

LA-UR-04-1652

Approved for Public Release

Distribution is Unlimited

Title:

Lightning: A Performance and Scalability
Report on the use of 1020 nodes.

 Authors
Kei Davis
Adolfy Hoisie
Greg Johnson
Darren J. Kerbyson
Mike Lang
Scott Pakin
Fabrizio Petrini

 Published For distribution at LANL, and within the ASCI program

CCS-3
Modeling, Algorithms,
and Informatics Group

Performance and
Architecture Lab
http://www.c3.lanl.gov/par_arch

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by
University of California for the U.S. Department of Energy under contract W-7405-ENG-36. Ne
The Regents of the University of California, the United States Government nor any agency thereof
any of their employees, makes any warranty, express or implied, or assumes any legal responsib
for the accuracy, completeness, or usefulness of any information, apparatus, product or pro
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
specific commercial product, process, or service by trade name, trademark, manufacturer
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favorin
The Regents of the University of California, the United States Government, or any agency thereof.
views and opinions of the authors expressed herein do not necessarily state or reflect those of
Regents of the University of California, the United States Government, or any agency thereof.

Operated by the University of California for the US National Nuclear
Security Administration, of the US Department of Energy.

Copyright © 2004 UC

Lightning Testing/CCS-3 2 03/18/04

Lightening Testing/CCS-3 2 03/18/04

Lightning: A Performance and Scalability Report on
the Use of 1020 Nodes

Kei Davis, Adolfy Hoisie, Greg Johnson, Darren J. Kerbyson, Mike Lang,

Scott Pakin, Fabrizio Petrini.

Performance and Architectures Laboratory (PAL),
Computer and Computational Sciences Division (CCS),

Los Alamos National Laboratory

1. Summary

This document contains a performance and scalability report based on the suite of
measurements that were obtained on 1020 nodes of Lightning in late December 2003.
Over a 2 day period, the PAL team was given access to 4 partitions of the Lightning
system. Each partition contained 255 dual Opteron Nodes running at 2GHz.

The report is structured as follows:

• Single Node Performance, in particular memory performance in Section 2.

• System activity analysis in Section3, including the background “computational
noise” that may impact application performance.

• Network Performance for a multitude of user-level communication tests in

Section 4.

• Application Performance in Section 5 for Sweep3D (Sn transport), SAGE
(hydro), and Partisn (Sn transport)

Lightning Testing/CCS-3 3 03/18/04

Lightening Testing/CCS-3 3 03/18/04

2. Single Node Performance

2.1. Memory Latency

To assess the memory performance within a single Lightning node we utilized a
microbenchmark that measures the latency to memory from each processor. The
microbenchmark spawns two threads. The first thread accesses one word per 64 bytes
(the cache line size) of a memory region, measuring the average latency. Meanwhile, the
second thread spins idly. When the first thread has finished measuring memory access
latency, the two threads switch roles: the first thread spins idly while the second thread
measures memory access latency. These tests are repeated for memory regions of sizes
4 KB to 1 GB to gauge the latency of each level of the memory hierarchy. The idea
behind using multiple threads is to determine the difference in latency between memory
accesses from the allocating CPU versus from the non-allocating CPU. Spinning helps
inhibit thread migration, as there is no idle CPU to which to migrate a thread.

Figure 2.1 shows the latency measured for each level of the memory hierarchy. The
microbenchmark reports that each CPU observes a 3-cycle latency (at a clock rate of
2 GHz) to access its 64KB on-chip L1 cache and a 12-cycle latency to access its 1MB on-
chip L2 cache. Main-memory performance is trickier to report because the Lightning
nodes are not symmetric multiprocessors (SMPs). Rather, each of the two CPUs is
locally connected to half of the main memory and must remotely access the other half.
Local memory sees an average of 134-cycle latency while remote memory sees a 206-
cycle average latency—a penalty of over 50%.

64 KB

1.9 GB

3 cycles

12 cycles

134 cycles

64 KB

1.9 GB

3 cycles

12 cycles

134 cycles

1 MB1 MB

206 cycles

Figure 2.1 – Latency to the various levels of the memory hierarchy.

Lightning Testing/CCS-3 4 03/18/04

Lightening Testing/CCS-3 4 03/18/04

LANL’s key applications use MPI and therefore follow the shared-nothing model.
Ideally, therefore, all of the memory needed by a process can be kept locally, yielding the
faster 134-cycle access time. However, the Linux kernel running on Lightning was not
configured to take locality into consideration when allocating memory. As a result, the
operating system arbitrarily scatters a process’s pages across local and remote memory,
leading to a mean memory latency somewhere between 134 cycles and 206 cycles.

