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Objective 
To develop models for the hydraulic permeability of fibrous media, taking explicit account of the underlying 
microstructure and its variability. A specific task for the preceding period was to explain the scatter in the hydraulic 
permeability (K) of unidirectional random fiber arrays that is observed computationally as well as experimentally. 

Approach 
Our approach is computational. A large number of simulations have been carried out, using a parallel 
implementation of the Boundary Element Method (BEM), in microstructures consisting of ~600 fiber cross-sections 
placed within a containing unit-cell by a Monte Carlo (MC) procedure. This allows a direct and unambiguous 
correlation between (K) and the microstructure of the fiber arrays. 

Accomplishments 
•	 We find a reduction in (K) as the degree of local heterogeneity increases. This reduction follows a power-law, 

whose exponent is a linear function of fiber content. 

•	 The hydraulic permeability (K) is a statistical function of the mean nearest inter-fiber spacing 〈δ1〉 

•	 The mean behavior of (K) can be expressed by the equation ln( K Khex )/ n = ln( δ1 δ hex ) , where n is a 

linear function of porosity and Khex and δhex are also known functions of porosity.  

Future Direction (for the next calendar year) 
•	 Further optimize and develop parallel BEM code to run on a Dell cluster. 

•	 Use this code to investigate the changes in (K) brought about by the transition of a microstructure from random 
to clustered. Develop explicit models that express changes in (K) in terms of microstructural parameters 
characterizing this transition. 

•	 Directly link the stochastic character of (K) to the microstructural statistics of the fiber array. 
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•	 Modify the parallel BEM code to consider problems of linear, compressible elasticity. Use this code to predict 
the development of stress concentrations that characterizes the transition of uniform fiber arrays to arrays 
exhibiting various levels of small- and large-scale aggregation. 

•	 Commence the development of a multipole-accelerated BEM code for Stokes flow. 

Introduction 
Viscous flow through fibrous media is a problem of 
long-standing interest in engineering due to its 
importance in the manufacturing and process 
industries. With specific reference to manufacturing 
of lightweight materials, flow through fibrous media 
is of direct relevance to several composites-forming 
operations such as liquid-molding, pultrusion and 
autoclave processing. To numerically model flow 
through fibrous preforms, nodal permeability values 
must be specified at points dictated by the domain 
discretization method; the accuracy in the provided 
permeability data is critical to successful modeling. 
For this purpose, permeability measurement 
techniques suitable for fibrous media similar to those 
used in liquid molding (preforms) have been 
developed. However, these measurements are known 
to be subject to large uncertainties, mainly caused by 
structural variations and/or deformation of the 
preform during the experiment. Therefore, in 
parallel with the development of more accurate and 
faster permeability testing methods, a great deal of 
effort has been devoted to developing models that 
would predict the permeability of a fibrous preform 
based on knowledge of its structure. 

The present study is motivated by this need. The 
particular problem we consider is transverse flow 
through unidirectional, random fiber arrays. Large 
discrepancies are routinely observed between 
theoretical results for such arrays and experimental 
data obtained in real fiber beds. A notable feature of 
the permeability as measured in the latter is the 
substantial scatter in the measured values of (K). It 
has been widely assumed that these discrepancies 
are caused by the non-uniformity of real fiber beds. 
Indeed, fiber packing disorder, fiber bundling and 
fiber size variations are the norm in fiber preforms. 
Hence, it is not unreasonable that a function of 
porosity alone will not be sufficient to explain the 
observed variability in permeability data. 
Investigating the possible existence of structure-
permeability correlations in disordered fiber arrays 
is therefore of obvious importance.  

Problem Formulation 
We consider a fibrous medium composed of long, 
cylindrical fibers with their axes oriented 
perpendicular to the direction of bulk flow. The 
computational unit cell represents a plane cut normal 
to the fibers’ axes. As our focus is on the effect of 
the spatial distribution of fibers, these are of the 
same size. A typical unit cell is shown in Figure 1. 
The porosity of the system is φ = 1− N f πR 2 A , 
where Nf is the number of fibers, R is the fiber 
radius, and A is the area of the unit cell. The random 
configuration of fibers is generated by a MC 
procedure. 

