Tutorial on Bayesian Methods and the MaxEnt Principle

Wray Buntine

Heuristicrats Research, Inc.
wray@Heuristicrat.COM
http://www.Heuristicrat.COM/wray/
1678 Shattuck Avenue, Suite 310
Berkeley, CA, 94709-1631
Tel: +1 (510) 845-5810
Fax: +1 (510) 845-4405

Peter Cheeseman Caelum Research Corp. cheesem@ptolemy.arc.nasa.gov

NASA Ames Research Center
MS 269-2
Moffett Field, CA, 94035-1000
Tel: +1 (415) 604-4946
Fax: +1 (415) 604-3594

Sante Fe, New Mexico, June 31st, 1995.
\qquad
\qquad

Outline

- Basic probability theory \qquad (Peter)
- Simple examples of Bayesian Inference. \qquad (Peter)
- Types of probabilistic inference \qquad (Peter)
- Case Studies \qquad (Peter)
- Advanced Modeling...........(Wray)
- Graphical (probabilistic) models. (Wray)
- Computation...........(Wray)
- Priors \qquad .(Wray)
- Other views and ideas \qquad (Peter and Wray)

Bayesian Inference I

- Q1: How should a rational agent form beliefs under uncertainty?
- Q2: How should a rational agent make decisions under uncertainty?
- Initially concentrate on beliefs of a rational agent.
- Must Generalize logic:
- T or F (0 or 1) --> degree of belief (numerical).
- degree of belief depends on particular (known) context
- Cox's Proof shows that probability theory is the only consistant theory that generalizes logic in this way (more later!).
- Example probability statement:
- P(Clinton will win in 1996|Bosnia-resolved-by-1996, 1995) = . 4
- . 4 is degree of belief
- "Clinton will win in 1996" is target proposition (form beliefs about it)
- "1995" is a proposition describing the current conditioning context.

Bayesian Inference II

- Bosnia-resolved -by-1996 is a conditioning proposition.
- The | symbol separates the target proposition from the conditioning proposition(s).
- Target Proposition:
- Can be atomic or Boolean combination of propositions.
- Propositions can quantified-e.g. "All people in this room are older than 25 years".
- Conditioning Proposition:
- Can be atomic or Boolean combination of propositions.
- Always includes a proposition representing the context of the probability assertion (sometimes omitted).
- Can include quantified proposition-e.g. "All people in this room employed".

Basic Probability Laws I

- Probability Law of Excluded Middle (Negation Law):
$\mathrm{P}(\mathrm{A})=1-\mathrm{P}($ not A$)$
- Positivity Law:
$0 \leq \mathrm{P}(\mathrm{A}) \leq 1$
- Non-Truth Functionality:
- e.g. $0 \leq \mathrm{P}(\mathrm{A} \& \mathrm{~B}) \leq \min (\mathrm{P}(\mathrm{A}), \mathrm{P}(\mathrm{B})) \quad[\mathrm{P}(\mathrm{A} \& \mathrm{~B})=\mathrm{P}(\mathrm{A}, \mathrm{B})]$
- The probability of the conjunction is not determined by its components (but is bounded by them).
- Disjunction:
$-\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \& \mathrm{~B})$
- If A and B mutually exclusive, then
$-\quad \mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B}) \quad$ (Additivie Law of probabilities)