Although a latency of 103ns (206 cycles @ 2 GHz) is still quite good in absolute terms,
our analysis indicates that the latency can be reduced significantly, by more than 10%, by
recompiling the kernel specifically for the Opteron and enabling NUMA support to keep
allocations local.

2.2. Memory bandwidth

The bandwidth to memory was measured using cachebench. This benchmark performs
one of 8 operations: reading, writing, read-modify-write (and tuned or manually unrolled
versions of the same), memset and memcpy. These are performed for a certain sized data
set thus stressing different parts of the memory hierarchy as the data set size increases.
The results from executing cachebench on a single processor within a Lightning node are
shown in Figure 2.2.

0

2

4

6

8

10

12

14

16

1E+2 1E+3 1E+4 1E+5 1E+6 1E+7
Size (Bytes)

G
B

/s

read
write
rmw
read (tuned)
write (tuned)
rmw (tuned)
memset
memcpy

Figure 2.2 – Bandwidth to memory as measured by Cachebench

Lightning Testing/CCS-3 5 03/18/04

Lightening Testing/CCS-3 5 03/18/04

It should be noted that the bandwidth to main memory when reading is approximately
2GB/s and for writing is approximately 1.8GB/s. These are comparable with the ES45’s
in the Q system.

Cachebench was also run in the presence of a second task on the second processor which
constantly read from main memory. Thus, this measured the contention within a node
when both processors access memory. The relative performance between a single
processor accessing memory (as shown in Figure 2.2) and when both processors are
active to memory is shown in Figure 2.3. The Y-axis is the relative performance – a value
of 1 means that there is no difference in performance between 1 processor and both
processors accessing memory whereas a value less than 1 indicates contention. It can be
seen that there is no impact when the data set size is less than the L2 cache size (as
expected), and that the impact when both processors are accessing main memory is 6%
when reading and 18% when writing.

0

0.2

0.4

0.6

0.8

1

1.2

1E+2 1E+3 1E+4 1E+5 1E+6 1E+7
Size (Bytes)

G
B

/s

read
write
rmw
read (tuned)
write (tuned)
rmw (tuned)
memset
memcpy

Figure 2.3 – Relative memory performance between 1 and 2 processors accessing
memory within a node.

Lightning Testing/CCS-3 6 03/18/04

Lightening Testing/CCS-3 6 03/18/04

3. Computational Noise

Figure 3.1 shows the total slowdown, computed on a per-node basis, on the four clusters
of Lightning. Overall the slowdown is contained, only 0.7%, and deterministic. Also,
there is no asymmetry between the nodes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800 1000

S
lo

w
d
o
w

n
 (

p
e
rc

e
n
ta

g
e
)

Nodes

Computational Noise per Node

Figure 3.1. – Slowdown on each node due to Computation Noise.

In Figure 3.2 we analyze the noise on a node of Lightning. A first, preliminary analysis
would suggest that there are at least five distinct sources of noise (harmonics) that could
lead to a performance degradation of at most 10% on a large system, for applications that
exhibit bulk-synchronous behavior and have a computational granularity of 1ms.

H1

H2

H3

H4
H5

1

32

1024

32768

1.04E+6

1 1.05 1.1 1.15 1.2 1.25 1.3

It
e

m
s

Latency (ms)

Noise Distribution on a Lightning Node

 Figure 3.2 – Noise distribution on a single Lightning node.

Lightning Testing/CCS-3 7 03/18/04

Lightening Testing/CCS-3 7 03/18/04

4. Communication Performance

In this section we describe the performance of the MPI-CH version of MPI installed on
Lightning at the time of our tests.

4.1. Unidirectional Performance

The network delivers a basic latency of 6.7 µs and an asymptotic bandwidth of 242 MB/s.
These values are very close to the optimal performance that can be delivered by Myrinet.
The data is plotted in Figures 4.1.1 and 4.1.2.

0

50

100

150

200

250

1 4 16 64 256 1K 4K 16K 64K 256K 1M

B
an

dw
id

th
 M

B
/s

Msg Size (bytes)

Unidirectional Ping Bandwidth

Figure 4.1.1 – Unidirectional Ping Bandwidth between adjacent nodes.

