and R. Gurney, Eds., Cambridge University Press, (in press).

Revised Citation

McClain, C.R., G. Feldman, and W. Esaias, 1993: Oceanic primary production, *Global Change Atlas*, C. Parkinson, J. Foster, and R. Gurney, Eds., Cambridge University Press, (in press).

Original Citation

Mecherikunnel, A.T., and H.L. Kyle, 1991: Eleven-year cycle of solar constant variation from spacecraft measurements: 1978 to 1990. *Science*, (submitted).

Revised Citation

Mecherikunnel, A.T., and H.L. Kyle, 1991: Eleven-year cycle of solar constant variation from spacecraft measurements: 1978 to 1990. *Science*, (withdrawn).

3. ADDENDUM

This section presents a summary of the SeaWiFS Working Group (SWG) Bio-optical Algorithm and Protocols Workshops, written by Charles R. McClain.

3.1 Introduction

The SWG workshops for bio-optical algorithm development and *in situ* protocols convened a joint meeting at GSFC on May 19–20, 1993. The working group memberships were defined at the January 1993 SWG meeting (Hooker et al. 1993b).

The meeting was held in May because several key team members had cruises in the March–April time frame and could not meet any sooner. The team members and attendance are listed in Table 1. The bio-optics meeting spanned Wednesday and Thursday morning and the protocols meeting was on Thursday afternoon.

Table 1. Team members and invited guests to the SWG Bio-optical Algorithm and Protocols Workshops, held May 19–20, 1993 at GSFC. Attendees are identified with a checkmark (\checkmark).

Team	Present	Team	Present	
Members		Members		
J. Aiken		M. Lewis	\checkmark	
W. Balch		C. McClain	\checkmark	
K. Carder	\checkmark	G. Mitchell	\checkmark	
D. Clark †	\checkmark	A. Morel		
C. Davis	\checkmark	J. Mueller ‡	\checkmark	
R. Doerffer		F. Muller-	\checkmark	
W. Esaias	\checkmark	Karger		
H. Gordon	\checkmark	D. Siegel	\checkmark	
F. Hoge	\checkmark	R. Smith		
S. Hooker	\checkmark	C. Trees	\checkmark	
D. Kamykowski		C. Yentsch	\checkmark	
M. Kishino	\checkmark	J. Yoder \checkmark		
O. Kopelevich		R. Zaneveld		
	Other Att	tendees	•	
S. Ackleson		G. Moore		
R. Arnone		J. Morrison		
F. Chavez		R. Stumpf		
H. Fukushima		A. Weidemann		
S. Gallegos				
		1		

[†]Bio-optics Chairman

‡Protocols Chairman

3.2 Bio-optical Algorithm Workshop

The objectives of the workshop were as follows:

- 1. Review existing algorithms: pigment, chlorophyll a, K(490) only.
- 2. Survey relevant existing bio-optical data sets.
- 3. Determine critical voids (deficiencies) in data (algorithms) and make recommendations on resolving data voids and algorithm defiencies.

- 4. Define strategy for defining and implementing initial algorithms.
- 5. Review present field program schedule.
- 6. Set date for an early Fall 1993 meeting.

The agenda was as follows:

- 1. Workshop Charter
 - A. Introduction (C. McClain)
 - 1) Workshop Objectives
 - 2) SWG and SeaWiFS Project Responsibilities
 - 3) Review SWG Recommendations (Vol. 8, sec. 3.5)
 - 4) Data Processing and Algorithm Refinement Strat-

egies

- B. Algorithm Issues Overview (D. Clark)
 - 1) Initial Case 1 Algorithm Form(s): CZCS pigment, chlorophyll-like pigment, K(490)
 - 2) Initial Case 2 Algorithm Form(s): CZCS pigment, chlorophyll-like pigment, K(490)
 - 3) Algorithm Selection and Switching
 - 4) Regional Algorithms
 - 5) Algorithm Seasonality: Impacts of SeaWiFS performance limitations
- 2. SeaWiFS Instrument Update (W. Esaias)
- 3. Algorithm Studies and Field Programs
 - A. Case 1 Water Presentations (D. Clark, G. Mitchell, D. Siegel, C. Trees, and C. McClain)
 - B. Case 2 Water Presentations (K. Carder, M. Kishino, and R. Arnone)
 - C. Discussion and Recommendations (D. Clark)
- 4. Quality Control Flags (C. McClain: Coccolithophores, Sea Ice, Trichodesmium, Turbid Case 2 water, etc.)
- 5. Cruise Planning (S. Hooker: Present Schedule, Piggyback Opportunities, Bio-optical Data Voids/Deficiencies, Community Field Program Coordination, etc.)
- 6. Alternative Bio-optical Data Collection Strategies (K. Carder)
- 7. Workshop Wrap-Up (D. Clark: Summaries, Action Items, Fall Meeting, etc.)

Because this was the first meeting of the bio-optical algorithm working group, the SeaWiFS Project presented an itemization of the responsibilities of the Project and the working group as listed below:

Bio-optical Algorithm Working Group:

- Defines strategy for algorithm development,
- Collects appropriate bio-optical data,
- Develops bio-optical algorithms, and
- Provides SeaWiFS Project with operational algorithms and implementation plan.

SeaWiFS Project:

- Assists in coordination and support of field programs,
- Supports calibration round-robin and archives the data,
- Archives and distributes field data to the SWG and other collaborating groups,
- Provides independent algorithm evaluations and comparisons, (the SeaWiFS Project does *not* develop algorithms), and
- Implements SWG approved algorithms in the SeaWiFS operational processing system.

Several decisions and recommendations were made as a result of the presentations and discussions:

1. A concerted effort will be made by the group to provide existing bio-optical data sets to the SeaWiFS Project by August 1 (deadline does not include data from the Spring 1993 cruises mentioned above). Currently, the Project has only the CZCS NIMBUS Experiment Team (NET) data that are suitable for algorithm development. (The Project does have the responsibility to assemble and distribute data to the SWG and other groups collaborating with the Project. The list of biooptical data to be contributed and their sources appears in Table 2. Other working group members not present who have data of interest for algorithm development include R. Doerffer, D. Kamykowski, A. Morel, and R. Smith. They will be contacted to determine which data sets they have available for inclusion in the archive.

Table 2.	Bio-optical	data	to	$\mathbf{b}\mathbf{e}$	$\operatorname{contributed}$	and
their source	es.					

Team Members	Source
K. Carder	North Atlantic
	Gulf of Mexico
J. Mueller	North Pacific
C. Trees	
D. Clark	CZCS NET data
	MOCE 1
	MOCE 2
C. Davis	Equatorial Pacific
	North Atlantic
	U.S. West Coast
M. Kishino	Tokyo Bay
	Sea of Japan
G. Mitchell	RACER
	CalCoFI 1
	CalCoFI 2
R. Arnone	Gulf of Mexico
A. Weidemann	
J. Mueller	
D. Siegel	Bermuda

- 2. It was decided that a semi-analytical algorithm should be used instead of strictly empirical algorithms, such as those used for the CZCS. This approach should allow much more flexibility in handling seasonal and regional variability due to changes in specific absorption and scattering coefficients, and would provide a physically sound foundation from which more advanced algorithms could evolve. The team of H. Gordon, A. Morel, K. Carder, and R. Doerffer have volunteered to define the initial algorithm by the next bio-optical algorithm meeting, now scheduled for late September.
- 3. The need to develop a cloud mask and quality control flags for level-2 processing was discussed. The distinction between a mask and a flag is that masked pixels do not get processed and flagged pixels do. Flags will be saved as graphic overlays which are distributed with the data. Table 3 shows the suggested contributors for the development of these masks and flags (not restricted to the SWG).

Table 3.	Suggested contributors for the develop-
ment of m	asks and flags for level-2 processing.

ment of masks and mags for level 2 processing.		
Masks or Flags	Team Members	
Cloud Mask	R. Evans C. McClain	
	S. Gallegos R. Stumpf	
Coccolithophore Flag	H. Gordon B. Balch F. Hoge C. Brown	
Sea Ice Flag	G. Cota J. Aiken K. Arrigo R. Zaneveld G. Moore	
Trichodesmium Flag	A. Morel A. Subramaniam	
Bottom Reflection Flag	K. Carder C. Davis W. Esaias R. Arnone	
Land Mask	R. Evans C. McClain	

Anyone interested in participating in the mask and flag definition development should contact C. McClain.

4. Presentations by C. Trees and R. Arnone on K(490)observations indicate that the Austin-Petzold empirical algorithm holds for a broader range of values and geographic locations than represented in the original data set. Therefore, the working group concurs with the SWG recommendation that the Austin-Petzold algorithm should be used for the initial SeaWiFS K(490) algorithm. It was decided to reconvene the bio-optical algorithm working group this Fall in conjunction with the next MODIS Team meeting. The next MODIS Team meeting has been set for Wednesday–Friday, Sept. 29–Oct. 1, 1993 in the Greenbelt, Maryland area. The SeaWiFS Project is, therefore, suggesting that the working group meet on Monday and Tuesday, Sept. 27–28.

3.3 The Protocols Workshop

The agenda for the meeting was as follows:

- 1. Workshop Objectives (J. Mueller: goals, summary of first Science Team meeting recommendations, etc.)
- 2. Issues (Discussion Leader)
 - A. Ship Shadowing (D. Siegel)
 - B. Instrument Self-Shading (H. Gordon)
 - C. Revision of Instrument Specifications for Bio-optical Algorithms (M. Lewis)
 - D. Protocols for Case 2 Water Algorithm Development and Validation (R. Arnone)
 - E. Aircraft Instrument Specifications and Observation Protocols (F. Hoge and C. Davis)
 - F. Data Quality Control (G. Mitchell)
 - G. Data Formats (S. Hooker)
- 3. Second Round-Robin Coordination (J. Mueller)
- 4. Workshop Wrap-Up (J. Mueller: summaries, action items, Fall meeting, etc.)

All the issues listed were discussed to one degree or another. Key points of discussion on the agenda items are listed below. In a number of cases, subgroups were defined to address specific protocol issues and who would present draft update documents at the next protocols working group meeting.

- 1. Ship Shadowing: D. Siegel presented data from a ship shadowing experiment he conducted. His conclusion is that for certain situations, the distance between the ship and the instrument can be substantially less than the guideline in the protocols. Therefore, the protocol will be modified.
- 2. Instrument Self-Shading: The instrument self shading issue has been addressed theoretically, (Gordon and Ding, 1991) but has yet to be verified with observations.
- 3. Bio-optical Algorithm Instrumentation Specifications: One of the Project's concerns is that too few groups have measurement capabilities that even come close to the present protocol requirements. K. Carder and C. Davis presented an approach based on remote sensing reflectance observations which appears promising. A subgroup including J. Mueller (chairman), K. Carder,

C. Davis, G. Mitchell, and R. Arnone will address potential problems with the technique and draft a protocol to be submitted at the next protocols working group meeting.

- 4. Case 2 Water Protocols: The current protocols do not address observations in Case 2 waters to a suitable degree. These protocols should include a section on how to measure dissolved organic matter (DOM). A subgroup composed of K. Carder (chairman), C. Yentsch, R. Doerffer, F. Muller-Karger, C. Davis, W. Esaias, A. Weidemann, R. Arnone, and R. Stumpf will prepare a draft protocol document by the next meeting.
- 5. Data Quality Control: The discussion on optical data quality control procedures was augmented to include data analysis techniques. The present protocols discuss some analysis techniques, but further enhancement seems desirable. Analysis topics specifically mentioned were the extrapolation of data to the surface, normalization, optical weighting of pigments, and cloud detection. It was generally agreed that one quality assurance test should be the comparison of downward and upward traverses of a cast. As a result, an analysis round-robin was proposed with J. Mueller (chairman), D. Siegel, C. Davis, A. Weidemann, and G. Mitchell participating. Each investigator will submit profiles of upwelling radiance, etc., which will be distributed to all participants. A set of derived products will be computed from each profile by each participant. The results will be compiled and distributed by August 15.
- 6. Aircraft Protocols: The present protocols do not address aircraft instruments and sampling strategies in much detail. The protocols working group feels that the instrument characterization and calibration protocols should be similar to those for other types of instruments, but should be tailored to the particular instrument and aircraft. A subgroup with C. Davis (chairman), F. Hoge, K. Carder, M. Lewis, and P. Slater was named to draft the protocols. Others who were not in attendence, but who will be approached about participating include P. Abel and T. Vodacek.
- 7. Data Formats: The format guidelines for data submitted to the SeaWiFS Project are provided in Appendix C in, *Proceedings of the First SeaWiFS Science Team Meeting* (Hooker et al. 1993b). No formal discussion on formats was held. Questions and comments should be directed to S. Hooker.
- 8. Second Round-Robin: The next round-robin will be held at CHORS from June 14–25, 1993. The proceedings from the first round-robin are in press as a Sea-WiFS TM (Vol. 14) and preprints will be distributed this summer. The first week of the round-robin will be for intercalibrations and definition of near-real time data analysis and archiving procedures among CHORS, GSFC, and the National Institute of Standards and Technology (NIST). NIST will officially deliver the new

SeaWiFS transfer radiometer at that time. Other investigators will participate during the second week.

- 9. Several small modifications in the present protocols were discussed and will be incorporated into a revision of the protocols.
- 10. A date for the next meeting was not selected. Ideally, it would be in conjunction with the next bio-optical algorithm working group meeting. However, because that meeting is linked with the MODIS Team meeting, time would be very tight. The protocols working group will need to decide if another meeting this year is necessary. Certainly, much business has been delegated to subgroups and the SeaWiFS Project would expect closure on these topics by this Fall so that a revision of the protocols can be published by the end of the year.

3.4 Invited Colleagues' Addresses

Science Team members are identified with their Team name(s) shown in *slanted* type face.