The governing equations for slow viscous 
Newtonian flow across the fibrous medium are the 
Stokes equations: 

∇ ⋅ u = 0 on Ω (1) 
μ∇ 2u = ∇p on Ω (2) 

L 

H 

Figure 1.  Model geometry used to represent a cross-
section of a unidirectional array of randomly-placed 
fibers. 
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Here u, p, μ and Ω denote the velocity vector, 
pressure, viscosity and the 2-D flow domain, 
respectively. The governing equations can be cast 
into boundary integral representations involving 
boundary velocities and tractions only. This 
technique is well established. Using fundamental 
solutions, the boundary integral equations are 
usually written as: 

cij (xp )u j (xp ) = 

∫uij 
* (xq , xp )t(xq )dΓ − ∫ t *(xq, xp )ui (xq )dΓ (3) 

Γ Γ 

*where uij  is the Stokeslet representing the fluid 
velocity at xp in the ith direction due to a point force 
at xq in the jth direction and tij 

* is the analogous 
singularity for tractions. Quadratic elements were 
used to discretize Eq.(3), providing second-order 
approximations for both geometry and field 
variables. After discretization, the resulting system 
of linear equations is usually represented as 
[ ] u = [G]{ }H { } t , where {u} and {t} contain two 
complete sets of both known and unknown nodal 
velocity and tractions, respectively; and [H] and [G] 
are influence coefficient matrices whose elements 
are either non-singular or singular integrals. The 
non-singular integrals were typically evaluated by 
10-point Gauss quadrature. The singular integrals 
were worked around by the well-known assumption 
of rigid-body motion, and the weakly-singular 
integrals were evaluated by Gauss-Laguerre 
quadrature with the aid of coordinate transformation. 
To prevent the deterioration of accuracy of 
numerical quadrature in non-singular integrals, the 
ratio of the closest distance between two nodes at 
different elements to the element size should be kept 
above a certain value. In the worst case, the closest 
distance between two nodes at different elements is 
equal to the minimum allowable, nearest inter-fiber 
spacing, δmin. Therefore, the discretization of fiber 
surfaces should be finer when δmin gets smaller. In 
this study, the smallest value of δmin is one tenth of 
the fiber radius (R). We typically used 24-36 nodes 
per fiber. This translates to a distance-to-element 
ratio of 0.25 for less than 10-5 error according to an 
empirical error bound. It was observed that further 
refinement did not change the results significantly. 
Also specific to the problem setup, there is one 
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additional unknown of traction at each corner node. 
This has been treated using the stress balance 
method. 

The main (inherent) shortcoming of the BEM is that 
its application results in dense and non-symmetric 
coefficient matrices. In the two-dimensional cases 
studied here, there are two unknowns for each node, 
plus four extra unknowns of traction at corner nodes 
because of the imposed boundary conditions, which 
result in 2×(Nf × Mf + 4 × Mb + 4) degrees of 
freedom, assuming Mf is the number of nodes per 
fiber and Mb is the number of nodes per unit-cell 
edge. The amount of computational work can exceed 
the capability of a workstation easily as the number 
of fibers in the unit cell increases. The bottleneck is 
the main memory (RAM) that can be used; for 
example, a simulation involving 576 randomly 
placed fibers results in a system with about 
32,000 degrees of freedom and requires about 8 Gb 
of storage using double-precision arithmetic. For 
this reason, it is desirable to implement the BEM on 
a distributed-memory parallel computer. In this 
study, we implemented a parallel boundary element 
code which exploits the coarse parallelism in the 
different phases of the BEM, namely, matrix 
assembly, solution and post-processing. The solution 
of the dense linear system is the most time-
consuming part in the BEM. In our study, the 
implementation of the L-U decomposition algorithm 
in ScaLAPACK is achieved using a two-
dimensional block-cyclic data-decomposition 
scheme. This is scalable in the sense that the 
memory efficiency is N2/np, where N is the global 
matrix size and np is the number of processors used. 
Our code was written in FORTRAN with function 
calls to BLACS, ScaLAPACK and MPI libraries. 