Basic Probability Laws II

- Multiplication Law:
$\mathrm{P}(\mathrm{A}, \mathrm{B}, \mathrm{C}, . . \mid \mathrm{I})=\mathrm{P}(\mathrm{A} \mid \mathrm{I}) \mathrm{P}(\mathrm{B} \mid \mathrm{A}, \mathrm{I}) \mathrm{P}(\mathrm{C} \mid \mathrm{A}, \mathrm{B}, \mathrm{I}) \ldots$
$=\mathrm{P}(\mathrm{B} \mid \mathrm{I}) \mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{I}) \mathrm{P}(\mathrm{C} \mid \mathrm{A}, \mathrm{B}, \mathrm{I}) \ldots$
$=\mathrm{P}(\mathrm{C} \mid \mathrm{I}) \mathrm{P}(\mathrm{B} \mid \mathrm{C}, \mathrm{I}) \mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{C}, \mathrm{I}) \ldots$ etc.
- Bayes Theorem
- From Multiplication Law
$\mathrm{P}(\mathrm{A} \mid \mathrm{I}) \mathrm{P}(\mathrm{B} \mid \mathrm{A}, \mathrm{I})=\mathrm{P}(\mathrm{B} \mid \mathrm{I}) \mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{I})$
--> $\mathrm{P}(\mathrm{A} \mid \mathrm{I})=\mathrm{P}(\mathrm{B} \mid \mathrm{I}) \mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{I}) / \mathrm{P}(\mathrm{B} \mid \mathrm{A}, \mathrm{I}) \quad$ [Bayes Theorem]
- Marginalization (Discrete)
$\mathrm{P}(\mathrm{A} \mid \mathrm{C})=\mathrm{P}(\mathrm{A}, \mathrm{B} \mid \mathrm{C})+\mathrm{P}(\mathrm{A}$, not $\mathrm{B} \mid \mathrm{C}) \quad[\mathrm{B}$ is binary auxilary variable $]$
$\mathrm{P}(\mathrm{A} \mid \mathrm{C})=\Sigma_{\mathrm{i}} \mathrm{P}\left(\mathrm{A}, \mathrm{X}_{\mathrm{i}} \mid \mathrm{C}\right) \quad\left[\mathrm{X}_{\mathrm{i}}\right.$ is an i-way auxilary variable]

$$
=\Sigma_{\mathrm{i}} \mathrm{P}\left(\mathrm{~A} \mid \mathrm{X}_{\mathrm{i}}, \mathrm{C}\right) * \mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{C}\right)
$$

- Marginalization (Continuous)
$\mathrm{P}(\mathrm{A} \mid \mathrm{C})=\int \mathrm{P}(\mathrm{A}, \mathrm{x} \mid \mathrm{C}) \mathrm{dx}$
$=\int \mathrm{P}(\mathrm{A} \mid \mathrm{x}, \mathrm{C}) * f(\mathrm{x} \mid \mathrm{C}) \mathrm{dx}$

Examples of Marginalization

- Discrete
$\mathrm{P}($ Pass- $\mathrm{PhD} \mid$ School $)=\mathrm{P}($ Pass-PhD, Female \mid School $)+$ P(Pass-PhD, Male|School)
$=$ P(Pass-PhD|Femal,|School)P(Female|School) + P(Pass-PhD|Male,School)P(Male|School)
$\mathrm{P}($ Pass-PhD \mid Female, USA $)=\Sigma_{\text {schools }} \mathrm{P}($ Pass-PhD,School \mid Female, USA $)$
- Continuous

P(Pass-Phd|USA) $=\int \mathrm{P}($ Pass-PhD,Age|USA) $\mathrm{d}($ Age $)$

$$
=\int \mathrm{P}(\text { Pass-PhD } \mid \text { Age, USA }) * f(\text { Age } \mid \text { USA }) \mathrm{d}(\text { Age })
$$

- Marginalization Eliminates "Nuisance" Variables:
- The effect of Marginalization is to eliminate explicit dependence on the variable(s) that are marginalized away.

Probability Density Functions

- Probabilities are numbers from 0 to 1 , representing degree of belief in target proposition given conditioning informtion.
E.g.--Q: What is probability that this rock weighs exactly 1 Kg .?

Ans: Zero (infinitessimal)
--> Need probability density functions!

- Definition: Probability Density Function (pdf).
$f(\mathrm{x} \mid \mathrm{C})$ is a piece-wise continuous function of x s.t.
$-f(x \mid C) \geq 0$
$-\int f(\mathrm{x} \mid \mathrm{C}) \mathrm{dx}=1$ (i.e. x must have some value!)
- Probabilities found by integrating pdfs over specific ranges.
- Example:
$\mathrm{P}(1 \mathrm{Kg} . \leq$ weight(rock) $<1.1 \mathrm{Kg})=.\int f($ weight(rock) $) \mathrm{dw}$
i.e. the probability that the rock weighs between 1 and 1.1 Kg . is given by the integral of the pdf over the range. (see next slide)

PDF Example

Area under curve is required probability:

Note:
Age

- $f(\mathrm{x} \mid \mathrm{C})$ can be $>1 \quad[f(\mathrm{x} \mid \mathrm{C})$ is not a probability.]
- $f(\mathrm{x} \backslash \mathrm{C})$ can be regarded as the limiting result of a probabilistic histogram as the bin sizes go to zero.