James Aiken SeaWiFS Science Team Plymouth Marine Laboratory Prospect Place West Hoe Plymouth, PL1 3DH UNITED KINGDOM Voice: 44–752–222772 Fax: 44–752–670637 Omnet: pml.uk Internet: ja@unixb.nerc-pml.ac.uk

Steve Ackleson Ocean Optics Program, Code 3233 Office of Naval Research 800 N. Quincy Street Arlington, VA 22217 Voice: 703–696–4732 Fax: 703–696–4884 Omnet: s.ackleson

Robert Arnone NRL/Code 7240 Stennis Space Center, MS 39527 Voice: 601–688–5268 Fax: 601–688–4149 Omnet: r.arnone Internet: arnone@cs1ps2.nrl.navy.mil

William Balch MBF/RSMAS/U. of Miami 4600 Rickenbacker Cswy Miami, FL 33149–1098 Voice: 305–361–4653 Fax: 305–361–4600 Omnet: b.balch SeaWiFS Science Team

Kendall Carder SeaWiFS Science Team Dept. of Marine Science MODIS Science Team Univ. of South Florida HIRIS Science Team 140 Seventh Avenue, South St. Petersburg, FL 33701–5016 Voice: 813–893–9148 Fax: 813–893–9189 Omnet: k.carder

Francisco Chavez Associate Scientist Monterey Bay Aquarium Research Institute 160 Central Avenue Pacific Grove, CA 93950 Voice: 408–647–3709 Fax: 408–649–8587 Omnet: f.chavez Internet: chfr@mbari.org

Dennis K. Clark NOAA/NESDIS E/RA 28, WWB, Rm. 104 Washington, DC 20233 Voice: 301-763-8102 Fax: 301-763-8020 Omnet: d.clark.noaa

JPL/Mail Stop 300-323

4800 Oak Grove Drive

Pasadena, CA 91001

Voice: 818-354-5395

Curtiss Davis

Wayne Esaias

NASA/GSFC/Code 970.2

Greenbelt, MD 20771

HIRIS Science Team

SeaWiFS Science Team

MODIS Science Team

818-393-6146 Fax: Omnet: c.davis.jpl SeaWiFS Science Team Roland Doerffer **GKSS** Forschungszentrum Geesthacht Max-Planck-Strasse D-2054 Geesthacht GERMANY Voice: 49-4152-87-2480 49-4152-87-2444 Fax: Telex: 0218712 Omnet: w.rosenthal

Internet: doerffer@dvmc10.gkss.de Internet: doerffer@pfsun1.gkss.de

> SeaWiFS Science Team MODIS Science Team SeaWiFS Project

Voice: 301–286–9503 Fax: 301–286–3221 Omnet: w.esaias Internet: esaias@petrel.gsfc.nasa.gov

Hajime Fukushima Tokai University 317 Nishino Numazu, 410–03 JAPAN Voice: 81–559–68–1211 ext. 4425 Fax: 81–559–68–1155 Omnet: h.fukushima Internet: hajime@numazugw.cc.u-tokai.ac.jp

Sonia Gallegos Naval Research Laboratory Code 7240–Remote Sensing Stennis Space Center, MS 39529 Voice: 601–688–4867 Fax: 601–688–4149 Omnet: s.gallegos Internet: gallegos@snaps.nrlssc.navy.mil

Howard Gordon SeaWiFS Science Team UM/Dept. of Physics MODIS Science Team Coral Gables, FL 33124 Voice: 305–284–2323 Fax: 305–284–4222 Omnet: h.gordon Internet: gordon@phyvax.ir.miami.edu

Frank HogeSeaWiFS Science TeamNASA/GSFC/WFFMODIS Science TeamWallops Island, VA 23337MODIS Science TeamVoice:804-824-1567Fax:804-824-2343Fax:804-824-1036Omnet:f.hoge

Stanford Hooker SeaWiFS Project NASA/GSFC/Code 970.2 Greenbelt, MD 20771 Voice: 301–286–9503 Fax: 301–286–3221 Omnet: s.hooker Internet: stan@ardbeg.gsfc.nasa.gov

Daniel Kamykowski NCSU/MEAS/Box 8208 Raleigh, NC 27695 Voice: 919–515–7894 Fax: 919–515–7802 Omnet: d.kamykowsi

Motoaki Kishino SeaWiFS Science Team Inst. of Phys. & Chem. Res. Hirosawa 2–1 Wako-shi, Saitama, 351–01 JAPAN Voice: 81–48–462–1111 ext. 3635 Fax: 81–48–462–1449 Internet: kishino@rkna50.riken.go.jp Span: rik835::in%"kishino@rkna50.riken.go.jp"

Oleg Kopelevich SeaWiFS Science Team P.P. Shirshov Inst. of Oceanology 23 Krasikova St. Moscow, 117218 RUSSIA Voice: 7-095-124-7583 Fax: 7-095-292-6511 Telex: 411968 Okean SU Omnet: p.shirshov

Marlon Lewis SeaWiFS Science Team Department of Oceanography Dalhousie University Halifax, Nova Scotia B3H 4J1 Voice: 902–492–4780 Fax: 902–492–4781 Omnet: m.lewis Internet: marlon@predator.ocean.dal.ca Charles McClain SeaWiFS Science Team NASA/GSFC/Code 971 SeaWiFS Project Greenbelt, MD 20771 Voice: 301–286–5377 Fax: 301–286–2717 Omnet: c.mcclain Internet: mcclain@ocean1.gsfc.nasa.gov

SeaWiFS Science Team

UCSD/MRD 0218 LaJolla, CA 92093–0218 Voice: 619–534–2687 Fax: 619–534–2997 Omnet: g.mitchell Internet: bgmitchell@ucsd.edu

Greg Mitchell

Gerald Moore Plymouth Marine Laboratory Prospect Place West Hoe Plymouth, PL1 3DH UNITED KINGDOM Voice: 44–752–222772 Fax: 44–752–670637 Omnet: pml.uk Internet: gfm@unixb.nerc-pml.ac.uk

André MorelSeaWiFS Science TeamLab de Physique a Chimie MarinesUniversité Pierre et Marie CurieBP 08, 06230 Villefranche Sur MerFRANCEVoice:33–93–76–37–11Fax:33–93–76–37–39Omnet:a.morel

John Morrison North Carolina State University Dept. of Marine, Earth, and Atmospheric Sciences Jordan Hall, Room 1125 Box 8208 Raleigh, NC 27695-8208 Voice: 919–515–7449 Fax: 919–515–7449 Fax: 919–515–7802 Omnet: j.morrison/science Internet: morrison@meajmm.nrrc.ncsu.edu

James Mueller SDSU/CHORS 6505 Alvarado Road, Suite 206 San Diego, CA 92120–5005 Voice: 619–594–2230 Fax: 619–594–4570 Omnet: i.mueller

SeaWiFS Science Team

Fax: 619–594–4570 Omnet: j.mueller Frank Muller-Karger SeaWiFS Science Team NASA HQ/Code SEP Washington, DC 20546 Voice: 202–358–0238 Fax: 202–358–0238 Fax: 202–358–3098 Omnet: f.muller.karger Internet: carib@carbon.marine.usf.edu

SeaWiFS Technical Report Series Cumulative Index: Volumes 1–11

David Siegel SeaWiFS Science Team UCSB/CRSEO Santa Barbara, CA 93106–3060 Voice: 805–893–4547 Fax: 805–893–2578 Omnet: d.siegel Internet: daves@crseo.ucsb.edu

Raymond Smith SeaWiFS Science Team CRSEO/UCSB Santa Barbara, CA 93106 Voice: 805–893–4709 Fax: 805–893–2578 Omnet: r.smith.ucsb Internet: ray@crseo.ucsb.edu

Rick Stumpf Center for Coastal Geology US Geological Survey 600 4th Street St. Petersburg, FL 33701 Voice: 813–893–3024 Fax: 813–893–3333 Internet: rstumpf@wayback.er.usgs.gov

Charles Trees SeaWiFS Science Team SDSU/CHORS 6505 Alvarado Road, Suite 206 San Diego, CA 92120–5005 Voice: 619–594–2241 Fax: 619–594–4570 Omnet: c.trees Alan Weidemann NOARL/Code 331 Stennis Space Center, MS 39529 Voice: 601–688–5253 Fax: 601–688–5997 Omnet: a.weidemann

Charles Yentsch SeaWiFS Science Team Bigelow Laboratory McKown Point W. Boothbay Harbor, ME 04575 Voice: 207–633–2173 Fax: 207–633–6584 Omnet: c.yentsch.charles

James Yoder SeaWiFS Science Team URI/GSO Kingston, RI 02881 Voice: 401–792–6864 Fax: 401–792–8098 Omnet: j.yoder Internet: yoder@biosat.gso.uri.edu

Ron Zaneveld Oregon State University Ocean. Admin. Bldg. 104 Corvallis, OR 97331–5503 Voice: 503–737–3571 Fax: 503–737–2064 Omnet: r.zaneveld SeaWiFS Science Team

CUMULATIVE INDEX

Unless indicated otherwise, the index entries refer to some aspect of the SeaWiFS instrument or project, for example, the *mission overview* index entry refers to an overview of the SeaWiFS mission.

-A-

Advanced Very High Resolution Radiometer: see AVHRR airborne spectral radiometry, 5(7-8). aircraft calibration technique, 3(Fig. 19 p. 27). algorithms, 1(3, 17); 4(2). atmospheric correction, 3(1-2, Fig. 4 p. 5, 16, 23, 27-28, 31, 32-34; 8(4, Table 1 p. 14, 17, Table 4 p. 21). bio-optical, Vol. 5. data, 9(1). database development, $\mathbf{3}(28)$. derived products, 3(27-28). development, 1(5); 3(23, 27-35, Fig. 22 p. 33); 5(Table 4 $p.\,11);\,\mathbf{8}(4,\,10).$ field studies, **3**(30–32, Fig. 22 p. 33, 34–35). linearity and stability, 5(12). optical measurements, Vol. 5. validation of, 1(3); 8(16), Table 4 *p*. 21). see also GAC. along-track, $\mathbf{3}(38)$. see also propagation model. ancillary measurements, 5(8, 27-28, 30). ascending node, Vol. 2. computation methods, 2(1-2). tilt strategy, 2(Table 1 p.2). atmospheric conditions, 9(6-7). atmospheric contributions, 9(4-6). atmospheric measurements, 5(2, 28-29). AVHRR: deriving vegetation index, 7(2). GAC data, 7(3-4). LAC data, 7(2–4). LDTNLR test, 7(4). nightime IR data, 7(5). thermal IR channels, 7(1). azimuth: angles at equinox, 2(2, 10, 16). angles at solstice, 2(Fig. 5 p. 7, 10, 16). solar angle, 2(2, 16); 7(1). spacecraft angle, 2(2, Fig. 6 p. 8, 16). relative angle, 2(2, Fig. 7 p. 9, 10, Fig. 10 p. 13, 16).

– B –

baselines, 8(6-13).
algorithms, 8(6-7).
ancillary data, 8(7).
data archive and delivery, 8(9-10).
data for bio-optical algorithms, 8(10).
data for vicarious calibration, 8(10-11).
data processing and software, 8(8-9).

baselines cont. data products, 8(12-13). data quality and acceptance, 8(7-8). detector failure contingency, 8(11). equator crossing contingency, 8(12). ground station support, 8(11). in situ data policy, 8(13). launch slip contingency, 8(11). level-3 binning, 8(8, 16). loss of tilt contingency, 8(11). navigation accuracy contingency, 8(11). optical protocols, 8(12). orbit contingency, 8(12). orbital altitude contingency, 8(11). power limitation contingency, 8(11). products, **3**(27–28); **5**(1). real-time data access, 8(12). recommedations, 8(13-19). see also data. basin-scale processes, 1(4, 6-7). biogeochemical, 1(2, 19); 8(1). properties, 5(6-7). see also Science Team Meeting, Abstracts. bio-optics, 1(3, 5, 7, 19); 8(10). algorithms, 1(19); 3(8, 13, Fig. 20 p. 29, 29); 5(3); 8(10). algorithm working group members, 8(Table 1 p. 14). see also algorithm development. Brouwer-Lyddane model, 11(2-5, 11, 15-16, Figs. 5-8 pp. 8-9, Fig. 13 p. 12). see also models. buoy: see MOBY. see optical buoy. see optical mooring.

$-\mathrm{C}-$

calibration, 5(2); 10(Tables 1-2 p. 4, Fig. 3 p. 6, Fig. 20 p. 23, Fig. 21 p. 24). background on, 10(2-3). initialization, 5(4-6). lunar, 1(11, 18); 3(Fig. 15 p. 22); 10(1-3, 7, 10, Table 3 p. 10, Fig. 9 p. 11, Figs. 12-15 pp. 14-17, Fig. 16 p. 20, Fig. 19 p. 22, Table 4–5 p. 19, 25). onboard, 3(21); 5(2-3); 10(1-2). pigment, 5(24). quality control, 10(25). round-robin, 8(4, 17, Table 4 p. 21). sensor, 1(11); 5(2–3). solar, 1(11, 18); 3(24); 10(1-7, Fig. 2 p. 5, Fig. 4 p. 6, Figs. 5–8 pp. 8–9, Figs. 10–11 pp. 12–13, 18). solar diffuser, 10(3-5, 7). spectral, 5(24). sun photometers, 5(24). trend analysis, 10(25). vicarious, 5(2-4); 8(10-11). working group members, 8(Table 1 p. 14).

calibration cont. see also round-robin. see also SeaStar. calibration and validation, 1(3, 8, 14, 18-22); Vol. 3. baselines, $\mathbf{3}(17)$; $\mathbf{8}(3)$; see also baselines. field deployment, 8(17, Table 2 p. 18, Table 4 p. 20). on board, 3(21-23). post-launch, 3(23-27). prelaunch program, 3(17-21). program milestones, $\mathbf{3}$ (Fig. 12 p. 14). program schematic, $\mathbf{3}$ (Fig. 11 p. 14). see also calibration. see also initialization. characterization: collector cosine response, 5(18-19). immersion factors, 5(19-20). pressure effects, 5(21). radiance field-of-view, 5(18). radiometric, 5(15-17). spectral bandpass, 5(15). temperature, 5(20-21). temporal response, 5(17). cloud detection, 7(1, 5). MODIS, 7(1). see also MODIS-N. cloud screening, Vol. 7. determining thresholds, 7(2-3). direct thresholds, 7(1-4). evaluating methods, 7(5-6). more complex methods, 7(4-5). spatial coherence, 7(3-4). see also AVHRR GAC data. Coastal Zone Color Scanner, see CZCS. commercial applications, $\mathbf{1}(7)$. contingencies: detector failure, 8(11). equator crossing, 8(12). launch slip, 8(11). loss of tilt, 8(11). navigation accuracy, 8(11). orbit, 8(12). orbital altitude, 8(11). power limitation, 8(11). cross-track: see propagation model. CZCS, 1(1, 5, 6–7, 19); 3(1). algorithms, 3(1-11, 23). application of data, 9(7-9). channels, 7(1, 5). data collection, 3(6, Fig. 5 p. 5, 21, 30), 7(1). global sampling, 3(Fig. 9 p.10). level-2 products, 4(1). level-2 processing parameters, 4(Table 2 p. 2). modeling compared to SeaWiFS, 3(Fig. 4 p.5). orbital characteristics, 9(Table 2 p.3).