Microstructure Generation and 
Quantification 
The fiber distributions considered by this study were 
generated using a MC procedure, which is similar to 
the method described in Torquato’s monograph1 for 
generating an equilibrium ensemble of hard disks. 
The MC process starts with a fixed fiber packing 
arrangement (square array in our case) and proceeds 

1 Torquato, S. “Random Heterogeneous Materials,” 1st 

edition, Chap. 12:273-277 (Springer-Verlag, 2001). 
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by randomly and sequentially perturbing the fiber 
locations. The microstructures generated in this 
manner are primarily governed by the choice of 
porosity φ and the minimum allowable inter-fiber 
distance δmin. The latter, defined as the closest 
distance between fiber surfaces, is the mechanism 
used to prevent fibers from overlapping during the 
MC process. Additionally, the unit-cell boundaries 
act like rigid walls to restrict fibers inside the cell. 
Such a MC process generates a random field which 
is short-range correlated. Typical fiber distributions 
generated in this manner are presented in Figure 2, 
with differences in φ and δmin. It is evident that small 
values of δmin result in patterns showing local (small-
scale) fiber aggregation while large values of δmin 
lead to more or less uniform distributions that show 
only small deviations from a hexagonal lattice. The 
effect of δmin on fiber aggregation is more 
pronounced when the porosity is large. By varying 
δmin, a spectrum of fiber distributions can be 
generated at the same porosity level, ranging from 
locally aggregated to homogeneous. The possible 
range of δmin is determined by numerical 
considerations (at the low end) and by porosity (at 

Figure 2. Sample geometries created by the MC process. 
They exhibit differing degrees of local aggregation. From 
top left clock-wise (φ,δ1) = (0.5,0.1R); (0.7,0.1R); 
(0.7,1.0R); (0.5,0.4R) 
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the high end). Specifically, the smallest value of δmin 
was taken to be one tenth of fiber radius (R) to 
ensure accurate integrations as well as to avoid 
excessive CPU time, as explained previously. In 
spite of the artificiality of this choice, we found that 
when δmin is given small values, the resulting fiber 
distributions appear similar to the ones we have 
observed in several liquid molded or pultruded 
unidirectional composites.  

Prior to any analysis, it is necessary to quantify the 
microstructure of the fiber distribution first. In this 
effort, we have investigated the use of the nearest 
inter-fiber spacing — whose statistics differ between 
different fiber arrangements. For each fiber one can 
find a number of ‘neighbors’, which are assigned 
with a subscript (i) in such a way that the nearest 
one corresponds to i=1 and the others are in 
ascending order according to relative distances. 
Thus, the near-neighbor distances are the center-to
center distances from the reference fiber k to its 
neighbors, which are denoted as {di

k}. The nearest-
neighbor distance for a reference fiber k is therefore 
the minimum in this distance set, i.e., 
d1

(k ) = min{di 
(k )} . For a population of fibers, the 

mean nearest-neighbor distance is denoted as 〈d1〉, 
which is simply an arithmetic mean. This metric is 
frequently used to indicate the degree of local 
heterogeneity in spatial point patterns. Small values 
of 〈d1〉 are associated with disordered patterns, while 
large 〈d1〉 indicate a homogeneous arrangement. By 
subtracting the fiber diameter D, d1 

k  is translated 
toδ1 

k , which is the closest spacing between the 
reference fiber (k) and its neighbors. Because δ1

k is 
more relevant to fluid space, we will use δ1

k in 
correlating the microstructure of a fiber array to its 
permeability in the rest of this paper. We will also 
refer to the arithmetic mean of { δ1 

k , k=1…Nf} as 
the mean nearest inter-fiber spacing, denoted as 〈δ1〉. 

As is the case in experimental measurement of 
permeability in fiber preforms, the stochastic nature 
of the fiber distribution leads to scatter in the 
computed permeability data. In this study, a number 
of random realizations (Nr) were generated for each 
class of fiber distributions characterized by φ and 
〈δ1〉 (or δmin), and the permeability values were 
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computed for the resulting unit cells. The average 
permeability and its standard deviation are then 
computed as: 

1 Nr 

K = ∑ Ki (4)
Nr i 

Nr 2σ ( )K = 
1 ∑(Ki − K ) (5)

N −1 ir 

Figure 3 shows one representative flow field 
computed for a unit cell containing 900 fibers using 
the parallel BEM code. 

Figure 3.  Fluid speed contours for slow viscous 
flows across a unidirectional fiber array consisting of 
900 fibers at φ=0.50. Flow is horizontal. 