Probability Notes 1

- All Probabilities are conditional probabilities:
- always condition on context
- Sometimes conditioning information understood (not explicit)--Danger!!
- There is no such thing as THE probability of a proposition:
- As learn new conditioning information and choose to use it, the resulting conditional probability will be different than previous conditional probabilities--i.e the best estimate probability changes with new information.
- Probability statements can refer to the next outcome in a series or to future values based on current evidence, but not to long term frequency.
- Conditional Probability \neq Probability of a Conditional !!
e.g. "Where ever there is smoke there is likely to be fire".
- Is P(Fire | Smoke, context) = high (.9)
- Not $P($ Smoke -> Fire | context $)=$ high (.9); [No smoke events count as evidence!]

Probability Notes II

- Probability is not a Frequency (it is a measure of belief).
- Can have a probability of a single event e.g. Prob. of Clinton being reelected in 1996.
- probability equals expected frequency in repeated trials (probability and frequency are closely related).
- Conditioning Information can be Hypothetical.
e.g. "If I miss my fight, I can probably get another one today".
- conditioning information does not have to be true.
- can consider many mutually inconsistant conditioning contexts.
- probabilistic inference is montonic--i.e. do not have to change previous beliefs if the context changes (compute new probabilities in the new context instead).
- Odds map probabilities from $[0,1]$ to $[0, \infty]$--i.e.
$\operatorname{Odds}(\mathrm{A})=\mathrm{P}(\mathrm{A}) / \mathrm{P}($ not A$)$

$$
=\mathrm{P}(\mathrm{~A}) /(1-\mathrm{P}(\mathrm{~A})) \quad[\text { Only good for Binary propositions }]
$$

To transform from Odds to probability use: $\mathrm{P}=$ Odds/(1+ Odds)

Alternative Forms of Bayes Theorem

- Basic Form of Bayes theorem for a set of mutually exclusive and exhaustive hypotheses $H(i)$, given evidence E :

$$
\mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \mid \mathrm{E}, \mathrm{C}\right)=\frac{\mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \mid \mathrm{C}\right) * \mathrm{P}\left(\mathrm{E} \mid \mathrm{H}_{\mathrm{i}}, \mathrm{C}\right)}{\mathrm{P}(\mathrm{E} \mid \mathrm{C})}
$$

posterior prob. $=$ prior prob. $\mathrm{x} \underline{\text { likelihood } / \text { normalizing const. }}$ Where $\mathrm{P}(\mathrm{E} \mid \mathrm{C})=\mathrm{P}\left(\mathrm{E} \mid \mathrm{H}_{\mathrm{i}}, \mathrm{C}\right) * \mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \mid \mathrm{C}\right)$-i.e. marginalize over all H_{i}. Note that $\mathrm{P}(\mathrm{E} \mid \mathrm{C})$ does not depend on H_{i} - it is just a normalizing constant

- Relative version of Bayes:
-

$$
\frac{\mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \mid \mathrm{E}, \mathrm{C}\right)}{\mathrm{P}\left(\mathrm{H}_{\mathrm{j}} \mid \mathrm{E}, \mathrm{C}\right)}=\frac{\mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \mid \mathrm{C}\right) * \mathrm{P}\left(\mathrm{E} \mid \mathrm{H}_{\mathrm{i}}, \mathrm{C}\right)}{\mathrm{P}\left(\mathrm{H}_{\mathrm{j}} \mid \mathrm{C}\right) * \mathrm{P}\left(\mathrm{E} \mid \mathrm{H}_{\mathrm{j}}, \mathrm{C}\right)}
$$

- Eliminates the normalizing constant, but requirement that $\sum_{\mathrm{i}} \mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \mid \mathrm{E}, \mathrm{C}\right)=1$ allows the $\mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \mid \mathrm{E}, \mathrm{C}\right)$'s to be normalized.

Example of Bayesian Inference

Situation: There are 64 coins in a box, one of these coins is doubleheaded (H2), the rest are ordinary (H1) . A single coin is drawn from the box.