CZCS cont.
parameters and characteristics, 1(Table 2 p. 5), 3(Table 1 p. 1).
pigment concentration, 1(5-6); 3(1-2, 8, 27).
quality control, 3(Fig. 7 p. 8, Fig. 8 p. 9, 32, 35).
sensor, 1(5); 3(8).
sensor degradation, 3(23).
time of launch, 2(1).
vicarious calibration, 3(Fig. 6 p. 7, 11, 23, 24-27); 5(3-4).

-D-

data: ancillary, 8(7). archive and delivery, 5(2); 8(9-10). collection, 3(24); 8(4). distribution, 1(16); 8(2, 4, 16, 17). format, 8(43-44). management, 1(3, 11-18); 3(32).policy, 3(37-38); 8(13), Table 4 p. 21, 41-42). processing, 1(3, Fig. 2 p. 4, 11-16, Fig. 10 p. 20, 22); 3(13, 32; **7**(5); **8**(4, 8–9). products, 8(12–13, 15–17, Table 4 pp. 20–21, 42–43). quality and acceptance, 8(7-8). real-time access of, 8(12). requirements, 5(4-6). subsampling, 4(1). using SEAPAK with, 4(1-2). data set, 1(3); Vol. 9. atmospheric conditions, 9(6-7). atmospheric contributions, 9(4-6). availability of, 9(9-13). code for simulating, 9(13-15). methods for simulating, 9(2-7). normalized water-leaving radiances, 9(2-3). orbit model, 9(3-4). simulated total radiances, 9(Figs. 2-4 pp. 10-12). start and stop times, 9(Table 6 p.9). ten-bit words and data structures, 9(7). viewing and solar geometries, 9(4-6). descending node, Vol. 2. see also ascending node. detector failure contingency: see contingencies.

-E-

equator crossing time, 2(10, 16); 9(Tables 6-7 p. 9). contingency, 8(12). equinox:

see azimuth. see sun glint. see zenith.

– F –

field deployment, see calibration and validation. field program: instrumentation, **3**(34–35). computing network, **3**(Fig 21 p. 31). -G-

GAC, 1(16). AVHRR data, 7(3). algorithms, Vol. 4. generation mechanisms, 4(Table 1 p.1). generation methods, Vol. 4. resolution, 4(Color Plates 1-8). sampling techniques, Vol. 4. see also AVHRR. geometry, 2(1). derived parameters, 2(1). solar, 2(1, 10, 16). sun glint, $\mathbf{2}(1)$. viewing, 2(1, 10, 16). see also azimuth. see also zenith. global area coverage: see GAC. global-scale processes, 1(6-7). ground coverage, 2(2, Fig. 1 p. 3). ground station support, 8(11). ground systems and support, 1(14-15).

-H, I-

HRPT policies, $\mathbf{8}(17, \text{ Table 4 } p. 20)$. infrared radiometers, $\mathbf{7}(1)$. initialization, $\mathbf{5}(4\text{--}6, \text{ Table 1 } p. 5)$. sampling, $\mathbf{5}(31\text{--}32)$.

-J, K, L-

joint commercial aspects, **1**(8). lunar observations, *Vol. 10. see also* calibration.

-M-

marine optical buoy: see MOBY. see optical buoy. measurement protocols, 5(26-33). meeting agenda: see Science Team Meeting. mesoscale processes, 1(6). mission: operations, 1(14–18); 11(1–2, 15). overview, Vol. 1; 8(1). MOBY, 1(3); 8(3, 4). system schematic, 3(Fig. 17 p.25). see also optical buoy. see also optical mooring. modeling, 10(1, 10, 18, 25). models: orbital prediction, 1(17). see also Brouwer-Lyddane models. see also modeling. see also perturbation models.

models cont. see also propagation models. MODIS-N: instrument characteristics, 3(Table 4 p. 12). presentations, 8(3–5).

-N-

navigation of pixels, 9(4). normalized water-leaving radiances, 1(15); 3(2, 6, 24, 28-29, 37-38); 4(1-3, 20); 5(1, 3-4, 6, 8, 13, 31-32, 37-38); 8(16, 42); 9(2-3). non-research uses, 1(7-8).

-O-

ocean color, 1(1-4, 8, 10); 8(1-3, 22-43). future missions, $\mathbf{3}$ (Fig. 10 p. 12). requirements, $\mathbf{1}(2)$. see also algorithm development. ocean optics protocols, Vol. 5; 8(12, 14-15, Table 4 p. 20). OCTS, 1(2); 3(11). instrument characteristics, 3 (Table 3 p. 11). operational applications, 1(7-8). optical buoy: drifting, 5(9, 31). mooring, 5(8, 30–31). see also MOBY. optical instruments, Vol. 5; 10(Figs. 17-19 pp. 21-22). optical measurements, 5(1). accuracy specifications, 5(9-15). analysis methods, 5(33-39). science community, role of, 5(3). sensor characterization, 5(15-25, Tables 2-4 pp. 10-11). see also MOBY. see also optical buoy. orbit, 3(23). contingency, 8(12). distribution of local time, 2(Fig. 2 p.4). parameters, 1(18); 2(2). see also propagation model. orbital: altitude contingency, 8(11). characteristics, 9(1, Table 3 p. 3). elements, 11(2).

-P-

perturbations model: general, **11**(2-3). special, **11**(2). pigment: concentration, **1**(Color Plates 1-5); **3**(32); **4**(Table 1 p. 1, Table 3 p. 3, Figs. 5-11 pp. 6-9, Color Plates 1-8); **5**(2); **8**(4). data, **9**(2). values, **4**(Fig. 26 p. 15, Figs. 31-33 pp. 18-19). see also calibration. pixel size, **3**(Fig. C-1 p. 39). Prelaunch Science Working Group: see SPSWG. primary productivity, $\mathbf{1}(1)$; $\mathbf{5}(7)$. primary productivity cont. working group members, 8(Table 1 p. 14). proceedings: Science Team Meeting, Vol. 8. see also Science Team Meeting. Project, 1(3); 3(1, 13, 16, 23–24, 32, 34, 38). goals, 1(2-3). objectives, $\mathbf{1}(3)$. organization and personnel, 1(Table 4 p. 22); 3(Fig 13) $p.\,15).$ presentations, 8(3-5). schematic, 1(Fig. 8 p. 12, Fig. 9 p. 13). structure, **3**(13–16). propagation model: along-track, 11(5, Figs. 1-8 pp. 6-9, Fig. 11 p. 11, Figs. 12–14 pp. 12–13, Fig. 16 p. 14). cross-track, 11(5, Fig. 9 p. 10, Fig. 15 p. 13, Fig. 17 p. 14). orbit, Vol. 11. radial, **11**(4, 5, Fig. 10 p. 10).

-Q-

quality control, 3(29-30, 35-36); 10(Fig. 20 p. 23). level-1 screening, 3(35). level-2 product screening, 3(35-36). level-3 product screening, 3(36). level-2 quality control, 3(35); 8(4).

-R-

radial: see propagation model. radiometric profiles, 5(33-39). radiometric specifications, 3(36-37, Table A-1 p. 36); 8(4). research: applications, 1(3-5). cruises, 3(30-32). round-robin: calibration, 8(4, 17, Table 4 p. 21). protocols working group, 8(Table 1 p. 14).

-S, T, U-

satellite remote sensing, 7(1). saturation radiances, 3 (Tables A-2 through A-4 pp. 36–37). scanning characteristics, 9(1). science mission goals, 3(12-13). Science Team Meeting, Vol. 8. abstracts, 8(22-41). agenda, 8(5-6). attendees, 8(51-59). executive committee, 8(22). invited presentations, 8(1-3). questionnaire, 8(19-22, 44-51). SEAPAK, 4(1-2, 20).

SeaStar, 1(1, 3, 8); 2(1-2); 3(21); 10(3,7). launch sequence, 1(Fig. 4 p. 9). operational system, 1(Fig. 6 p. 10). orbital simulation parameters, 2(Table 1 p.2); 11(Table 1 p. 1). pitch rate, 10(7). satellite, $\mathbf{1}$ (Fig. 5 p.9). spacecraft description, 1(8-10). SeaWiFS instrument, 1(1, 5–6, 8, 10–11). acceptance testing, 8(4, 13-14, Table 4 p. 20). bandwidths, $\mathbf{1}$ (Table 1 p. 1, Fig. 2 p. 2, 11). calibration and characterization, 3(Fig 14 p. 18); 8(4). characteristics, 2(Table 1 p.2); 3(Table 2 p.11, 13). description, 1(10-11). launch time, 2(1). major milestones, 3(Table 7 p.21). monitoring of, 1(18). operations schedules, 1(17-18). scanner, 1(11, Fig. 7 p. 14). sensitivities, 1(5, Fig. 3 p. 6); 5(Table 4 p. 11, 14).spectral bands, 1(11); 9(1, Table 1 p. 2). telemetry parameters, 3(Table 8 p. 23). test plan summary, 3(Table 6 pp. 19–20). vicarious calibration, 5(3-4, 33). see also optical instruments. sensor: characterization, 5(15-25); see also characterization. CZCS, see CZCS. monitoring, $\mathbf{1}(18)$. operations schedules, $\mathbf{1}(17)$. ringing, 4(2). SeaWiFS, see SeaWiFS instrument. ship shadow avoidance, 5(25-26). solar irradiance measurements, 3(Fig 16 p. 22). solar observations, Vol. 10. see also calibration. solstice: see azimuth. see sun glint. see zenith. spectral bands, 1(1-2); 5(Table 2 p. 10, 17); 9(1, Table 1)p. 2).spectral irradiance and radiance measurements, $\mathbf{3}(2)$; $\mathbf{5}(13)$, 21-23, 25-27). SPSWG, 1(1); 3(Table 5 p. 16, 27–28). sun glint, 1(18); 2(1, 10, 14); 3(6). at equinox, $\mathbf{2}(10)$. at solstice, 2(10, 16). radiance distribution, 2(Fig. 8 p. 11, Fig. 11 p. 14).

-V, W, X, Y-

validation: algorithm, **8**(16). product, **8**(10, 16). sampling, **5**(2, 31–33). *see also* algorithms. viewing and solar geometries, **9**(4–6). visible radiometers, **7**(1). see also AVHRR. see also CZCS. see also MODIS. see also SeaWiFS instrument.

-Z-

zenith, 2(10).
angles at equinox, 2(2, 16).
angles at solstice, 2(10, 16).
solar angle, 2(2, Fig. 3 p. 5, 10, Fig. 9 p. 12, Fig. 12 p. 15, Table 3 p. 16, 16); 3(2, 8, 23); 7(1, 4); 9(Table 6 p. 9).
spacecraft angle, 2(2, Fig. 4 p. 6, 10, 16). GLOSSARY

-A-

- ACC Antarctic Circumpolar Current
- ACRIM Active Cavity Radiometer Irradiance Monitor
 - ACS Attitude Control System
 - A/D Analog-to-Digital
- ADEOS Advanced Earth Observation Satellite (Japan) AE Ångström Exponent
- ALSCAT ALPHA and Scattering Meter (Note: the symbol α corresponds to $c(\lambda)$, the beam attenuation coefficient, in present usage).
 - AOCI Airborne Ocean Color Imager
 - AOL Airborne Oceanographic Lidar
 - AOP Apparent Optical Property
- AOS/LOS Acquisition of Signal/Loss of Signal
 - ARGOS Not an acronym, the name given to the data collection and location system on the NOAA Operational Satellites
 - ARI Accelerated Research Initiative
 - ASCII American Standard Code for Information Interchange
 - ASI Italian Space Agency
 - AT Along-Track
 - AVHRR Advanced Very High Resolution Radiometer
 - AVIRIS Advanced Visible and Infrared Imaging Spectrometer

-B-

- BAS British Antarctic Survey
- BATS Bermuda Atlantic Time-Series Station
- BBOP Bermuda Bio-Optical Profiler
- BBR Band-to-Band Registration
- BCRS Dutch Remote Sensing Board BEP Benguela Ecology Programme
- BER Bit Error Rate
- BMFT Minister for Research and Technology (Germany)
- BOMS Bio-Optical Moored Systems bpi bits per inch
- BRDF Bidirectional Reflectance Distribution Function
- BUV Backscatter Ultraviolet Spectrometer
- BWI Baltimore-Washington International (airport)

-C-

- CalCoFI California Cooperative Fisheries Institute
- Cal/Val Calibration and Validation
- CALVAL Calibration/Validation
 - Case 1 Water whose reflectance is determined solely by absorption.
 - Case 2 Water whose reflectance is significantly influenced by scattering.
 - CCPO Center for Coastal Physical Oceanography (Old Dominion University)
- CD-ROM Compact Disk-Read Only Memory
 - CDOM Colored Dissolved Organic Material
 - CDR Critial Design Review
- CHORS Center for Hydro-Optics and Remote Sensing (San Diego State University)
- CICESE Centro de Investigación Científica y de Educación Superior de Ensenada (Mexico)
 - COOP Coastal Ocean Optics Program

- COTS Commercial Off-The-Shelf (software)
- CPR Continuous Plankton Recorder
- cpu Central Processing Unit
- CRM Contrast Reduction Meter
- CRN Italian Research Council
- CRSEO Center for Remote Sensing and Environmental Optics (University of California at Santa Barbara)
 - CRT Calibrated Radiance Tapes; or Cathode Ray Tube.
 - CSL Computer Systems Laboratory
 - CT Cross-Track
 - CTD Conductivity, Temperature, and Depth
 - CVT Calibration/Validation Team
 - CW Continuous Wave
 - CZCS Coastal Zone Color Scanner

-D-

- DAAC Distributed Active Archive Center
 - DAT Digital Audio Tape
 - DC Direct Current
- DCF Data Capture Facility
- DCOM Dissolved Colored Organic Material
- DCP Data Collection Platform
- DEC Digital Equipment Corporation
- DOC Dissolved Organic Carbon
- DOM Dissolved Organic Matter
- DOS Disk Operating System
- DSP Not an acronym, an image display and analysis package developed at RSMAS University of Miami.