Results 
The use of porosity alone is not sufficient to explain 
the scatter in the permeability of random fiber 
arrays, whether calculated numerically or 
determined by experiment. The objective of this 
study is to link the transverse permeability of 
random fiber arrays to the geometrical 
characteristics of these arrays. To do so, the 
dimensionless permeability data are plotted against 
〈δ1〉/R in Figure 4. A correlation between K and 〈δ1〉 
is evident. In the porosity range 0.45<φ<0.7 it 

K
/R

 2 
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φ = 0.80  
φ = 0.70  
φ = 0.65  
φ = 0.60  
φ = 0.50  
φ = 0.45  
hexagon 

100 

10-1 

10-2 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 
〈δ1〉/R 

Figure 4.  Correlation of the normalized 
permeability (K/R2) with the mean nearest inter
fiber spacing, 〈δ1〉/R. The symbols are mean 
values and the error bars represent standard 
deviations (±σ) in each ensemble of data. Each 
ensemble of data contains 20 runs on geometries 
of similar spatial statistics. Also shown are 
permeability values of hexagonal arrays. 

appears that decreasing 〈δ1〉 or, equivalently, moving 
from a homogeneous system to ones progressively 
showing higher local aggregation, results in a 
permeability reduction. This trend is more 
pronounced at lower porosities (φ = 0.45, 0.5). This 
permeability reduction, as a result of non-uniformity 
in fiber distribution (quantified by the Morishita 
index in that case) was also reported in a recent 
study2. At higher porosities, an opposite trend is 
shown: at φ>0.7 as 〈δ1〉/R decreases (below ~1.0 for 
φ=0.8), the permeability seems to increase. It is 
necessary to point out that large-scale clustering (in 
which cluster dimensions are comparable to unit-cell 
dimensions) does not occur in our systems because 
of the hard-core distribution statistics implicit in the 
MC procedure used for microstructure generation. 
The surprisingly good fit between <δ1> and (K) can 
be qualitatively explained by the fact that, in the 
absence of large-scale clustering, the flow resistance 
around each fiber is governed by the narrowest gap 
separating it from its neighbors. The whole system 
can then be viewed as a network of flow paths 
connected in parallel as well as in series. The 
resistance of each component in the network is 

2 Bechtold, G. and Ye, L. Compos. Sci. Technol. 
63:2069-2079 (2003). 
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determined by the narrowest gap, which is included 
in the statistics of the inter-fiber spacing (see earlier 
section). It is therefore not surprising that such a 
clear correlation exists between 〈δ1〉 and <K>. 

In the porosity range of practical interest to 
composites manufacturing (0.45<φ<0.70), Figure 4 
suggests that the functional form which describes the 
relation between 〈δ1〉 and K should be: 

⎞
n 

K 
=
⎛
⎜ 
δ1 

R 2 ⎜
⎝ R ⎟⎠ 

f ( )  (6)⎟ φ 

where the exponent n is a function of φ as evidenced 
by the different slopes of the data sets corresponding 
to different porosities. In seeking a functional form 
for f(φ) in Eq.(6), we recall that Eq.(6) should reduce 
to existing models for the transverse permeability 
when the fiber array becomes uniform. When the 
array approaches a uniform hexagonal array, 〈δ1〉 
should equal the inter-fiber spacing of a hexagonal 
array (δhex) and the corresponding permeability will 
be Khex, which is known to be only a function of 
porosity. For example, at the low porosity limit, Khex 

and δhex are given by Eq. (7): 

K = 
9π

2
3 ⎝
⎛
⎜ 
δ 

R
hex 

⎠
⎞
⎟ 

5 / 2 

R 2 (7a)hex 

⎛ 1−φ ⎞ 
= 

1−φ 
min −1⎟⎟

⎠ 
R (7b)δ hex 2⎜⎜


⎝


where φmin=1−π (2 3), is the porosity at 
maximum packing for a hexagonal array. To be 
asymptotically correct, the form of f(φ) should 
therefore be: 

⎛ R ⎞
n 

Khexf ( ) = ⎜⎜ ⎟⎟ R 2 (8)φ
⎝δ hex ⎠ 

and thus Eq.(9) yields: 