- Q1: What is the probability that this coin is the double-headed coin?
Ans: $\mathrm{P}(\mathrm{H} 2 \mid \mathrm{C})=1 / 64 \quad[\mathrm{C}$ is the context]
- Principle of Indifference (or more generally, Maximum Enrtopy).

New Situation: The selected coin is flipped, and the result (R1) is "heads". [A 'tails" result means that not double-headed coin]

- Q2: What is the new probability that this coin is the doubleheaded coin?
Ans:--Use Bayes!!
-- Relative version of Bayes is easiest to use.

Double-Headed Coin Example (Cont.)

- Relative Bayes for H1 and H2:

$$
\frac{\mathrm{P}(\mathrm{H} 2 \mid \mathrm{R} 1, \mathrm{C})}{\mathrm{P}(\mathrm{H} 1 \mid \mathrm{R} 1, \mathrm{C})}=\frac{\mathrm{P}(\mathrm{H} 2 \mid \mathrm{C}) * \mathrm{P}(\mathrm{R} 1 \mid \mathrm{H} 2, \mathrm{C})}{\mathrm{P}(\mathrm{H} 1 \mid \mathrm{C}) * \mathrm{P}(\mathrm{R} 1 \mid \mathrm{H} 1, \mathrm{C})}
$$

$\mathrm{P}(\mathrm{H} 2 \mid \mathrm{C})=1 / 64$ (prev. slide); $\mathrm{P}(\mathrm{H} 1 \mid \mathrm{C})=63 / 64$ (By normalization) $\mathrm{P}(\mathrm{R} 1 \mid \mathrm{H} 2, \mathrm{C})=1$ (only possible outcome); $\mathrm{P}(\mathrm{R} 1 \mid \mathrm{H} 1, \mathrm{C})=1 / 2$ (fair coin).
Therefore: $\mathrm{P}(\mathrm{H} 2 \mid \mathrm{R} 1, \mathrm{C}) / \mathrm{P}(\mathrm{H} 1 \mid \mathrm{R} 1, \mathrm{C})=(1 / 63) * 2=2 / 63$ (increased prob.) And: $\mathrm{P}(\mathrm{H} 2 \mid \mathrm{R} 1, \mathrm{C})=2 / 65$

New Situation: The selected coin is flipped again, and the result (R2) is also "heads".
[Note: If any flip gives "tails" then $\mathbf{P}(\mathbf{H} 2 \mid E, C)=0$]
Want: $\quad P(H 2 \mid R 1, R 2, C) ~-->~ B a y e s ~ a g a i n!~$

Double-Headed Coin Example (Cont.)

- Relative Bayes again:
$\frac{\mathrm{P}(\mathrm{H} 2 \mid \mathrm{R} 1, \mathrm{R} 2, \mathrm{C})}{\mathrm{P}(\mathrm{H} 1 \mid \mathrm{R} 1, \mathrm{R} 2, \mathrm{C})}=\frac{\mathrm{P}(\mathrm{H} 2 \mid \mathrm{C}) * \mathrm{P}(\mathrm{R} 1, \mathrm{R} 2 \mid \mathrm{H} 2, \mathrm{C})}{\mathrm{P}(\mathrm{H} 1 \mid \mathrm{C}) * \mathrm{P}(\mathrm{R} 1, \mathrm{R} 2 \mid \mathrm{H} 1, \mathrm{C})}$
- $\mathrm{P}(\mathrm{R} 1, \mathrm{R} 2 \mid \mathrm{H} 2, \mathrm{C})=1$ (only possibility), but what is $\mathrm{P}(\mathrm{R} 1, \mathrm{R} 2 \mid \mathrm{H} 1, \mathrm{C})$?

Note: In principle, $\mathrm{P}(\mathrm{R} 1, \mathrm{R} 2 \mid \mathrm{H} 1, \mathrm{C})$ could be any value from 0 to $1 / 2$.
Solution: Use principle of maximum entropy to find the probability that maximizes the entropy subject to any constraints (more later)!
Result: Conditional Independence--i.e.

$$
\begin{aligned}
& \mathrm{P}(\mathrm{R} 1, \mathrm{R} 2 \mid \mathrm{H} 1, \mathrm{C})=\mathrm{P}(\mathrm{R} 1 \mid \mathrm{H} 1, \mathrm{C}) * \mathrm{P}(\mathrm{R} 2 \mid \mathrm{H} 1, \mathrm{C}) \\
& \mathrm{P}(\mathrm{R} 1 \mid \mathrm{R} 2, \mathrm{H} 1, \mathrm{C})=\mathrm{P}(\mathrm{R} 1 \mid \mathrm{H} 1, \mathrm{C})
\end{aligned}
$$

Double-Headed Coin Example (Cont.)