-E-

- EAFB Edwards Air Force Base
- ECMWF European Centre for Medium Range Weather Forecasts
 - ECT Equator Crossing Time
 - EEZ Exclusive Economic Zone
 - EOS Earth Observing Satellite
- EOSAT Earth Observation Satellite Company
- EOSDIS Earth Observing Satellite Data Information System
 - ERBE Earth Radiation Budget Experiment
 - ERBS Earth Radiation Budget Sensor
 - ER-2 Earth Resources-2
 - EPA Environmental Protection Agency
 - ERS Earth Resources Satellite
 - ESA European Space Agency
 - EUVE Extreme Ultraviolet Explorer

-F-

- FDDI Fiber Data Distribution Interface
- FLUPAC (Geochemical) Fluxes in the Pacific (Ocean) FNOC Fleet Numerical Oceanography Center
- FORTRAN Formula Translation (computer language)
 - FOV Field-of-View
 - FRD Federal Republic of Deutschland (Germany)
 - FTP File Transfer Protocol
 - FWHM Full-Width at Half-Maximum

-G-

- GAC Global Area Coverage, coarse resolution satellite data with a nominal ground resolution of approximately 4 km.
- GASM General Angle Scattering Meter
 - GFF Glass Fiber Filter by Whatman
 - GIN Greenland, Iceland, and Norwegian Seas
 - GISS Goddard Institute for Space Studies
- GLI Global Imager
- GLOBEC Global Ocean Ecosystems dynamics
 - GMT Greenwich Mean Time
 - GOES Geosynchronous Orbital Environmental Satellite
 - GOFS Global Ocean Flux Study
 - GPM General Perturbations Model
 - GPS Global Positioning System
 - GRGS Groupe de Recherche de Geodesie Spatial
 - GSFC Goddard Space Flight Center
 - GSO Graduate School of Oceanography (University of Rhode Island)
 - G/T System Gain/Total System Noise Temperature
 - **GUI** Graphical User Interface

-H-

- HDF Hierarchical Data Format
- HeNe Helium-Neon
- HOTS Hawaiian Optical Time Series HP Hewlett Packard
- HPLC High Performance Liquid Chromatography HQ Headquarters
- HRPT High Resolution Picture Transmission
- HYDRA Hydrographic Data Reduction and Analysis

- I -

- IAPSO International Association for the Physical Sciences of the Ocean
 - IAU International Astrophysical Union
 - **IBM** International Business Machines
 - ICES International Council on Exploration of the Seas
 - IDL Interface Design Language
 - IFOV Instantaneous Field-of-View
 - IMS Information Management System
 - I/O Input/Output
 - **IOP** Inherent Optical Property
 - IR Infrared
- ISCCP International Satellite Cloud Climatology Project
 - **IUE** International Ultraviolet Explorer

-J, K-

- JAM JYACC Application Manager
- JGOFS Joint Global Ocean Flux Study
 - JOI Joint Oceanographic Institute
 - JPL Jet Propulsion Laboratory

-L-

- LAC Local Area Coverage, fine resolution satellite data with a nominal ground resolution of approximately 1 km.
- LANDSAT Land Resources Satellite

- LDGO Lamon-Doherty Geological Observatory (Columbia University)
- LDTNLR Local Dynamic Threshold Nonlinear Raleigh
 - Level-0 Raw data. Level-1 Calibrated radiances.
 - Level-2 Derived products.

 - Level-3 Gridded and averaged derived products.
 - LMCE Laboratoire de Modelisation du climat et de *l'Environment* (France)
- LODYC Laboratoire d'Océanographie et de Dynamique du climat (France)
- LOICZ Land Ocean Interaction in the Coastal Zone
- LPCM Laboratoire de Physique et Chimie Marines (France)
- LRER Long-Range Ecological Research

-M-

- MAREX Marine Resources Experiment Program
 - MARS Multispectral Airborne Radiometer System
- MASSS Multi-Agency Ship-Scheduling for SeaWiFS
- MBARI Monterey Bay Aquarium Research Institute
- MERIS Medium Resolution Imaging Spectrometer
- MEM Maximum Entropy Method
- METEOSAT Meteorological Satellite
 - MF Major Frame
 - mF Minor Frame
 - MIPS Millions of Instructions Per Second
 - MIZ Marginal Ice Zone
 - MLE Maximum Likelihood Estimator
 - MLML Moss Landing Marine Laboratory (San Jose State University)
 - MOBY Marine Optical Buoy
 - MOCE Marine Optical Characterization Experiment
 - MODIS Moderate Resolution Imaging Spectrometer
 - MODIS-N Moderate Resolution Imaging Spectrometer-Nadir
 - MODIS-T Moderate Resolution Imaging Spectrometer-Tilt
 - MTF Modulation Transfer Function

-N-

- NAS National Academy of Science
- NASA National Aeronautics and Space Administra-
- tion NASCOM NASA Communications
- NASDA National Space Development Agency (Japan)
 - NASIC NASA Aircraft/Satellite Instrument Calibration
- NAVSPASUR Naval Space Surface Surveillance
 - NCDS National Climate Data System
 - NCSA National Center for Supercomputing Applications
 - NCSU North Carolina State University
 - $NE\Delta T$ Noise Equivalent Delta Temperature
 - $NE\delta L$ Noise Equivalent delta Radiance
 - NER Noise Equivalent Radiance
 - NERC Natural Environment Research Council
 - NESDIS National Environmental Satellite Data Information Service
 - NET NIMBUS Experiment Team
 - NIMBUS Not an acronym, a series of NASA experimental weather satellites containing a wide variety of atmosphere, ice, and ocean sensors.

- NIST National Institute of Standards and Technology
- NMC National Meteorological Center
- NMFS National Marine Fisheries Service
- NOAA National Oceanic and Atmospheric Administration
- NOARL Naval Oceanographic and Atmospheric Research Laboratory
- NORAD North American Air Defense (Command)
 - NOS National Ocean Service
 - NRA NASA Research Announcement
 - NRL Naval Research Laboratory
- NSCAT NASA Scatterometer
 - NSF National Science Foundation

- O -

- OAM Optically Active Materials
- OCEAN Ocean Colour European Archive Network
- OCTS Ocean Color Temperature Sensor (Japan)
- ODAS Ocean Data Acquisition System
- ODU Old Dominion University
- **OFFI** Optical Free-Fall Instrument
- OLIPAC Oligotrophy in the Pacific (Ocean)
 - OMEX Ocean Marine Exchange
 - ONR Office of Naval Research
 - OS Operating System
 - **OSC** Orbital Sciences Corporation
 - **OSFI** Optical Surface Floating Instrument
 - OSSA Office of Space Science and Applications
 - OSU Oregon State University

-P-

- PAR Photosynthetically Available Radiation
- PC (IBM) Personal Computer
- PDR Preliminary Design Review PI Principal Investigator
- PIKE Phased Illuminated Knife Edge
- PML Plymouth Marine Laboratory
- POC Particulate Organic Carbon
- POLDER Polarization Detecting Environmental Radiometer (France)
 - PON Particulate Organic Nitrogen
 - PRIME Plankton Reactivity in the Marine Environment
 - PST Pacific Standard Time
 - **PSU** Practical Salinity Units
 - PUR Photosynthetically Usable Radiation

-Q –

QC Quality Control

-R-

- R&A Research and Applications
- R&D Research and Development
- RDF Radio Direction Finder
- **RF** Radio Frequency
- **RFP** Request for Proposals
- **RISC** Reduced Instruction Set Computer
- rms root mean squared

16

- **ROSIS** Remote Sensing Imaging Spectrometer, also known as the Reflective Optics System Imaging Spectrometer (Germany)
- RSMAS Rosenstiel School for Marine and Atmospheric Sciences (University of Miami)
- **RTOP** Research and Technology Operation Plan

-S-

- SAC Satellite Applications Centre
- SARSAT Search and Rescue Satellite
 - SBRC (Hughes) Santa Barbara Research Center SBUV Solar Backscatter Ultraviolet Radiometer
- SBUV-2 Solar Backscatter Ultraviolet Radiometer-2
 - S/C Spacecraft
 - SCOR Scientific Committee on Oceanographic Research
 - SDPS SeaWiFS Data Processing System
- SDSU San Diego State University
- SEAPAK Not an acronym, an image display and analysis package developed at GSFC.
- SeaSCOPE SeaWiFS Study of Climate, Ocean Productivity, and Environmental Change
- SeaWiFS Sea-viewing Wide Field-of-view Sensor
 - SES Shelf Edge Study
 - SGI Silicon Graphics, Incorporated
 - SIO Scripps Institution of Oceanography
 - SIS Spherical Integrating Source
 - SISSR Submerged In Situ Spectral Radiometer
 - SMM Solar Maximum Mission
 - SNR Signal-to-Noise Ratio
 - SOC Spacecraft Operations Center
 - SOGS SeaStar Operations Ground Subsystem
 - SOH State of Health
 - SOW Statement of Work
 - SPM Suspended Particulate Material or Special Perturbations Model (depending on usage)
 - SPO SeaWiFS Project Office
 - SPOT Satellite Pour l'Observation de la Terre (France)
 - SPSWG SeaWiFS Prelaunch Science Working Group SRC Satellite Receiving Station (NERC)
 - SST Sea Surface Temperature or SeaWiFS Science Team (depending on usage)
 - ST Science Team
 - SUN Sun Microsystems
 - SWAP Sylter Wattenmeer Austausch-prozesse
 - SWG Science Working Group

-T-

- **T-S** Temperature-Salinity
- TBD To Be Determined
- TBUS Not an acronym, but a NOAA orbit prediction TDI Time-Delay and Integration
- TDRSS Tracking and Data Relay Satellite System
- TIROS Television Infrared Observation Satellite
- TLM Telemetry
- TM Technical Memorandum
- TOGA Tropical Ocean Global Atmosphere program
- TOMS Total Ozone Mapping Spectrometer
- **TOPEX** Topography Experiment
 - TOVS TIROS Operational Vertical Sounder

-U-

UARS Upper Atmosphere Research Satellite

UCSD University of California at San Diego

UCMBO University of California Marine Bio-Optics UCSB University of California at Santa Barbara

- TSM Total Suspended Material
- TV Thermal Vacuum

UH University of Hawaii

- UIM/X User Interface Management/X-Windows UM University of Miami
- UNESCO United Nations Educational, Scientific, and Cultural Organizations
 - UPS Uninterruptable Power System
 - URI University of Rhode Island
 - USC University of Southern California
 - USF University of South Florida
 - UVB Ultraviolet-B
 - UWG User Working Group

$$-V-$$

- V0 Version 0
- V1 Version 1

- VAX Virtual Address Extension
- VHF Very High Frequency
- VI Virtual Instrument
- VISLAB Visibility Laboratory (Scripps Institution of Oceanography)
- VISNIR Visible and Near Infrared
- VMS Virtual Memory System

-W, X, Y, Z-

- WFF Wallops Flight Facility
- WHOI Woods Hole Oceanographic Institute
- WMO World Meteorological Organization
- WOCE World Ocean Circulation Experiment
- WORM Write Once Read Many (times)

Symbols

-A-

- a The semi-major axis of the Earth's orbit or a constant equal to 0.983 (depending on usage).
- $a(z,\lambda)$ Spectral absorption coefficient.
 - $a_{\rm ox}$ Coefficient for oxygen absorption.
 - a_{oz} Coefficient for ozone absorption.
 - $a_{\rm wv}$ Coefficient for water vapor absorption.
 - $A(\lambda)$ Coefficient for calculating $b_b(\lambda)$.
 - A_i The intersection area.

-B-

- $b(z, \lambda)$ Total scattering coefficient.
- $b(\theta, z, \lambda_0)$ Volume scattering coefficient.
 - $b_b(z,\lambda)$ Spectral backscattering coefficient.
 - $b_{bc}(\lambda)$ Spectral backscattering coefficient for phytoplankton.
 - $b_r(\lambda)$ Total Raman scattering coefficient.
 - $b_w(\lambda)$ Total scattering coefficient for pure seawater.
 - $B(\lambda)$ Coefficient for calculating $b_b(\lambda)$.

-C-

- $c(z, \lambda)$ Spectral beam attenuation coefficient .
- c(z, 660) Red beam attenuation (at 660 nm).
- [chl. a]/K Concentration of chlorophyll a over K, the diffuse attenuation coefficient.
 - $C_{\rm ref}$ Reference chlorophyll value (0.5).

– D –

- D Sequential day of the year.
- \vec{D} Orbit position difference vector.
- $D_{\rm at}$ Along-track position difference.
- $D_{\rm ct}$ Cross-track position difference.
- $D_{\rm rad}$ Radial position difference.
- DC_{10} Digital counts at 10-bit digitization.