⎞
n 

K 
= ⎜
⎛ δ1

Khex 
⎜
⎝ δ hex 

⎟
⎠
⎟ (9) 
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We attempted to scale the computational results of 
Figure (4) as suggested by Eq. (9). The result is 
presented in Figure 5(a), in which each data point 
corresponds to one simulation, characterized by one 
set of values (φ, 〈δ1〉). As expected by the 
dependence of the exponent n on φ, this scaling does 
not collapse the data onto one single master curve. 
Fitting the data as a power function gives the lowest 
estimate of n=0.164 at φ=0.7 and the highest 
estimate n=0.628 at φ=0.45. It is interesting to note 
that a plot of n versus φ suggests a linear relationship 
n=α+βφ. Therefore an overall correlation between 
K and 〈δ1〉 for random fiber arrays can be written as: 

α +βφ
⎞K ⎛ δ1

Khex 

= ⎜
⎝
⎜ 
δ hex 

⎟
⎠
⎟ (10) 

where the constants α and β are determined from a 
least square fit as α = 1.51 ± 0.06 and β = -1.93 ± 
0.10. It goes without saying that the linear 
relationship n =α+βφ can only be considered 
applicable in the indicated range of φ and 〈δ1〉. 
Taking logarithms in both sides of Eq. (10) results 
in: 

ln(K K hex )/ n(φ ) = ln( δ1 δ hex ). (11) 

The computational data for (K), transformed 
according to Eq. (11), are plotted in Figure 5 (b). A 
solid line in Figure 5(b) indicates the least square fit 
of the data set to a linear model with slope around 
unity (0.994± 0.018) and intercept (-0.008±0.01) 
very close to zero, exactly as anticipated from 
Eq.(11). It seems that Eq.(11) predicts the correct 
average behavior, as the data are indeed shown to be 
distributed randomly around an average log-linear 
relationship. In the studied ranges of φ and 〈δ1〉, the 
permeability follows, on average, Eq. (11), with a 
scatter that is inversely proportional to 〈δ1〉. 
Additionally, the scatter of the permeability values 
around the mean trend is also related to the variance 
(σ2) of δ1, or, in other words, to the non-uniformity 
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0 of the underlying microstructure. Relating the 
1 known statistics of (δ1) to the obtained statistics of-0.2 

(K) is of great practical interest and we are working
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Conclusion 
0.7 We carried out an extensive investigation of Stokes 
-1 flow across a large number of unidirectional, 
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random fiber arrays generated by a MC procedure. 
This numerically-intensive task was accomplished 
by developing and running an in-house parallel 
boundary element code on a distributed-memory 
parallel computer. The transverse permeability (K) 

0.09 of systems consisting (each) of 576 fibers, calculated 
in the porosity range 0.45<φ<0.90 by averaging over 
20 random realizations at each porosity value, was 
computed. Following this, we point out the need to 
consider some measure of the underlying fiber 
spatial statistics as an additional parameter affecting 
permeability. The microstructural characteristics of 
the model fiber distributions were analyzed and the 
mean nearest inter-fiber spacing (〈δ1〉) was identified 
as a parameter that correlates with the numerical 

0.7 estimates of (K). Specifically, we found that (K) is a
-1 statistical function of 〈δ1〉, with its average behavior 

0.6
-1.2 (〈K〉) expressed by

φ = 0.70φ = 0.70
φ = 0.65φ = 0.65  ln( K K )/ n = ln( δ1 δ , where (n) is a-1.40.5 φ = 0.60  hex hex )
φ = 0.60φ = 0.50
φ = 0.50φ = 0.45  linear function of porosity and Khex and δhex are also-1.6 φ = 0.45Linear fit0.4 known functions of porosity. The deviation of (K)

-1.8
0.2 0.3 -1 0.5 0.6 -0.5 0.90.4 0.7 0.8 0 from this average behavior is related to the

〉/δhex ln(〈δ11〉/δhex) variability of the underlying microstructure, as
(b) expressed by the variance of (δ1). 

Figure 5.  The correlation between permeability and the 
mean nearest inter-fiber spacing in the porosity range 
[0.45, 0.70]: (a) plot of the reduced permeability (K/Khex) 
versus δ1 / δ hex ; (b-bottom) plot of ln(K / Khex ) n 

versus δ1 / δ hex . Each data point in the graph is the 

result of one simulation. The linear fit in (b) has a slope 
of (0.994± 0.018) and an intercept of (-0.008±0.01). 

Presentations/Publications/Patents 
X. Chen and T.D. Papathanasiou, ‘Understanding 
the scatter in the permeability of random fiber 
arrays: A statistical correlation in terms of mean 
inter-fiber spacing’, subm. Physics of Fluids, 
10/2005. 

309 