Lightning Testing/CCS-3 8 03/18/04

Lightening Testing/CCS-3 8 03/18/04

5

10

15

20

25

30

35

0 1 4 16 64 256 1K 4K

La
te

nc
y µ

s

Msg Size (bytes)

Unidirectional Ping Latency

Figure 4.1.2 – Unidirectional Ping Latency between adjacent nodes.

4.2. Bidirectional Performance

The network is able to sustain bidirectional traffic without incurring any measurable
performance degradation. The asymptotic bandwidth is about 240 MB/s and the basic
latency 10 µs, as shown in Figures 4.2.1 and 4.2.2.

0

50

100

150

200

250

1 4 16 64 256 1K 4K 16K 64K 256K 1M

B
a
n
d
w

id
th

 M
B

/s

Msg Size (bytes)

Bidirectional Ping Bandwidth

Figure 4.2.1 – Bidirectional Ping Bandwidth between adjacent nodes.

Lightning Testing/CCS-3 9 03/18/04

Lightening Testing/CCS-3 9 03/18/04

5

10

15

20

25

30

35

40

45

0 1 4 16 64 256 1K 4K

L
a
te

n
c
y
 µs

Msg Size (bytes)

Bidirectional Ping Latency

Figure 4.2.2 – Bidirectional Ping Latency between adjacent nodes.

4.3. Intra-node

The MPI-CH implementation obtains excellent in-box performance with 900 MB/s of
bandwidth and only 1µs of latency (Figure 4.3.1 and 4.3.2).

0

100

200

300

400

500

600

700

800

900

1000

1 4 16 64 256 1K 4K 16K 64K 256K 1M

B
an

dw
id

th
 M

B
/s

Msg Size (bytes)

In-Box Unidirectional Ping Bandwidth

Figure 4.3.1 – In-box Unidirectional Ping Bandwidth.

Lightning Testing/CCS-3 10 03/18/04

Lightening Testing/CCS-3 10 03/18/04

1

2

3

4

5

6

7

8

9

0 1 4 16 64 256 1K 4K

La
te

nc
y µ

s

Msg Size (bytes)

In-Box Unidirectional Ping Latency

Figure 4.3.2 – In-box Unidirectional Ping Latency.

4.4. Distance

As shown in Figure 4.4, the network is almost insensitive to node distance. The graph
doesn’t report all nodes, because we couldn’t collect all data due to the benchmark
crashing multiple times.

234

234.5

235

235.5

236

236.5

50 100 150 200 250 300 350 400 450

B
a
n
d
w

id
th

 M
B

/s

Nodes

Unidirectional Ping Bandwidth, Seen by Node 0

Figure 4.4 – Unidirectional Ping Bandwidth from Node 0 to all other nodes.

Lightning Testing/CCS-3 11 03/18/04

Lightening Testing/CCS-3 11 03/18/04

4.5. Hotspot

As seen in Figure 4.5, the network delivers acceptable performance under hot-spot traffic,
up to 64 nodes. With more communication partners the performance degrades gracefully
down to 110 MB/s.

100

120

140

160

180

200

220

240

260

2 4 8 16 32 64 128 256 512 1024

B
a
n
d
w

id
th

 M
B

/s

Nodes

Hot-Spot Bandwidth

Figure 4.5 – Hotspot bandwidth.

4.6. Complement Traffic

In the complement permutation pattern each node sends messages to a partner node
which is identified by the complement of its bit string. For example, on a 512-node
machine, node 0 sends messages to node 511, node 1 to node 510, etc. The complement
traffic exposes the aggregate network performance as a whole, because it stresses many
network routes, the routing algorithm and the flow control. As seen in Figure 4.6, only
three pairs reach the full bandwidth. In all other cases we get sub-optimal values, with an
average of 100 MB/sec. This is a feature of the Myrinet’s routing algorithm, which is
deterministic. In fact, for each pair of communicating processors, a static route is chosen
at initialization time by a mapper, and this leads inevitably to congestion in the network.
This experiment emphasizes the need for adaptive routing, where the network switches
are able to identify local congestion and use alternative routes.

Lightning Testing/CCS-3 12 03/18/04

Lightening Testing/CCS-3 12 03/18/04

40

60

80

100

120

140

160

180

200

220

240

0 100 200 300 400 500

B
an

dw
id

th
 M

B
/s

Nodes

Complement Traffic, Per Node Bandwidth

Figure 4.6 – Complement bandwidth.