-E-

- e Orbit eccentricity of the Earth.
- $E_a(\lambda)$ Irradiance in air.
- $E_{\rm cal}$ Calibration source irradiance.
- $E_d(0^-, \lambda)$ Incident spectral irradiance.
- $E_d(z,\lambda)$ Downwelled spectral irradiance.
- $E_s(\lambda)$ Surface irradiance.
- $E_{\rm sky}(\lambda)$ Spectral sky irradiance distribution.
- $E_{\rm sun}(\lambda)$ Spectral sun irradiance distribution.
- $E_u(z,\lambda)$ Upwelled spectral irradiance.
- $E_w(z,\lambda)$ Irradiance in water.

-F-

- *f*-ratio The ratio of new to total production.
- F_0 Extraterrestrial irradiance corrected for Earth-sun distance.
 - \overline{F}_0 Mean solar irradiance.
 - F'_0 Extraterrestrial irradiance corrected for the atmosphere.
- $\overline{F}_0(\lambda)$ Mean extraterrestrial irradiance.
 - F_a Forward scattering probability of the aerosol.

-G-

- g_1 A constant equal to 0.82.
- g_2 A constant equal to -0.55.
- G_e Gravitational constant of the Earth (398,600.5 km³) s^{-2}).

-H-

- $H_{\rm GMT}$ GMT in hours.
 - H_s Altitude of the spacecraft (for SeaStar 705 km).

-I-

- *i* Inclination angle.
- i' Inclination angle minus 90°.
- I Rayleigh intensity.
- I_0 Surface downwelling irradiance.

-J-

- J2 The J2 gravity field term (0.0010863).
- J3 The J3 gravity field term (-0.0000254).
- J4 The J4 gravity field term (-0.0000161).
- J5 The J5 gravity field term.

-K-

- $k_c(\lambda)$ Spectral fit coefficient weighted over the SeaWiFS bands; $k'_c(\lambda)$ also used.
- $K(z,\lambda)$ Diffuse attenuation coefficient.
- $K_0(\lambda)$ Diffuse attenuation coefficient at z = 0.
- $K_c(\lambda)$ Attenuation coefficients for phytoplankton.
- $K_E(\lambda)$ Attenuation coefficient downwelled irradiance.
- $K_g(\lambda)$ Attenuation coefficients for Gelbstoff.
- $K_L(z,\lambda)$ Attenuation coefficient upwelled radiance.
- $K_w(\lambda)$ Attenuation coefficients for pure seawater.

-L-

- $L(z, \theta, \phi)$ Submerged upwelled radiance distribution.
 - L_a Aerosol radiance.
 - $L_{\rm cal}$ Calibration source radiance.
 - $L_q(\lambda)$ Sun glint radiance.
- $L_{\text{NER}}\lambda$) Noise equivalent radiance.
- $L_r(\lambda)$ Rayleigh radiance.
- $L_{\rm sat}(\lambda)$ Saturation radiance for the sensor.
- $L_{\rm sky}(\lambda)$ Spectral sky radiance distribution.
 - $L_t(\lambda)$ Total radiance at the sensor.
- $L_{\mu}(z,\lambda)$ Upwelled spectral radiance.
- $L_W(\lambda)$ Water-leaving radiance.
- $L_{WN}(\lambda)$ Normalized water-leaving radiance.

-M-

- M Path length through the atmosphere.
- M'_m The corrected mean orbit anomaly of the Earth, which is a function of date, and refers to an imaginary moon in a circular orbit.
- $M_{\rm oz}$ Path length for ozone transmittance.

-N-

- n Index of refraction or mean orbital motion in revolutions per day (depending on usage).
- $n_w(\lambda)$ Index of refraction of water. N The total number of something.

 $\vec{O} \ \vec{P} \times \vec{V}$.

-P-

- p_a A factor to account for the probability of scattering to the spacecraft for three different paths from the sun.
- p_w The probability of seeing sun glitter in the direction θ, Φ given the sun in position θ_0, Φ_0 as a function of wind speed (W).
- P Nodal period.
- \vec{P} Orbit position vector.
- $P(\theta^+)$ Phase function for forward scattering.
- $P(\theta^{-})$ Phase function for backward scattering.
- P_a Probability of scattering to the spacecraft.

-Q-

 $Q(\lambda)$ $L_u(0^-, \lambda)$ to $E_u(0^-, \lambda)$ relation factor (theoretically equal to π).

$-\mathrm{R}-$

- r Water-air reflectance for totally diffuse irradiance.
- r_1 The radius of circle one.
- r_2 The radius of circle two.
- $R(0^-,\lambda)$ Irradiance reflectance just below the sea surface.
 - R_e Mean Earth radius (6,378.137 km).

 $R_L(z,\lambda)$ Spectral reflectance.

 R_z Sunspot number.

-S-

 $s(\lambda)$ Slope for the range 0–1,023.

S Solar constant.

-T, U-

- t Time variable.
- t_0 Initial time.
- t_{aa} Aerosol transmittance after absorption.
- $t_{\rm as}\,$ Aerosol transmittance after scattering.
- t_d Direct component of transmittance after absorption by the gaseous components of the atmosphere, scattering and absorption by aerosols, and scattering by Rayleigh.
- t_e Time difference in hours between present position and most recent equator crossing.
- $t_{\rm EC}$ Equator crossing time.
- $t_{\rm oz}\,$ Transmittance after absorption by ozone.
- $t_r\,$ Transmittance after Rayleigh scattering.
- t_s Diffuse component of transmittance after absorption by the gaseous components of the atmosphere, scattering and absorption by aerosols, and scattering by Rayleigh.
- $t_{\rm wv}$ Transmittance after absorption by water vapor.
- $T_s(\lambda)$ Transmittance through the surface.
- $T(\lambda, \theta)$ Total transmittance (direct plus diffuse) from the ocean through the atmosphere to the spacecraft along the path determined by the spacecraft zenith angle θ .
- $T_0(\lambda, \theta_0)$ Total downward transmittance of irradiance.
 - T_e Equation of time.
 - $T_{\rm ox}$ Transmittance of oxygen (O₂).
 - T_{oz} Transmittance of ozone (O₃).
 - $T_s(\lambda)$ Transmittance through the surface.
 - $T_w(\lambda)$ Transmittance through a water path.
 - $T_{\rm wv}$ Transmittance of water vapor (H₂O).

-V-

 \vec{V} Orbit velocity vector.

-W-

- W Wind speed.
- W_d Direct irradiance divided by the total irradiance at the surface.
- $W_{s}\,$ Diffuse irradiance divided by the total irradiance.

-X, Y, Z -

- x Abscissa or longitudinal coordinate, or the pixel number within a scan line depending on usage.
- y Ordinate or meridional coordinate.

-GREEK-

- $\alpha\,$ The power constant in the Ångström formulation.
- β A constant in the Ångström formulation.

 $\beta(z,\lambda,\theta)$ Spectral volume scattering function.

- δ Great circle distance from $\Psi_s(t_0)$ to $\Psi_s(t-t_0)$.
- ΔP The difference in successive pixels.
- $\Delta p \text{CO}_2$ Partial pressure difference of CO_2 between air and sea water.
 - Δt Time difference.
 - $\Delta \omega~$ The longitude difference from the sub-satellite point to the pixel.
 - $\Delta \omega_s$ Longitude difference.
 - η Bearing from the sub-satellite point to the pixel along the direction of motion of the satellite.
 - $\theta\,$ Spacecraft zenith angle.
 - $\theta_1\,$ The intersection angle of circle one.
 - θ_2 The intersection angle of circle two.
 - θ_0 Solar zenith angle.
 - θ_N The angle with respect to nadir that the sea surface slopes to produce a reflection angle to the space-craft.
 - $\theta_s\,$ Scan angle of sensor.
 - θ_s' Scan angle of sensor adjusted for tilt.
 - λ Wavelength of light.
- $\overline{\mu}_d(0^+,\lambda)$ Spectral mean cosine for down welling radiance at the sea surface.
 - ξ_{EM} The distance between the Earth and the moon.
 - ρ Weighted direct plus diffuse reflectance.
 - $\rho(\theta)$ Fresnel reflectance for viewing geometry.
 - $\rho(\theta_0)$ Fresnel reflectance for solar geometry.
 - ρ_n Sea surface reflectance for direct irradiance at normal incidence for a flat sea.
 - $\rho_N\,$ Reflectance for diffuse irradiance.
 - $\sigma\,$ Standard deviation of a set of data values.
 - $\tau(z,\lambda)$ Spectral optical depth.
 - τ_a Aerosol optical thickness.
 - τ_r Rayleigh optical thickness.
 - $\tau_s(\lambda)$ Spectral solar atmospheric transmission.
 - Φ Spacecraft azimuth angle.
 - Φ_0 Solar azimuth angle.
 - Ψ Pixel latitude.
 - Ψ_d Solar declination latitude.
 - $\Psi_s(t)$ Sub-satellite latitude as a function of time.

- $\omega\,$ Longitude variable.
- $\omega_0~$ Old longitude value.
- $\omega_a\,$ Single scattering albedo of the aerosol.

- $\begin{array}{l} \omega_e \ \mbox{Equator crossing longitude.} \\ \omega_s \ \mbox{Longitude variable.} \\ \Omega \ \mbox{Solar hour angle.} \end{array}$

References

-A-

- Abbott, M.R., and P.M. Zion, 1985: Satellite observations of phytoplankton variability during an upwelling event. *Cont. Shelf Res.*, 4, 661–680.
- —, and D.B. Chelton, 1991: Advances in passive remote sensing of the ocean. U.S. National Report to the International Union of Geodesy and Geophysics 1987–1990, Contributions in Oceanography, Am. Geophys. Union, Washington, DC, 571–589.
- Abel, P., G.R. Smith, R.H. Levin, and H. Jacobowitz, 1988: Results from aircraft measurements over White Sands, New Mexico, to calibrate the visible channels of spacecraft instruments. SPIE, 924, 208–214.
- —, B. Guenther, R. Galimore, and J. Cooper, 1993: Calibration results for NOAA-11 AVHRR channels 1 and 2 from congruent aircraft observations. J. Atmos. and Ocean. Technol., 10, 493–508.
- Arking, A., and J.D. Childs, 1985: Retrieval of cloud cover parameters from multispectral satellite images. J. Climate Appl. Meteor., 24, 322–333.
- Austin, R.W., 1974: The remote sensing of spectral radiance from below the ocean surface. Optical Aspects of Oceanography, N.G. Jerlov and E. Steemann-Nielsen, Eds., Academic Press, 317–344.
- —, 1976: Air-Water Radiance Calibration Factor. Tech. Memo. ML-76-004t, Vis. Lab., Scripps Inst. of Oceanogr., La Jolla, California, 8 pp.
- —, 1980: Gulf of Mexico, ocean-color surface-truth measurements. Bound.-Layer Meteor., 18, 269–285.
- —, and G. Halikas, 1976: The index of refraction of seawater. SIO Ref. 76–1, Vis. Lab., Scripps Inst. of Oceanogr., La Jolla, California, 64 pp.
- —, and T.J. Petzold, 1981: The determination of diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner. Oceanography from Space, J.F.R. Gower, Ed., Plenum Press, 239–256.

-B-

- Baker, K.S., and R.C. Smith, 1982: Bio-optical classification and model of natural waters, 2. Limnol. Oceanogr., 27, 500–509.
 - —, and —, 1990: Irradiance transmittance through the air/water interface. *Ocean Optics X*, R.W. Spinrad, Ed., SPIE, **1302**, 556–565.
- Balch, W.M., R. Evans, J. Brown, G. Feldman, C. McClain, and W. Esaias, 1992: The remote sensing of ocean primary productivity-use of a new data compilation to test satellite algorithms. J. Geophys. Res., 97, 2,279–2,293.
- Ball Aerospace Systems Division, 1979: Development of the Coastal Zone Color Scanner for Nimbus-7, Test and Performance Data. *Final Report F78-11, Rev. A, Vol. 2, Boul*der, Colorado, 94 pp.
- Barale, V., C.R. McClain, and P. Malanotte-Rizzoli, 1986: Space and time variability of the surface color field in the northern Adriatic Sea. J. Geophys. Res., 91, 12,957–12,974.

- —, and R. Wittenburg-Fay, 1986: Variability of the ocean surface color field in central California near-coastal waters as observed in seasonal analysis of CZCS imagery. J. Mar. Res., 44, 291–316.
- Berger, W.H., 1989: Productivity of the Ocean: Present and Past. V.S. Smetacek and G. Wefer, Eds., John Wiley & Sons, 471 pp.
- Bernstein, R.L., 1982: Sea surface temperature estimation using the NOAA-6 satellite Advanced Very High Resolution Radiometer. J. Geophys. Res., 87, 9,455–9,465.
- Bird, R.E., and C. Riordan, 1986: Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the Earth's surface for cloudless atmospheres. J. of Climate and Appl. Meteor., 25, 87–97.
- Booth, C.R.B. and R.C. Smith, 1988: Moorable spectroradiometer in the Biowatt Experiment. Ocean Optics IX, SPIE **925**, 176–188.
- Boyd, R.A., 1951: The development of prismatic glass block and the daylight laboratory. *Eng. Res. Bull. No. 32*, Eng. Res. Inst., Univ. of Mich., 88 pp.
- Bricaud, A., A. Morel, and L. Prieur, 1981: Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. *Limnol. Oceanogr.*, 26, 43– 53.
- Brock, J.C., C.R. McClain, M.E. Luther, and W.W. Hay, 1991: The phytoplankton bloom in the northwest Arabian Sea during the southwest monsoon of 1979. J. Geophys. Res., 96, 20,623–20,642.
- —, and —, 1992: Interannual variability in phytoplankton blooms observed in the northwestern Arabian Sea during the southwest monsoon. J. Geophys. Res., **97**, 733–750.
- Brouwer, D., 1959: Solution of the problem of artificial satellite theory without drag. *Astron. J.*, **64**(1274), 378–397.
- Brown, O.B., and R.H. Evans, 1985: Calibration of Advanced Very High Resolution Radiometer infrared observations. J. Geophys. Res., 90, 11,667–11,677.
- Burlov-Vasiljev, K.A., E.A. Gurtovenko, and Y.B. Matvejev, 1992: The Solar Radiation Between 310–680 nm. Proceedings of the Workshop on the Solar Electromagnetic Radiation Study for Solar Cycle 22, R.E. Donnelly, Ed., U.S. DOC NOAA Environmental Research Laboratory, Boulder, Colorado, 49–53.