- Two Flip (R1,R2) Conclusion:
$\frac{\mathrm{P}(\mathrm{H} 2 \mid \mathrm{R} 1, \mathrm{R} 2, \mathrm{C})}{\mathrm{P}(\mathrm{H} 1 \mid \mathrm{R} 1, \mathrm{R} 2, \mathrm{C})}=\frac{\mathrm{P}(\mathrm{H} 2 \mid \mathrm{C}) * \mathrm{P}(\mathrm{R} 1, \mathrm{R} 2 \mid \mathrm{H} 2, \mathrm{C})}{\mathrm{P}(\mathrm{H} 1 \mid \mathrm{C}) * \mathrm{P}(\mathrm{R} 1, \mathrm{R} 2 \mid \mathrm{H} 1, \mathrm{C})}=\frac{(1 / 64)^{*} 1}{(63 / 64) *(1 / 2) *(1 / 2)}=\frac{4}{63}$

Which gives: $\mathrm{P}(\mathrm{H} 2 \mid \mathrm{R} 1, \mathrm{R} 2, \mathrm{C})=4 / 69$

- Recursive form of Bayes (when evidence is conditionally independent).
$\frac{\mathrm{P}(\mathrm{H} 2 \mid \mathrm{R} 1, \mathrm{R} 2, \mathrm{C})}{\mathrm{P}(\mathrm{H} 2 \mid \mathrm{C}) * \mathrm{P}(\mathrm{R} 1, \mathrm{R} 2 \mid \mathrm{H} 2, \mathrm{C}) \quad \mathrm{P}(\mathrm{H} 2 \mid \mathrm{C}) * \mathrm{P}(\mathrm{R} 1 \mid \mathrm{H} 2, \mathrm{C}) * \mathrm{P}(\mathrm{R} 2 \mid \mathrm{H} 2, \mathrm{C})}$

$$
=\frac{\mathrm{P}(\mathrm{H} 2 \mid \mathrm{R} 1, \mathrm{C}) * \mathrm{P}(\mathrm{R} 2 \mid \mathrm{H} 2, \mathrm{C})}{\mathrm{P}(\mathrm{H} 1 \mid \mathrm{R} 1, \mathrm{C}) * \mathrm{P}(\mathrm{R} 2 \mid \mathrm{H} 2, \mathrm{C})}=\frac{\text { Prior } * \text { Likelihood }}{\text { Prior } * \text { Likelihood }}
$$

i.e. Previous posterior probability becomes the prior on the next iteration!

HIV Testing Example

Situation 1: A patient enters a clinic.
Q1: What is the probability that this patient is HIV+?
Ans: $\mathrm{P}(\mathrm{HIV}+\mid$ Clinic $)=.01 \quad$ (answer depends on clinic, location etc.)
Note: $\mathrm{P}(\mathrm{HIV}+\mid$ Clinic $) \neq \mathrm{P}(\mathrm{HIV}+\mid \mathrm{USA}) \quad$ ("The" prior probability)

Situation 2: A blood sample from the patient is tested using the ELISA test, and is found +ve (E1+).
Q2: What is the prob. that the patient is HIV+ given E1+?
Ans: Relative Bayes: Posterior ratio $=$ Prior-ratio*Likelihood-ratio

```
P(HIV+|E1+,C) P(HIV+|C)*P(E1+|HIV+,C) 
--> P(HIV +|E1+,C) = .165 (much less than 1!)
```


HIV Testing Example (Cont.)