4.7. Collectives

Both barrier and allreduce, two important collective patterns for the ASCI workload,
scale logarithmically. The latency on the whole machine is about 250 µs, when we use
both processors in each node. The gap between the two and one processor graphs, almost
a factor of two at scale, is due, in part, to the noise in the system.

0

50

100

150

200

250

128 256 384 512 640 768 896 1024

L
a
te

n
c
y

µs

Nodes

Allreduce Latency

1 Process per Node
2 Processes per Node

Figure 4.7.1 – Allreduce Latency.

Lightning Testing/CCS-3 13 03/18/04

Lightening Testing/CCS-3 13 03/18/04

0

50

100

150

200

250

128 256 384 512 640 768 896 1024

L
a
te

n
c
y
 (µs

)

Nodes

Barrier Latency

1 Process per Node
2 Processes per Node

Figure 4.7.2 – Barrier Latency.

4.8 Elimination of Routing and Network Problems

In the initial phase of our tests we were able to pinpoint a serious performance problem
that was reducing the communication performance by a factor of four, in the worst case.
A small number of nodes connected to a common crossbars were mis-routed to the upper-
level switches (figure 4.8). This resulted in congestion in what should have been
contention-free communication. The test was simple but representative of
communication patterns in the ASCI workload. It was later determined that the problem
was related to incorrect cabling and has since been corrected. Initial investigation with
SAGE showed a improvement of up to 10% on 100 processors.

Figure 4.8 Erroneous routes to nodes on common cross-bar

P14
P8 P9 P10 P11 P12 P13 P15

16 way crossbar

Lightning Testing/CCS-3 14 03/18/04

Lightening Testing/CCS-3 14 03/18/04

5. Application Performance

5.1. Sweep3D

The performance of Sweep3D was measured on Lightning on two problem sizes, and for
each size using 2 blocking factors (four input decks total). Problem sizes of 50x50x50
cells and 5x5x400 cells per processor were used in a weak-scaling mode. The blocking
was chosen either using 1-plane in the Z-direction (k-plane)/1 angle, or 10 k-planes/3
angles per block. The performance of these four cases was measured when using one
processor per node (ranging from 1 to 1,020 processors) and when using both processors
per node (ranging from 2 to 2,040 processors). The intention of these experiments was to
determine how well Sweep3D performs and how well it scales for both coarse- and fine-
grained problems, smaller and larger messages, and with and without memory/network
contention.

The performance shown by the curves in Figures 5.1.1 to 5.1.4 are all quite reasonable
for a system with Lightning's architecture. Each figure contains two curves showing the
performance of Sweep3D when using either 1 processor or 2 processors per node.

Figure 5.1.1, the 50x50x50 case with 1 k-plane/1 angle blocking, shows a fairly flat
performance with only slight overhead penalties at larger processor counts. The
difference when using both PEs per node to the case when using only 1 PE can be seen to
be approximately 10%, i.e. the overhead when using both PEs results in a 10% increase
in runtime but a doubling of the number of processors used.

0

2

4

6

8

10

12

14

1 10 100 1,000 10,000
Processor Count

E
la

p
se

d
 t

im
e

(s
)

1 PE per Node

2 PEs per Node

Figure 5.1.1 – Sweep3D performance on Lightning (50x50x50, MK=1, MMI=1)

Lightning Testing/CCS-3 15 03/18/04

Lightening Testing/CCS-3 15 03/18/04

Figure 5.1.2, the 50x50x50 case with 10 k-planes/3 angles blocking represents the most
coarse-grained test. The poor scaling is, in fact, caused mainly by the complex behavior
of Sweep3D itself and is not an idiosyncrasy of Lightning. There exist many idle
processors during the sweep processing in this test, a result of the small number of blocks
in the k-dimension, in turn caused by the large blocking parameters.
For the subgrid size of 50x50x50 cells per processor, a higher performance is achieved
with 1 k-planes/1 angle per block than with 10 k-planes/3 angles per block.