-C-

- Campbell, J.W., and J.E. O'Reilly, 1988: Role of satellites in estimating primary productivity on the northwest Atlantic continental shelf. *Cont. Shelf Res.*, 8, 179–204.
- Capellari, J.O., C.E. Velez, and A.J. Fuchs, 1976: Mathematical Theory of the Goddard Trajectory Determination System. *GSFC X-582-76-77*, NASA Goddard Space Flight Center, Greenbelt, Maryland, 596 pp.
- Carder, K.L., G.R. Harvey, R.G. Steward, and P.B. Ortner, 1989: Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll. *Limnol. Oceanogr.*, 34, 68–81.

- Cebula, R.P., H. Park, and D.F. Heath, 1988: Characterization of the Nimbus-7 SBUV radiometer for the long term monitoring of stratospheric ozone. J. Atmos. Ocean. Technol., 5, 215–227.
- Chin, R.T., C. Jau, and J.A. Weinman, 1987: The application of time series models to cloud field morphology analysis. J. Climate Appl. Meteor., 26, 363–373.
- Clark, D.K., 1981: Phytoplankton algorithms for the Nimbus-7 CZCS. Oceanography from Space, J.F.R. Gower, Ed., Plenum Press, 227–238.
- —, E.T. Baker, and A.E. Strong, 1980: Upwelled spectral radiance distributions in relation to particulate matter in sea water. *Bound.-Layer Meteor.*, **18**, 287-298.
- Coakley, J.A., Jr., and F.P. Bretherton, 1982: Cloud cover from high resolution scanner data: Detecting and allowing for partially filled fields of view. J. Geophys. Res., 87, 4,917– 4,932.
- Comiso, J.C., N.G. Maynard, W.O. Smith, Jr., and C.W. Sullivan, 1990: Satellite ocean color studies of Antarctic ice edges in summer and autumn. J. Geophys. Res., 95, 9,481– 9,496.
- Cox, C., and W. Munk, 1954: Measurement of the roughness of the sea surface from photographs of the sun's glitter. J. Mar. Res., 44, 838–850.
- Crane, R.J., and M.R. Anderson, 1984: Satellite discrimination of snow/cloud surfaces. Int. J. Remote Sens., 5, 213–223.

– D –

- Darzi, M., 1992: Cloud Screening for Polar Orbiting Visible and IR Satellite Sensors. NASA Tech. Memo. 104566, Vol. 7, S.B. Hooker and E.R. Firestone, Eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, 7 pp.
- Denman, K.L., and M.R. Abbott, 1988: Time evolution of surface chlorophyll patterns from cross spectrum analysis of satellite color images. J. Geophys. Res., 93, 6,789–6,798.
- Detwiler, A., 1990: Analysis of cloud imagery using box counting. Int. J. Remote Sens., 11, 887–898.
- Deuser, W.G., F.E. Muller-Karger, and C. Hemleben, 1988: Temporal variations of particle fluxes in the deep subtropical and tropical North Atlantic: Eulerian versus Lagrangian effects. J. Geophys. Res., 93, 6,857–6,862.

-, —, R.H. Evans, O.B. Brown, W.E. Esaias, and G.C. Feldman, 1990: Surface-ocean color and deep-sea carbon flux: how close a connection? *Deep-Sea Res.*, **37**, 1,331–1,343.

- Dickey, T., J. Marra, T. Granata, C. Langdon, M. Hamilton, J. Wiggert, D. Siegel, and A. Bratkovich, 1991: Concurrent high-resolution bio-optical and physical time series observations in the Sargasso Sea during the spring of 1987. J. Geophys. Res., 96, 8,643–8,663.
- Duffett-Smith, P., 1979: Practical Astronomy With Your Calculator. Cambridge University Press, 129 pp.

-E-

Ebert, E.E., 1992: Pattern recognition analysis of polar clouds during summer and winter. Int. J. Remote Sens., 13, 97– 109.

- Eck, T.F., and V.L. Kalb, 1991: Cloud-screening for Africa using a geographically and seasonally variable infrared threshold. *Int. J. Remote Sens.*, **12**, 1,205–1,221.
- Eckstein, B.A., and J.J. Simpson, 1991: Cloud screening Coastal Zone Color Scanner images using channel 5. Int. J. Remote Sens., 12, 2,359–2,377.
- England, C.F., and G.E. Hunt, 1985: A bispectral method for the automatic determination of parameters for use in imaging satellite cloud retrievals. *Int. J. Remote Sens.*, 6, 1,545–1,553.
- Eppley, R.W., 1984: Relations between primary productivity and ocean chlorophyll determined by satellites. *Global Ocean Flux Study: Proceedings of a Workshop*, National Academy Press, Washington, DC, 85–102.
- Esaias, W., G. Feldman, C.R. McClain, and J. Elrod, 1986: Satellite observations of oceanic primary productivity. *Eos*, *Trans. AGU*, **67**, 835–837.

-F-

- Feldman, G., 1986: Variability of the productive habitat in the eastern equatorial Pacific. *Eos. Trans. AGU*, **67**, 106–108.
- —, D. Clark, and D. Halpern, 1984: Satellite color observations of the phytoplankton distribution in the eastern equatorial Pacific during the 1982–1983 El Niño. *Science*, **226**, 1,069–1,071.
- —, N. Kuring, C. Ng, W. Esaias, C. McClain, J. Elrod, N. Maynard, D. Endres, R. Evans, J. Brown, S. Walsh, M. Carle, and G. Podesta, 1989: Ocean Color: Availability of the global data set. *Eos, Trans. AGU*, **70**, 634.
- Firestone, E.R., and S.B. Hooker 1992: SeaWiFS Technical Report Series Cumulative Index: Volumes 1–5. NASA Tech. Memo. 104566, Vol. 6, S.B. Hooker and E.R. Firestone, Eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, 9 pp.
- Fofonoff, N.P., and R.C. Millard, Jr., 1983: Algorithms for Computation of Fundamental Properties of Seawater. UN-ESCO Tech. Papers in Mar. Sci., 44, UNESCO, 53 pp.
- Frederick, J.E., R.P. Cebula, and D.F. Heath, 1986: Instrument characterization for detection of long-term changes in stratospheric ozone: An analysis of the SBUV/2 radiometer. J. Atmos. Ocean. Technol., 3, 472–480.
- Frohlich, C., 1979: WMO/PMOD Sunphotometer: Instructions for Manufacture. World Meteor. Org., Geneva, 3 pp (plus tables and drawings).

-G-

- Gallaudet, T.C., and J.J. Simpson, 1991: Automated cloud screening of AVHRR imagery using split-and-merge clustering. *Remote Sens. Environ.*, 38, 77–121.
- Garand, L., 1986: Automated Recognition of Oceanic Cloud Patterns and Its Application to Remote Sensing of Meteorological Parameters. Doctoral dissertation, Dept. of Meteorology, Univ. of Wisconsin-Madison.
- General Sciences Corp., 1991: SeaWiFS Science Data and Information System Architecture Report. GSC-TR-21-91-006, General Sciences Corp., Laurel, Maryland, 133 pp.

- Gieskes, W.W.C., and G.W. Kraay, 1986: Analysis of phytoplankton pigments by HPLC before, during, and after mass occurrence of the microflagellate corymbellus during the spring bloom in the open north North Sea in 1983. *Mar. Biol.*, **92**, 45–52.
- Gordon, H.R., 1981: Reduction of error introduced in the processing of coastal zone color scanner-type imagery resulting from sensor calibration and solar irradiance uncertainty. *Appl. Opt.*, **20**, 207–210.
- —, 1985: Ship perturbations of irradiance measurements at sea, 1: Monte Carlo simulations. Appl. Opt., 24, 4,172– 4,182.
- —, 1987a: Calibration requirements and methodology for remote sensors viewing the ocean in the visible. *Remote Sens. Environ.*, **22**, 103–126.
- —, 1987b: Visible calibration of ocean-viewing sensors. Remote Sens. of Environ., 22, 103–126.
- —, 1988: Ocean color remote sensing systems: radiometric requirements. Recent Advances in Sensors, Radiometry, and Data Processing for Remote Sensing, P.N. Slater, Ed., SPIE, 924, 151–167.
- —, 1989: Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water? *Limnol. Oceanogr.*, **34**, 1,389–1,409.
- —, 1990: Radiometric considerations for ocean color remote sensors. *Appl. Opt.*, **29**, 3,228–3,236.
- —, 1991: Absorption and scattering estimates from irradiance measurements: Monte Carlo simulations. *Limnol. Oceanogr.*, **36**, 769–777.
- —, and D.K. Clark, 1980: Remote sensing optical properties of a stratified ocean: an improved interpretation. *Appl. Opt.*, **19**, 3,428–3,430.
- —, —, J.L. Mueller, and W.A. Hovis, 1980: Phytoplankton pigments from the Nimbus-7 Coastal Zone Color Scanner: Comparisons with surface measurements. *Science*, **210**, 63–66.
- —, and D.K. Clark, 1981: Clear water radiances for atmospheric correction of coastal zone color scanner imagery. *Appl. Opt.*, **20**, 4,175–4,180.
- —, —, J.W. Brown, O.B. Brown, and R.H. Evans, 1982: Satellite measurements of phytoplankton pigment concentration in the surface waters of a warm core Gulf Stream ring. J. Mar. Res., 40, 491–502.
- —, —, —, —, , and W.W. Broenkow, 1983a: Phytoplankton pigment concentrations in the Middle Atlantic Bight: Comparison of ship determinations and CZCS estimates. *Appl. Opt.*, **22**, 20–36.
- —, J.W. Brown, O.B. Brown, R.H. Evans, and D.K. Clark, 1983b: Nimbus 7 CZCS: reduction of its radiometric sensitivity with time. *Appl. Opt.*, **24**, 3,929–3,931.
- —, and D.J. Castaño, 1987: Coastal Zone Color Scanner atmospheric correction algorithm: multiple scattering effects. *Appl. Opt.*, **26**, 2,111–2,122.
- —, O.B. Brown, R.H. Evans, J.W. Brown, R.C. Smith, K.S. Baker, and D.K. Clark, 1988a. A semianalytic radiance model of ocean color. J. of Geophys. Res., 93, 10,909–10,924.

- —, J.W. Brown, and R.H. Evans, 1988b: Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner. *Appl. Opt.*, 27, 5, 862–871.
- —, and D.J. Castaño, 1989: Aerosol analysis with Coastal Zone Color Scanner: A simple method for including multiple scattering effects. *Appl. Opt.*, **28**, 1,320–1,326.
- —, and K. Ding, 1991: Self shading of in-water optical instruments. *Limnol. Oceanogr.*, **37**, 491–500.
- Gower, J.F.R, 1985: Reduction of the effect of clouds on satellite thermal imagery. Int. J. Remote Sens., 6, 1,419–1,434.
- Gregg, W.W., 1992: Analysis of Orbit Selection for SeaWiFS: Ascending vs. Descending Node. NASA Tech. Memo. 104566, Vol. 2, S.B. Hooker and E.R. Firestone, Eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, 16 pp.
- , 1993: The Simulated SeaWiFS Data Set, Version 1. NASA Tech. Memo. 104566, Vol. 9, S.B. Hooker and E.R. Firestone, Eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, 17 pp.
- —, and K.L. Carder, 1990: A simple spectral solar irradiance model for cloudless maritime atmospheres. *Limnol. Oceanogr.*, **35**, 1,657–1,675.
- Groom, S.B., and P.M. Holligan, 1987: Remote sensing of coccolithophorid blooms. *Adv. Space Res.*, **7**, 73–78.
- Guenther, B., 1991: Accuracy and precisions actually achieved for large aperture sources for aircraft and space investigations. *Metrologia*, 28, 229–232.
- Gutman, G., D. Tarpley, and G. Ohring, 1987: Cloud screening for determination of land surface characteristics in a reduced resolution satellite data set. Int. J. Remote Sens., 8, 859–870.
 - -H-
- Haury, L.R., J.J. Simpson, J. Pelaez, C. Koblinsky, and D. Wiesenhahn, 1986: Biological consequences of a recurrent eddy off Point Conception, California. J. Geophys. Res., 91, 12,937–12,956.
- Hay, B.J., C.R. McClain, and M. Petzold, 1993: An assessment of the NIMBUS-7 CZCS calibration for May 1986 using satellite and *in situ* data from the Arabian Sea. *Remote Sens. Environ.*, 43, 35–46.
- Helliwell, W.S., G.N. Sullivan, B. MacDonald, and K.J. Voss, 1990: Ship shadowing: model and data comparison. Ocean Optics X, R.W. Spinrad, Ed., SPIE, **1302**, 55–71.
- Herman, J.R., R.D. Hudson, and G.N. Serafino, 1990: An analysis of the 8 year trend in ozone depletion from alternate models of SBUV instrument degradation. J. Geophys. Res., 95, 7,403–7,416.
- Holm-Hansen, O., C.J. Lorenzen, R.W. Holmes, and J.D.H. Strickland, 1965: Fluorometric determination of chlorophyll. J. du Cons. Int'l. pour l'Explor. de la Mer, 30, 3–15.
- Hooker, S.B., P.L. Coronado, W.E. Esaias, G.C. Feldman, W.W. Gregg, C.R. McClain, B.W. Meeson, L.M. Olsen, R.A. Barnes, and E.F. Del-Colle, 1992a: Baselines and Background Documentation, SeaWiFS Science Team Meeting, January, 1993, Volume 1, S.B. Hooker and W.E. Esaias, Eds., SeaWiFS Proj. Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, 244 pp.