Situation 3: The blood sample from the patient is tested using the ELISA test, and is found -ve (E1-).
Q3: What is the prob. that the patient is HIV+ given E1- ?
Ans: Relative Bayes: Posterior ratio $=$ Prior-ratio*Likelihood-ratio

P(HIV+\|E1-, C)	$\mathrm{P}(\mathrm{HIV}+\mid \mathrm{C}) * \mathrm{P}(\mathrm{E} 1-\mid \mathrm{HIV}+, \mathrm{C})$. $01 \times .02$
P(HIV-\|E1-,C)	$\mathrm{P}(\mathrm{HIV}-\mid \mathrm{C}) * \mathrm{P}(\mathrm{E} 1-\mid \mathrm{HIV}-, \mathrm{C})$. $99 \times .95$
--> $\mathrm{P}(\mathrm{HIV}+\mid \mathrm{E} 1+, \mathrm{C})=.00021$ (from a prior of . $01!$)		

Situation 4: The blood sample from the patient is tested again using the ELISA test, and is found +ve (E2+) after the first test was +ve (E1+). Q4: What is the prob. that the patient is HIV + given E1+ and E2+ ?
Ans: Relative Bayes: Posterior ratio $=$ Prior-ratio ${ }^{*}$ Likelihood-ratio

HIV Testing Example (Cont.)

Q5: What value should be used for $\mathrm{P}(\mathrm{E} 1+, \mathrm{E} 2+\mid \mathrm{HIV}+\mathrm{C})$ and P(E1+,E2+|HIV-,C)?

Possible Answers:

Total Dependence: $\mathrm{P}(\mathrm{E} 1+, \mathrm{E} 2+\mid \mathrm{HIV}+\mathrm{C})=\mathrm{P}(\mathrm{E} 1+\mid \mathrm{HIV}+, \mathrm{C})$
(No new Info.) $\quad \mathrm{P}(\mathrm{E} 1+, \mathrm{E} 2+\mid \mathrm{HIV}-, \mathrm{C})=\mathrm{P}(\mathrm{E} 1+\mid \mathrm{HIV}-, \mathrm{C})$

Conditional Independence:

$\mathrm{P}(\mathrm{E} 1+, \mathrm{E} 2+\mid \mathrm{HIV}+\mathrm{C})=\mathrm{P}(\mathrm{E} 1+\mid \mathrm{HIV}+, \mathrm{C}) * \mathrm{P}(\mathrm{E} 2+\mid \mathrm{HIV}+, \mathrm{C})$
$\mathrm{P}(\mathrm{E} 1+, \mathrm{E} 2+\mid \mathrm{HIV}+, \mathrm{C})=\mathrm{P}(\mathrm{E} 1+\mid \mathrm{HIV}-, \mathrm{C}) * \mathrm{P}(\mathrm{E} 2+\mid \mathrm{HIV}-, \mathrm{C})$

Empirically Determined Values: E.g.

P(E1+,E2+ |HIV+,C) = \#(E1+,E2+|HIV+,C)/ \#(all test results|HIV+,C)

HIV Testing Example (Cont.)

Situation 5: The blood sample from the patient is tested again using the Western Blot test, and is found -ve (WB-), after an ELISA test was found +ve (E1+).
Q6: What is the prob. that the patient is HIV+ given E1+ and WB- ?
Ans: Relative Bayes: Posterior ratio $=$ Prior-ratio*Likelihood-ratio

Q7: What value should be used for $\mathrm{P}(\mathrm{E} 1+, \mathrm{WB}-\mid \mathrm{HIV}+, \mathrm{C})$ and P(E1+,WB-|HIV-,C)?
Possible Answer: Assume conditional independence-i.e. result of tests depends only sample--not on the results of other tests.

HIV Testing Example (Cont.)

-> P(HIV+|E1+,WB-,C) = . 000002 i.e. The WB- evidence overwhelms the E1+ evidence.

Summary--HIV Example:

- Probabilistic inference is an update procedure---prior beliefs--> posterior
- Even though there may be a large change in relative probability in a Bayesian update, the absolute magnitude may still be small.
- How new evidence interacts with previous evidence depends on the domain. Whether conditional independence (maxent) applies is domain dependent.
- Priors are dependent on the specific context of the inference.
- Evidence is never "contraditory" (e.g. E1+ and WB-), but different pieces of evidence can swing the probability toward 0 or 1 .