0

5

10

15

20

25

30

35

1 10 100 1,000 10,000
Processor Count

E
la

p
se

d
 t

im
e

(s
)

1 PE per Node

2 PEs per Node

Figure 5.1.2 – Sweep3D performance on Lightning (50x50x50, MK=10, MMI=3)

Figure 5.1.3, the 5x5x400 case with 1 k-plane/1 angle blocking, shows a large
performance penalty as the machine size scales upwards. While a single-processor run
completes in 1.6 seconds, a 1020-processor run takes 6.6 seconds or a factor of 4.1 times
longer to complete. At 32 processors and above, there is a constant gap (~2.2 seconds)
between the 1 PE per Node curve and the 2 PEs per Node curve. This is likely caused by
contention for the network. Starting at 32 CPUs, there are CPUs that both send and
receive two messages on each sweep. The likelihood that the two CPUs in some node
both try to send simultaneously therefore increases significantly at 32 CPUs. Because
Sweep3D is tightly coupled, any contention slows down the entire run.

Figure 5.1.4, the 5x5x400 case with 10 k-plane/3 angle blocking, behaves largely as
expected for Sweep3D running in a weak-scaling mode: runtime gradually increases with
the processor count. Note that the blocking of the 5x5x400 case with 10 k-planes/3 angles
per block results in a much better scaling performance than the same case with the 1 k-
plane/1 angle blocking shown in Figure 5.1.3. The former blocking parameters result in a
reduced number of messages between processors with each message having a higher

Lightning Testing/CCS-3 16 03/18/04

Lightening Testing/CCS-3 16 03/18/04

payload than for the latter case. The latter case thus has a higher number of messages
with a smaller payload and is thus more sensitive to the network latency.

0

1

2

3

4

5

6

7

8

9

1 10 100 1,000 10,000
Processor Count

E
la

p
se

d
 t

im
e

(s
)

1 PE per Node

2 PEs per Node

Figure 5.1.3 – Sweep3D performance on Lightning (5x5x400, MK=1, MMI=1)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 10 100 1,000 10,000
Processor Count

E
la

p
se

d
 t

im
e

(s
)

1 PE per Node

2 PEs per Node

Figure 5.1.4 – Sweep3D performance on Lightning (5x5x400, MK=10, MMI=3)

Lightning Testing/CCS-3 17 03/18/04

Lightening Testing/CCS-3 17 03/18/04

5.2. Sage

Several tests of SAGE were performed on the available 1020 nodes of Lightning. The initial test
examined the single processor and single node performance of the Lightning system. This was
undertaken using both SAGE versions v20030505 and v20001220. Four input decks were used in
this study: timing.input, timing_a.input, timing_b.input, timing_c.input, and timing_h.input.
SAGE was compiled using both the PGI compiler and the Absoft compiler. In general it was
found that the PGI compiler resulted in a performance on SAGE which was 10% higher than
when using the Absoft compiler.

To examine the scaling behavior of SAGE, two tests were done. The first test used SAGE
v20001220 with the timing.input deck which was done to stress the communication aspects of the
application. This input deck has 13,500 cells per processor and does not use the solver. SAGE
v20001220 was used in this test to allow a comparison with the SAGE performance already
reported for ASCI Q. The second test used SAGE v20030505 with the timing_h.input deck which
has the solver turned on and processes 35,000 cells per processor.

Figure 5.2.1 shows the single processor and single node performance of SAGE v20030505 on
four input decks. The performance metric used on the Y-axis is the number of cell-updates per
second per processor (cc/s/pe). It can be seen that when using both processors per node, the
performance per processor degrades by 15% to 20%.

0

5000

10000

15000

20000

25000

30000

35000

40000

timing timing_a timing_b timing_c timing_h

cc
/s

/p
e

1 PE

2 PEs

Figure 5.2.1 – Lightning single processor and single node performance of SAGE.

Figure 5.2.2 shows the scaling performance of SAGE v20001220 using the timing.input
deck on Lightning when using either 1 processor per node or both processors per node.
Here the metric used on the Y-axis is the time taken to perform a single iteration of
SAGE (cycle time in seconds). Overall the sage scaling behavior is good – when using

Lightning Testing/CCS-3 18 03/18/04

Lightening Testing/CCS-3 18 03/18/04

both processors per node, the cycle time increases from 0.41s to 0.77s. This represents an
efficiency at 2040 processors of 53%.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10 100 1000 10000
Processor Count

C
yc

le
 T

im
e

(s
)

2 PEs per Node

1 PE per Node

Figure 5.2.2 – SAGE v20001220 performance on Lightning (timing.input).

Figure 5.2.3 shows the scaling performance of SAGE v20030505 using the
timing_h.input deck on Lightning when using either 1 processor per node or both
processors per node. On this input deck it can be seen that the cycle time increases from
3.0s to 9.0 at 2040 processors representing an efficiency of 33%.