- —, W.E. Esaias, G.C. Feldman, W.W. Gregg, and C.R. Mc-Clain, 1992b: An Overview of SeaWiFS and Ocean Color. *NASA Tech. Memo.* 104566, Vol. 1, S.B. Hooker and E.R. Firestone, Eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, 24 pp., plus color plates.
- W.L. Barnes W.E. Esaias, G.C. Feldman, W.W. Gregg, R.G. Kirk, C.R. McClain, C.H. Vermillion, D.J. Zukor, R.A. Barnes, 1993a: SeaWiFS Project Presentations, Sea-WiFS Science Team Meeting, January, 1993, Volume 2.
 S.B. Hooker and W.E. Esaias, Eds., SeaWiFS Proj. Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, 235 pp.
- —, W.E. Esaias, and L.A. Rexrode, 1993b: Proceedings of the First SeaWiFS Science Team Meeting. NASA Tech. Memo. 104566, Vol. 8, S.B. Hooker and E.R. Firestone, Eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, 61 pp.
- Hoots, F.R., and R.L. Roehrich, 1980: Models for Propagation of NORAD Element Sets. *Project Spacetrack Report No.* 3, 100 pp.
- Hovis, W.A., 1981: The Nimbus-7 Coastal Zone Color Scanner (CZCS) program. Oceanography from Space, J.F.R. Gower, Ed., Plenum Press, 213–225.
- , D.K. Clark, F. Anderson, R.W. Austin, W.H. Wilson, E.T. Baker, D. Ball, H.R. Gordon, J.L. Mueller, S. El-Sayed, B. Sturm, R.C. Wrigley, and C.S. Yentsch, 1980: Nimbus-7 Coastal Zone Color Scanner: System description and initial imagery. *Science*, **210**, 60–63.

-, J.S. Knoll, and G.R. Smith, 1985: Aircraft measurements for calibration of an orbiting spacecraft sensor. *Appl. Opt.* **24**, 407–410.

– I –

- Iqbal, M., 1983: An Introduction to Solar Radiation. Academic Press, 390 pp.
- Ishizaka, J., 1990a: Coupling of Coastal Zone Color Scanner data to physical-biological model of the southeastern U.S. continental shelf ecosystem, 1. CZCS data description and Lagrangian particle tracing experiments. J. Geophys. Res., 95, 10,167–10,181.
- —, 1990b: Coupling of Coastal Zone Color Scanner data to physical-biological model of the southeastern U.S. continental shelf ecosystem, 2. an Eulerian model. J. Geophys. Res., 95, 10,183–10,199.
- —, 1990c: Coupling of Coastal Zone Color Scanner data to physical-biological model of the southeastern U.S. continental shelf ecosystem, 3. nutrient and phytoplankton fluxes and CZCS data assimilation. J. Geophys. Res., **95**, 10,201–10,212.

– J –

- Jerlov, N.G., 1976: *Marine Optics*, Elsevier Scientific Publishing Co., 231 pp.
- Joint EOSAT–NASA SeaWiFS Working Group, 1987: System concept for wide-field-of-view observations of ocean phenomena from space. *Report of the Joint EOSAT/NASA SeaWiFS Working Group*, Earth Observation Satellite Co., Lanham, Maryland, 92 pp.

- Joint Global Ocean Flux Study, 1991: JGOFS Core Measurements Protocols. *JGOFS Report No. 6*, Scientific Committee on Oceanic Research, 40 pp.
- Joseph, J.H., 1985: The morphology of fair weather cumulus cloud fields as remotely sensed from satellites and some applications. Adv. Space Res., 5, 213–216.
- Justice, J.O., B.L. Markham, J.R.G. Townshend, and R.L. Kennard, 1989: Spatial degradation of satellite data. Int. J. Remote Sens., 10, 1,539–1,561.
- Justus, C.G., and M.V. Paris, 1985: A model for solar spectral irradiance and radiance at the bottom and top of a cloudless atmosphere, J. Climate Appl. Meteor., 24, 193–205.

-K-

- Kasten, F., 1966: A new table and approximate formula for relative optical air mass. *Geophys. Biokimatol.*, B14, 206– 223.
- Kaufman, Y.J., 1987: The effect of subpixel clouds on remote sensing. Int. J. Remote Sens., 8, 839–857.
- Kelly, K.A., 1985: Separating clouds from ocean in infrared images. *Remote Sensing Environ.*, 17, 67–83.
- Key, J.R., and R.G. Barry, 1989: Cloud cover analysis with Arctic AVHRR data. 1. Cloud detection. J. Geophys. Res., 94, 18,521–18,535.
- —, J.A. Maslanik, and R.G. Barry, 1989: Cloud classification from satellite data using a fuzzy sets algorithm: A polar example. *Int. J. Remote Sens.*, **10**, 1,823–1,842.
- Kidwell, K.B., 1991: NOAA Polar Orbiter User's Guide. NOAA NESDIS, Washington D.C., 279 pp.
- King, M.D., Y.J. Kaufman, W.P. Menzel, and D. Tanre, 1992: Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS). *IEEE Trans. Geosci. Remote Sens.*, **30**, 2–27.
- Kohler, R., R. Pello, and J. Bonhoure, 1990: Temperature dependent nonlinearity effects of a QED-200 detector in the visible. Appl. Opt., 29, 4,212–4,215.
- Kuring, N., M.R. Lewis, T. Platt, and J.E. O'Reilly, 1990: Satellite-derived estimates of primary production on the northwest Atlantic continental shelf. *Cont. Shelf Res.*, 10, 461–484.

-L-

Lyddane, R.H., 1963: Small eccentricities or inclinations in the Brouwer theory of the artificial satellite. Astron. J., 68, 555–558.

-M-

- Mantoura, R.F.C., and C.A. Llewellyn, 1983: The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reversephase high-performance liquid chromatography. *Anal. Chim. Acta*, **151**, 297–314.
- Marshall, B.R., and R.C. Smith, 1990: Raman scattering and in-water optical properties. *Appl. Opt.*, **29**, 71–84.
- McClain, C.R., and L.P. Atkinson, 1985: A note on the Charleston Gyre. J. Geophys. Res., 90, 11,857–11,861.

—, S.-Y. Chao, L. Atkinson, J. Blanton, and F. de Castillejo, 1986: Wind-driven upwelling in the vicinity of Cape Finisterre, Spain. J. Geophys. Res., **91**, 8,470–8,486.

- —, J.A. Yoder, L.P. Atkinson, J.O. Blanton, T.N. Lee, J.J. Singer, and F. Muller-Karger, 1988: Variability of Surface Pigment Concentrations in the South Atlantic Bight. J. Geophys. Res., 93, 10,675–10,697.
- —, J. Ishizaka, and E. Hofmann, 1990a: Estimation of phytoplankton pigment changes on the Southeastern U.S. continental shelf from a sequence of CZCS images and a coupled physical-biological model. J. Geophys. Res., 95, 20,213– 20,235.
- , W.E. Esaias, G.C. Feldman, J. Elrod, D. Endres, J. Firestone, M. Darzi, R. Evans, and J. Brown, 1990b: Physical and biological processes in the North Atlantic during the First Global GARP Experiment. J. Geophys. Res., 95, 18,027–18,048.
- , M. Darzi, J. Firestone, E.-n. Yeh, G. Fu, and D. Endres, 1991a: SEAPAK Users Guide, Version 2.0, Vol. I—System Description. NASA Tech. Mem. 100728, NASA Goddard Space Flight Center, Greenbelt, Maryland, 158 pp.
- —, —, —, —, and —, 1991b: SEAPAK Users Guide, Version 2.0, Vol. II—Descriptions of Programs. NASA Tech. Mem. 100728, NASA Goddard Space Flight Center, Greenbelt, Maryland, 586 pp.
- , W.E. Esaias, W. Barnes, B. Guenther, D. Endres, S.B. Hooker, G. Mitchell, and R. Barnes, 1992a: Calibration and Validation Plan for SeaWiFS. *NASA Tech. Memo.* 104566, Vol. 3, S.B. Hooker and E.R. Firestone, Eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, 41 pp.
- —, G. Fu., M. Darzi, and J.K. Firestone, 1992b: PC-SEAPAK User's Guide, Version 4.0. NASA Technical Memorandum 104557, NASA Goddard Space Flight Center, Greenbelt, Maryland, 408 pp.
- —, E-n. Yeh, and G. Fu, 1992c: An Analysis of GAC Sampling Algorithms: A Case Study. NASA Tech. Memo. 104566, Vol. 4, S.B. Hooker and E.R. Firestone, Eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, 20 pp., plus color plates.
- —, G. Feldman, and W. Esaias, 1993: Oceanic primary production. *Global Change Atlas*, C. Parkinson, J. Foster, and R. Gurney, Eds., Cambridge University Press, (in press).
- McClain, E.P., 1989: Global sea surface temperatures and cloud clearing for aerosol optical depth estimates. Int. J. Remote Sens., 10, 763–769.
- —, W.G. Pichel, and C.C. Walton, 1985: Comparative performance of AVHRR-based multichannel sea surface temperatures. J. Geophys. Res., 90, 11,587–11,601.
- McLean, J.T., and B.W. Guenther, 1989: Radiance calibration of spherical integrators. Optical Radiation Measurements II, SPIE, 1109, 114–121.
- Mecherikunnel, A.T., and H.L. Kyle, 1991: Eleven-year cycle of solar constant variation from spacecraft measurements: 1978 to 1990. *Science*, (withdrawn).
- Michaelsen, J., X. Zhang, and R.C. Smith, 1988: Variability of pigment biomass in the California Current system as

determined by satellite imagery, 2. temporal variability. J. Geophys. Res., **93**, 10,883–10,896.

- Mitchell, B.G., 1990: Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique. Ocean Optics X, R.W. Spinrad, Ed., SPIE, 1302, 137–148.
 - —, and D.A. Kiefer, 1984: Determination of absorption and fluorescence excitation spectra for phytoplankton. *Marine Phytoplankton and Productivity*, O. Holm-Hansen, L. Bolis, and R. Gilles, Eds., Springer-Verlag, 157–169.
 - —, and —, 1988: Chlorophyll-a specific absorption and fluorescence excitation spectra for light-limited phytoplankton. *Deep-Sea Res.*, **35**, 639–663.
 - —, and O. Holm-Hansen, 1991: Bio-optical properties of Antarctic Peninsula waters: differentiation from temperate ocean models. *Deep-Sea Res.*, **39**, 1,009–1,028.
- Morel, A., 1980: In-water and remote measurements of ocean color. Bound.-layer Meteor., 18, 178–201.
- —, and L. Prieur, 1977: Analysis of variations in ocean color. Limnol. Oceanogr., 22, 709–722.
- —, and R.C. Smith, 1982: Terminology and units in optical oceanography. *Mar. Geod.*, **5**, 335–349.
- Mueller, J.L., 1985: Nimbus–7 CZCS: confirmation of its radiometric sensitivity decay rate through 1982. Appl. Opt., 24, 1,043–1,047.
- —, 1988: Nimbus-7 CZCS: electronic overshoot due to cloud reflectance. Appl. Opt., 27, 438–440.
- —, 1991: Integral Method for Irradiance Profile Analysis. CHORS Tech. Memo. 007-91, San Diego State Univ., 10 pp.
- —, and R.E. Lang, 1989: Bio-optical provinces of the northeast Pacific Ocean: a provisional analysis. *Limnol. Ocean*ogr., **34**, 1,572–1,586.
- —, and R.W. Austin, 1992: Ocean Optics Protocols. NASA Tech. Memo. 104566, Vol. 5, S.B. Hooker and E.R. Firestone, Eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, 45 pp.
- Muller-Karger, F., C.R. McClain, and P. Richardson, 1988: The dispersal of the Amazon water. *Nature*, **333**, 56–59.
- —, —, T.R. Fisher, W.E. Esaias, and R. Varela, 1989: Pigment distribution in the Caribbean Sea: Observations from space. *Prog. Oceanogr.*, **23**, 23–64.
- —, —, R.N. Sambrotto, and G.C. Ray, 1990: A comparison of ship and CZCS-mapped distributions of phytoplankton in the Southeastern Bering Sea. J. Geophys. Res., 95, 11,483–11,499.
- —, J.J. Walsh, R.H. Evans, and M.B. Meyers, 1991: On the seasonal phytoplankton concentration and sea surface temperature cycles of the Gulf of Mexico as determined by satellites. J. Geophys. Res., 96, 12,645–12,665.

-N-

- National Academy of Sciences, 1984: Global Ocean Flux Study, Proceedings of a Workshop, National Acad. Press, 360 pp.
- National Aeronautics and Space Administration, 1982: The marine resources experiment program (MAREX). *Report*

dard Space Flight Center, Greenbelt, MD, 107 pp.

Neckel, H., and D. Labs, 1984: The solar radiation between 3300 and 12500 Å. Sol. Phys., 90, 205–258.

- O -

Olesen, F.-S., and H. Grassel, 1985: Cloud detection and classification over the oceans at night with NOAA-7. Int. J. Remote Sens., 6, 1,435-1,444.

-P, Q-

- Palmer, J.M., 1988: Use of self-calibrated detectors in radiometric instruments. Recent Advances in Sensors. Radiometry, and Data Processing for Remote Sensing. P.N. Slater, Ed., SPIE, 924, 224-231.
- Paltridge, G.W., and C.M.R. Platt, 1976: Radiative processes in meteorology and climatology. Developments in Atmospheric Science, Vol. 5. Elsevier Scientific Publishing Co., 318 pp.
- Parikh, J.A., 1977: A comparative study of cloud classification techniques. Remote Sens. Environ., 6, 67-81.
- Patt, F.S., C.W. Hoisington, W.W. Gregg, and P.L. Coronado, 1993: Analysis of Selected Orbit Propagation Models for the SeaWiFS Mission. NASA Tech. Memo. 104566, Vol. 11, S.B. Hooker and E.R. Firestone, Eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, 16 pp.
- Petzold, T.J., 1988: A Method for Obtaining Analytical Curve Fits to Underwater Radiometric Measurements. Tech. Memo. Oc Op/TJP-88-06t, Scripps Inst. of Oceanogr., La Jolla, California, 20 pp.
- , and R.W. Austin, 1988: Characterization of MER-1032. Tech. Memo. EV-001-88t, Vis. Lab., Scripps Inst. of Ocean ogr., La Jolla, California, 56 pp.
- Pinder, G.F., and W.G. Gray, 1977: Finite Element Simulation in Surface and Subsurface Hydrology. Academic Press, 295 pp.
- Phulpin, T., M. Derrien, and A. Brard, 1983: A two-dimensional histogram procedure to analyze cloud cover from NOAA satellite high-resolution imagery. J. Climate Appl. Meteor., **22** 1,332–1,345.
- Platt, T., and S. Sathyendranath, 1988: Oceanic primary production: estimation by remote sensing at local and regional scales. Science, 241, 1,613-1,620.
- -, C.M. Caverhill, and M.R. Lewis, 1988: Ocean primary production and available light: further algorithms for remote sensing. Deep-Sea Res., 35, 855-879.