Types of Probabilistic Inference

- Direct (Likelihood):
- Likelihood determination
- Maximum Likelihood estimation.
- Inductive:
- Posterior Probability Inference (inverse inference)
- Maximum Posterior probability estimation
- Abductive Reasoning
- Projective (marginalization):
- eliminate nuisance variables
- Important special case-convolution
- Transductive:
- i.e Find probability of new evidence given old.
- Probability Transformation (Re-parameterization):

Types of Probabilistic Inference, -Direct-

Example (Likelihood):

P(Observed Intensity|Intrinsic luminousity, distance) = N(mean,var)

- Likelihood is the domain model (states how observables depend on the true state of the world, assumed known).
- Likelihood is usually a function of (conditioned on) the state of the world.

Maximum Likelihood Inference:

- Example: P(heart-attack| age) $=f($ age $)$. Given that someone has had a heart-attack, what is their most likely age?
- Vary the conditioning variable(s) to find the value(s) that maximize the probability (or pdf). This value(s) is the maximum likelihood (ML) estimator(s).
- Can estimate the uncertainty of the ML estimator by looking at the change in probability around the maximum as the variable(s) are varied.

Types of Probabilistic Inference, -Inductive-I

Induction $\equiv \mathbf{P}($ Model \mid Data $)$

$$
\propto \mathbf{P}(\text { Mode }) * \mathbf{P}(\text { Data } \mid \text { Model }) \text { [Bayes] }
$$

Previous Examples:

- Double-Headed Coin example (Binary target variable, discrete evidence)
- HIV Testing example.

General Inductive Inference $=$ Inverse Inference

- i.e. If know true state of the world, then can predict the data (probabilistically), but given the data want the true state of the world.
- e.g. X-ray crystallography, IRS audit prediction, diagnosis,....

Bayes is general Solution to Inverse Problems

- Bayes finds the posterior probability distribution over possible models given data and a prior distribution over models.

Types of Probabilistic Inference, -Inductive-II

Maximum Aposteriori Probability (MAP) Estimation:

- Picks the model(s) with maximum posterior probability
- Most posterior probability distributions have many local maxima.
- Need to search to find maximum (or local maximum)
- Need to indicate how concentrated the probability distribtion is around the maximum ("error bars").

Why find MAP estimates?

- Posterior probability distribution contains all the information from prior beliefs and data-the MAP estimate is a summary that loses information.
- The most likely posterior model is not generally the same as the mean model, and can vary depending on how the problem is parameterized.
- Hill climbing is a simple procedure for finding (local) MAP estimates.

Conclusion:

Where convenient use full posterior distribution!

Types of Probabilistic Inference, -Projective-

Project out the variable(s) of interest = marginalize over all 'nuisance' variables.

Example:

$$
\begin{aligned}
f(\mu, \sigma \mid \mathrm{X}) \longrightarrow f(\mu \mid \mathrm{X}) & =\int f(\mu, \sigma \mid \mathrm{X}) \mathrm{d} \sigma \\
& =\int f(\mu \mid \sigma, \mathrm{x})^{*} \mathrm{P}(\sigma \mid \mathrm{x}) \mathrm{dx}
\end{aligned}
$$

For a Normal: $f(\mu \mid X)=\frac{\Gamma(\mathrm{I} / 2) * \mathrm{~S}(\mathrm{I}-1)}{\sqrt{\pi * \Gamma(\mathrm{I} / 2-1 / 2) *\left\{\mathrm{~S}^{2}+(\mathrm{m}-\mu)^{2}\right\}}}$
--Student "T" distribution.
Where $\mathrm{S}=$ sample standard deviation, $\mathrm{m}=$ sample mean, and $\Gamma()$ is the Gamma function.

Types of Probabilistic Inference, -Transduction-

Transductive inference gives the probability of new data given old data (by marginalizing over model possibilities).

Example (Previous HIV Example):
$\mathrm{P}(\mathrm{WB}+\mid \mathrm{E} 1+)$
$=\mathrm{P}(\mathrm{WB}+, \mathrm{HIV}+\mid \mathrm{E} 1+) \quad+\mathrm{P}(\mathrm{WB}+, \mathrm{HIV}-\mid \mathrm{E} 1+)$
$=\mathrm{P}(\mathrm{WB}+\mid \mathrm{HIV}+)^{*} \mathrm{P}(\mathrm{HIV}+\mid \mathrm{E} 1+)+\mathrm{P}(\mathrm{WB}+\mid \mathrm{HIV}-) * \mathrm{P}(\mathrm{HIV}-\mid \mathrm{E} 1+)$

Where we have assumed conditional independence of evidence e.g. $\mathrm{P}(\mathrm{WB}+\mid \mathrm{HIV}+)=\mathrm{P}(\mathrm{WB}+\mid \mathrm{HIV}+, \mathrm{E} 1+)$

Can use transduction to evaluate the effect of evidence that could be obtained.