Figure 5.2.4 shows the relative performance of using both processors per node in
comparison to using only 1. Note that the x-axis is the node count. For both the two
scaling sets of data included in Figure 5.2.2 and 5.2.3, the relative performance is
between 1.7 (when using 1 node) and 1.3 when using all 1020 nodes. The difference
when using only 1 node is due to contention within the node. The difference when using
all 1020 nodes is due to both contention within the node, and contention when sharing the
communication network from each node. The maximum number using this relative
performance metric is 2, i.e. using both processors is at best twice as good as using only
one processor per node.

Lightning Testing/CCS-3 19 03/18/04

Lightening Testing/CCS-3 19 03/18/04

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1 10 100 1000 10000
Processor Count

C
yc

le
 T

im
e

(s
)

2 PEs per Node

1 PE per Node

Figure 5.2.3 – SAGE v20030505 performance on Lightning (timing_h.input).

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 10 100 1000
Node Count

R
el

at
iv

e
P

er
fo

rm
an

ce
 u

si
n

g
 2

P
E

s
vs

. 1
P

E
 p

er
 n

o
d

e

timing.input (v20001220)

timing_h.input (v20030505)

Figure 5.2.4 – Effectiveness of using 2 processors per node on SAGE.

Lightning Testing/CCS-3 20 03/18/04

Lightening Testing/CCS-3 20 03/18/04

5.3. Partisn

The performance of Partisn (version 3.02) was examined when using four input decks.
The first input deck, sntiming, is the default testing input deck as included in the Partisn
distribution. This input uses a 3-D spatial cube which grows in size with the processor
count and maps approximately 13,000 cells to each processor. A modified version of this
input, sntiming5x5, maps a subgrid of 5x5x400 cells to each processor irrespective of the
processor count. Two further input decks, Rep1 and Rep15x5 correspond to sntiming and
sntiming5x5, but have an increased processing requirement – having a greater SN order
(S8 in comparison to S6).

The total runtime for each of these input decks was obtained and is plotted in Figure 5.3.
It can be seen in Figure 5.3 that the Rep1 and Rep15x5 have an increased processing time
in comparison to their corresponding sntiming inputs. Since all input decks are for a
constant problem size per processor (weak scaling), the ideal runtime is a constant.
However, the runtime does increase as a result of scaling. The runtime at 2040 processors
is between a factor of 3.2 (Rep15x5) and 11.3 (sntiming) longer than on a single
processor. All results are reported when using both processors per node. The apparent
jagged look to the 5x5x400 sub-grid cases are not unusual being due to the processing
requirements of the solver.

0

100

200

300

400

500

600

1 10 100 1000 10000
Processor Count

T
o

ta
l T

im
e

(s
)

sntiming

sntiming5x5

Rep1

Rep15x5

Figure 5.3 – Partisn performance on Lightning on four input decks.

Lightning Testing/CCS-3 21 03/18/04

Lightening Testing/CCS-3 21 03/18/04

6. Summary

We have benchmarked Lightning in its incarnation as of mid-December 2003, up to the
full configuration of 1020 nodes.

The overall performance and scalability of the machine is in line with the expectations
given the actual hardware configuration of the cluster, and given that the hardware and
software are still being deployed and refined.

We summarize below some of the performance problems we identified, in particular
those deficiencies that could be solved in order to improve the overall performance of the
machine.

The Linux kernel running on Lightning was not configured to take locality into
consideration when allocating memory. As a result, the operating system arbitrarily
scatters a process’s pages across local and remote memory within a node, as described in
Section 2.1. Our analysis indicates that the latency can be reduced significantly, by more
than 10%, by recompiling the kernel specifically for the Opteron and enabling NUMA
support to keep allocations local.

We have found serious problems with the network, as described in Section 4.8.
Debugging of the network took a significant amount of resources, after the actual running
of the tests. This required devising microbenchmarks, analyzing large amounts of data
and proposing solutions and helping with their implementation by working together with
CCN-7 and Linux Networks. As of the release of this report most of the hardware
problems with the network have been eliminated.

The performance of the collectives, described in 4.7, is negatively impacted by the
network design and by the existing “computational noise” (Section 3) in the system.
Further investigation on the noise is under way in collaboration with CCS-1.

All of the relevant performance data (network/communication and apps) was collected
using MPI-CH available at the time of the data collection. No LA-MPI numbers are
included.

The performance of the applications tested is in-keeping with the current status of the
system.