-R-

- Raschke, E., P. Bauer, and H.J. Lutz, 1992: Remote sensing of clouds and surface radiation budget over polar regions. Int. J. Remote Sens., 13, 13–22.
- Reynolds, D.W., and T.H. Vonder Haar, 1977: A bispectral method for cloud parameter determination. Mon. Wea. Rev., 105, 446-457.
- Reynolds, R.W., 1988: A real-time global sea surface temperature analysis. J. Climate, 1, 75-86.

- of the Ocean Color Science Working Group, NASA God-Rossow, W.B., L.C. Garder, and A.A. Lacis, 1989: Global, seasonal cloud variations from satellite radiance measurements. Part I: Sensitivity of analysis. J. Climate, 2, 419-458.
 - , L.C. Garder, P.-J. Lu, and A. Walker, 1988: International Satellite Cloud Climatology Project (ISCCP) Documentation of Cloud Data. WMO/TD-No. 266, World Meteor. Org., Geneva.
 - and R.A. Schiffer, 1991: ISCCP cloud data products. Bull. Am. Meteor. Soc., 72, 2–20.

-S-

- Saunders, R.W., 1986: An automated scheme for the removal of cloud contamination for AVHRR radiances over western Europe. Int. J. Remote Sens., 7, 867-888.
- , 1989: A comparison of satellite-retrieved parameters with mesoscale model results. Quart. J. Roy. Meteor. Soc., 115, 551 - 572.
- and K.T. Kriebel, 1988: An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote Sens., 9, 123-150, Errata, ibid., 9, 1,393-1,394.
- Shaw, G.E., 1976: Error analysis of multiwavelength sun photometry. Pure Appl. Geophys., 114, 1-14.
- Simpson, J.J., and C. Humphrey, 1990: An automated cloud screening algorithm for daytime Advanced Very High Resolution Radiometer imagery. J. Geophys. Res., 95, 13,459-13.481.
- Smith, R.C., and K.S. Baker, 1981: Optical properties of the clearest natural waters (200–800 nm). Appl. Opt., 20, 177– 184.
- -, and P. Dustan, 1981: Fluorometric techniques for the measurement of oceanic chlorophyll in the support of remote sensing. SIO Ref. 81-17, Scripps Inst. of Oceanogr., La Jolla, California 14 pp.
- -, and W.H. Wilson, 1981: Ship and satellite bio-optical research in the California Bight. Oceanography from Space, J.F.R. Gower, Ed., Plenum Press, 281–294.
- , and K.S. Baker, 1984: Analysis of ocean optical data. Ocean Optics VII, M. Blizard, Ed., SPIE 478, 119-126.
- -, and —, 1986: Analysis of ocean optical data. Ocean Optics VIII, P.N. Slater, Ed., SPIE, 637, 95–107.
- , X. Zhang, and J. Michaelsen, 1988: Variability of pigment biomass in the California Current system as determined by satellite imagery, 1. Spatial variability. J. Geophys. Res., **93**, 10,863–10,882.
- -, K.J. Waters, and K.S. Baker, 1991: Optical variability and pigment biomass in the Sargasso Sea as determined using deep-sea optical mooring data. J. Geophys. Res., 96, 8,665-8,686.
- Smith, S.L., W. Balch, K. Banse, W. Berelson, P. Brewer, O. Brown, K. Cochran, H. Livingston, M. Luther, C. Mc-Clain, D. Olson, L. Peterson, W. Peterson, W. Prell, L. Codispoti, A. Devol, H. Ducklow, R. Fine, G. Hitchcock, D. Lal, D. Repeta, E. Sherr, N. Surgi, J. Swallow, S. Wakeham, and K. Wishner, 1991: U.S. JGOFS: Arabian Sea Process Study. U.S. JGOFS Planning Report No. 13, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 164 pp.

- Smith, W.L., P.K. Rao, R. Koffler, and W.P. Curtis, 1970: The determination of sea surface temperature from satellite high-resolution infrared window radiation measurements. *Mon. Wea. Rev.*, 98, 604–611.
- Stone, R.S., G.L. Stephens, C.M.R. Platt, and S. Banks, 1990: The remote sensing of thin cirrus cloud using satellites, lidar and radiative transfer theory. J. Appl. Meteor., 29, 353–366.
- Stowe, L.L., E.P. McClain, R. Carey, P. Pellegrino, G. Gutman, P. Davis, C. Long, and S. Hart, 1991: Global distribution of cloud cover derived from NOAA/AVHRR operational satellite data. Adv. Space Phys., 11(3), 51–54.
- —, C.G. Wellemeyer, T.F. Eck, H.Y.M. Yeh, and the Nimbus-7 Cloud Data Processing Team, 1988: Nimbus-7 global cloud climatology. J. Climate, 1, 445–470.
- Stramski, D., 1990: Artifacts in measuring absorption spectra of phytoplankton collected on a filter. *Limnol. Oceanogr.*, 35, 1,804–1,809.
- Strickland, J.D.H., and T.R. Parsons, 1972: A Practical Handbook of Sea Water Analysis. Fish. Res. Board. Canada, 310 pp.
- Strub, P.T., C. James, A.C. Thomas, and M.R. Abbott, 1990: Seasonal and nonseasonal variability of satellite-derived surface pigment concentration in the California Current. J. Geophys. Res., 95, 11,501–11,530.
- Sullivan, C.W., C.R. McClain, J.C. Comiso, and W.O. Wood, 1988: Phytoplankton standing crops within an Antarctic ice edge assessed by satellite remote sensing. J. Geophys. Res., 93, 12,487–12,498.

-T, U-

- Thiermann, V., and E. Ruprecht, 1992: A method for the detection of clouds using AVHRR infrared observations. Int. J. Remote Sens., 13, 1,829–1,841.
- Toll, R.F., Jr., and W.M. Clune, 1985: An operational evaluation of the Navy Operational Global Atmospheric Prediction System (NOGAPS): 48-hour surface pressure forecasts. Mon. Wea. Rev., 113, 1,433–1,440.
- Trees, C.C., M.C. Kennicutt, II, and J.M. Brooks, 1985: Errors associated with the standard fluorometric determination of chlorophylls and phaeopigments. *Mar. Chem.*, 17, 1–12.
- Trenberth, K.E., and J.G. Olson, 1988: An evaluation and intercomparison of global analyses from the National Meteorological Center and the European Centre for Me-dium Range Weather Forecasts. Bull. Am. Meteor. Soc., 69, 1,047–1,057.
- Tyler, J.E., and R.C. Smith, 1979: *Measurements of Spectral Irradiance Underwater*. Gordon and Breach, 103 pp.

-V-

- Viollier, M., 1982: Radiance calibration of the Coastal Zone Color Scanner: a proposed adjustment. Appl. Opt., 21, 1,142–1,145.
- —, D. Tanre, and P.Y. Deschamps, 1980: An algorithm for remote sensing of water color from space. *Bound.-Layer Meteor.*, 18, 247–267.
- Voss, K.J., J.W. Nolten, and G.D. Edwards, 1986: Ship shadow effects on apparent optical properties. Ocean Optics VIII, M. Blizard, Ed., SPIE, 637, 186–190.

—, and G. Zibordi, 1989: Radiometric and geometric calibration of a spectral electro-optic "fisheye" camera radiance distribution system. J. of Atmos. and Ocean. Technol., 6, 652–662.

-W, X-

- Walker, J.H., C.L. Cromer, and J.T. McLean, 1991: Technique for improving the calibration of large-area sphere sources. *Ocean Optics*, B.W. Guenther, Ed., SPIE, **1493**, 224–230.
- Walsh, J.J., G.T. Rowe, R.L. Iverson, and C.P. McRoy, 1981: Biological export of shelf carbon is a sink of the global CO₂ cycle. *Nature*, **291**, 196–201.
- Waters, K.J., R.C. Smith, and M.R. Lewis, 1990: Avoiding ship induced light field perturbation in the determination of oceanic optical properties. *Oceanogr.*, **3**, 18–21.
- Weare, B.C., 1992: A comparison of the ISCCP C1 cloud amounts with those derived from high resolution AVHRR images. Int. J. Remote Sens., 13, 1,965–1,980.
- Weinreb, M.P., G. Hamilton, S. Brown, and R.J. Koczor, 1990: Nonlinear corrections in calibration of Advanced Very High Resolution Radiometer infrared channels. J. Geophys. Res., 95, 7,381–7,388.
- Williams, S.P., E.F. Szajna, and W.A. Hovis, 1985: Nimbus 7 Coastal Zone Color Scanner (CZCS) Level 1 Data Product Users' Guide. NASA Tech. Memo. 86203, NASA Goddard Space Flight Center, Greenbelt, Maryland, 49 pp.
- Wilson, W.H., R.C. Smith, and J.W. Nolten, 1981: The CZCS Geolocation Algorithms. SIO Ref. 81-32, Scripps Inst. of Oceanogr., La Jolla, California, 37 pp.
- Woodward, R.H., R.A. Barnes, C.R. McClain, W.E. Esaias, W.L. Barnes, and A.T. Mecherikunnel, 1993: Modeling of the SeaWiFS Solar and Lunar Observations. NASA Tech. Memo. 104566, Vol. 10, S.B. Hooker and E.R. Firestone, Eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, 26 pp.
- World Meteorological Organization, 1990: Report of the International Ozone Trends Panel, 1988: World Meteorological Organization Global Ozone Research and Monitoring Project, Report No. 18, 2 Vols., Geneva.
- Wroblewski, J.S., J.L. Sarmiento, and G.R. Flierl, 1988: An ocean basin scale model of plankton dynamics in the North Atlantic 1. solutions for the climatological oceanographic conditions in May. *Global Biogeochem. Cycles*, 2, 199–218.
- Wu, R., J.A. Weinman, and R.T. Chin, 1985: Determination of rainfall rates from GOES satellite images by a pattern recognition technique. J. Atmos. Ocean. Technol., 2, 314– 330.

-Y, Z-

- Yamanouchi, T., and S. Kawaguchi, 1992: Cloud distribution in the Antarctic from AVHRR data and radiation measurements at the surface. Int. J. Remote Sens., 13, 111– 127.
- Yentsch, C.S., and D.W. Menzel, 1963: A method for the determination of phytoplankton, chlorophyll, and phaeophytin by fluorescence. *Deep-Sea Res.*, **10**, 221–231.

as a means of regulating primary production in warm core rings. J. Geophys. Res., 90, 3,237-3,248.

-, and D.A. Phinney, 1985: Rotary motion and convection Yoder, J.A., C.R. McClain, J.O. Blanton, and L.-Y. Oey, 1987: Spatial scales in CZCS-chlorophyll imagery of the southeastern U.S. continental shelf. Limnol. Oceanogr., 32, 929–941.

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188		
and maintaining the data needed, and completing	g and reviewing the collection of information. is burden, to Washington Headquarters Servi	Send comments regarding this burden ces, Directorate for Information Operat	ions and Reports, 1215 Jefferson Davis Highway, Suite		
1. AGENCY USE ONLY (Leave blank		3. REPORT TYPE AND D Technical Memora	DATES COVERED		
4. TITLE AND SUBTITLE SeaWiFS Technical Report Series Volume 12–SeaWiFS Technical Report Series Cumulative Index: Volumes 1–11			5. FUNDING NUMBERS Code 970.2		
6. AUTHOR(S) Elaine R. Firestone and Stanfo	ord B. Hooker				
	Hooker and Elaine R. Fireston	e			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Laboratory for Hydrospheric Processes Goddard Space Flight Center Greenbelt, Maryland 20771			8. PERFORMING ORGANIZATION REPORT NUMBER 93B00034		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration Washington, D.C. 20546–0001			10. SPONSORING/MONITORING AGENCY REPORT NUMBER TM–104566, Vol. 12		
11. SUPPLEMENTARY NOTES Elaine R. Firestone: General	Sciences Corporation, Laurel,	Maryland.	I		
 12a. DISTRIBUTION/AVAILABILITY STATEMENT Unclassified—Unlimited Subject Category 48 Report is available from the Center for AeroSpace Information (CASI), 7121 Standard Drive, Hanover, MD 21076–1320; (301)621-0390 			12b. DISTRIBUTION CODE		
13. ABSTRACT (Maximum 200 wo	13. ABSTRACT (Maximum 200 words)				
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an eight year mission. SeaWiFS is expected to be launched in August 1993, on the SeaStar satellite, being built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the NASA/Goddard Space Flight Center (GSFC) has undertaken the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marinescience communities. This documentation, entitled the <i>SeaWiFS Technical Report Series</i> , is in the form of NASA Technical Memoranda Number 104566. All reports published are volumes within the series. This particular volume serves as a reference, or guidebook, to the previous 11 volumes and consists of 6 sections including: an errata, an addendum (a summary of the SeaWiFS Working Group Biooptical Algorithm and Protocols Subgroups Workshops), an index to key words and phrases, a list of all references cited, and lists of acronyms and symbols used. It is the editors' intention to publish a cumulative index of this type after every five volumes in the series. This will cover the topics published in all previous editions of the indices, that is, each new index will include all of the information contained in the preceeding indices.					
14. SUBJECT TERMS SeaWiFS, Oceanography, Cumulative, Index, Summary, Overview, Errata, Addendu Glossary, Symbol, Reference, Bio-Optical, Algorithm Workshop, Protocols Subgroup					
Workshop					
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICAT OF ABSTRACT Unclassified	ION 20. LIMITATION OF ABSTRACT Unlimited		

NSN 7540-01-280-5500