Types of Probabilistic Inference, -Probability Transformation-

Probability transformation allows a PDF in one representation to be transformed to another.

Example: Transform from Polar to Cartesian representation, i.e.

$$
f(\mathrm{r}, \theta) \rightarrow \mathrm{h}(\mathrm{x}, \mathrm{y})
$$

Answer:

$$
f(\mathrm{r}, \theta)=\mathrm{h}(\mathrm{x}, \mathrm{y}) * \operatorname{Det}\left[\frac{\mathrm{~d}(\mathrm{x}, \mathrm{y})}{\mathrm{d}(\mathrm{r}, \theta)}\right]
$$

I.E. Multiply by the Jacobian to transform correctly.

Thumb-Tack Example

We toss a thumbtack N times with probability θ of it landing on its flat

Direct Inference: If know θ, what is the probability that will get n "flats" in N trials?
Ans: From logic get Binomial Distribution:

$$
\mathrm{P}(\mathrm{n} \mid \theta, \mathrm{N})=\frac{\mathrm{n}!(\mathrm{N}-\mathrm{n})!}{\mathrm{N}!} * \theta^{n}(1-\theta)^{(\mathrm{N}-\mathrm{n})}
$$

Thumb-Tack Example II

Inductive Inference: Given number of "sides" n , and total number of trials N , what is θ ?
Ans: Use Bayes to invert the binomial distribution:
$f(\theta \mid \mathrm{x}) \propto \pi(\theta) * l(\mathrm{x} \mid \theta)$. Use (conjugate) prior dist $\pi(\theta) \propto \theta \alpha(1-\theta)^{\alpha}$
Then $f(\theta \mid \mathrm{x})=\beta(\theta \mid \mathrm{x})=\frac{\Gamma(\mathrm{N}+2 \alpha)}{\Gamma(\mathrm{n}+\alpha) * \Gamma(\mathrm{~N}-\mathrm{n}+\alpha)} * \theta(\mathrm{n}+\alpha-1)(1-\theta)(\mathrm{N}-\mathrm{n}+\alpha-1)$
Note: The beta distribution gives the posterior distribution on the unknown parameter θ, but it is very similar in form to the binomial distribution.

Thumb-Tack Example III

Transductive Inference: Given n previous "flats" in N trials, what is the probability of getting r "flats" in R trials?
Ans: Marginalize over θ-i.e.
$\mathrm{P}(\mathrm{r} \mid \mathrm{n}, \mathrm{N}, \mathrm{R})=\int \mathrm{P}(\mathrm{r} \mid \mathrm{R}, \theta) * f(\theta \mid \mathrm{n}, \mathrm{N}) \mathrm{d} \theta$

$$
=\frac{\mathrm{n}!*(\mathrm{r}+\mathrm{R})!*(\mathrm{~N}+\mathrm{n}-\mathrm{R}-\mathrm{r})!* \mathrm{~N}!}{\mathrm{r}!*(\mathrm{n}-\mathrm{r})!* \mathrm{R}!*(\mathrm{~N}-\mathrm{R})!*(\mathrm{~N}+\mathrm{n})!}
$$

This is the beta-binomial distribution (independent of θ, but still dependent on the conditionally independent trials model).

Summary of Probabilistic Inference

- General method for reasoning under uncertainty.
- Simplest generalization of classical (binary) logic
- allows degrees of belief (not just 0 or 1)
- explicitly conditions belief on specific known evidence
- Probabilistic Inference computes degrees of belief (does not make decisions--this requires Decision Theory).
- Bayesian Inference provides a way of computing beliefs given particular evidence.
- No such thing as "the" probability of a proposition.
- Probabilities are not frequencies, but these are closely related.
- Evidence can be hypothetical

