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the Use of 1020 Nodes 

 
Kei Davis, Adolfy Hoisie, Greg Johnson, Darren J. Kerbyson, Mike Lang,  

Scott Pakin, Fabrizio Petrini. 
 

Performance and Architectures Laboratory (PAL), 
Computer and Computational Sciences Division (CCS), 

Los Alamos National Laboratory 
 

1. Summary 
 
This document contains a performance and scalability report based on the suite of 
measurements that were obtained on 1020 nodes of Lightning in late December 2003. 
Over a 2 day period, the PAL team was given access to 4 partitions of the Lightning 
system. Each partition contained 255 dual Opteron Nodes running at 2GHz.  
 
The report is structured as follows: 
 

•  Single Node Performance, in particular memory performance in Section 2. 
 

•  System activity analysis in Section3, including the background “computational 
noise” that may impact application performance. 

 
•  Network Performance for a multitude of user-level communication tests in 

Section 4. 
 

•  Application Performance in Section 5 for Sweep3D (Sn transport), SAGE 
(hydro), and Partisn (Sn transport) 
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2. Single Node Performance 
 
2.1. Memory Latency 
 
To assess the memory performance within a single Lightning node we utilized a 
microbenchmark that measures the latency to memory from each processor. The 
microbenchmark spawns two threads.  The first thread accesses one word per 64 bytes 
(the cache line size) of a memory region, measuring the average latency. Meanwhile, the 
second thread spins idly. When the first thread has finished measuring memory access 
latency, the two threads switch roles: the first thread spins idly while the second thread 
measures memory access latency.  These tests are repeated for memory regions of sizes 
4 KB to 1 GB to gauge the latency of each level of the memory hierarchy.  The idea 
behind using multiple threads is to determine the difference in latency between memory 
accesses from the allocating CPU versus from the non-allocating CPU.  Spinning helps 
inhibit thread migration, as there is no idle CPU to which to migrate a thread. 
 
Figure 2.1 shows the latency measured for each level of the memory hierarchy.  The 
microbenchmark reports that each CPU observes a 3-cycle latency (at a clock rate of 
2 GHz) to access its 64KB on-chip L1 cache and a 12-cycle latency to access its 1MB on-
chip L2 cache.  Main-memory performance is trickier to report because the Lightning 
nodes are not symmetric multiprocessors (SMPs).  Rather, each of the two CPUs is 
locally connected to half of the main memory and must remotely access the other half.  
Local memory sees an average of 134-cycle latency while remote memory sees a 206-
cycle average latency—a penalty of over 50%. 
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Figure 2.1 – Latency to the various levels of the memory hierarchy. 
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LANL’s key applications use MPI and therefore follow the shared-nothing model.  
Ideally, therefore, all of the memory needed by a process can be kept locally, yielding the 
faster 134-cycle access time.  However, the Linux kernel running on Lightning was not 
configured to take locality into consideration when allocating memory.  As a result, the 
operating system arbitrarily scatters a process’s pages across local and remote memory, 
leading to a mean memory latency somewhere between 134 cycles and 206 cycles. 
 
Although a latency of 103ns (206 cycles @ 2 GHz) is still quite good in absolute terms, 
our analysis indicates that the latency can be reduced significantly, by more than 10%, by 
recompiling the kernel specifically for the Opteron and enabling NUMA support to keep 
allocations local. 
 
  
2.2. Memory bandwidth 
 
The bandwidth to memory was measured using cachebench. This benchmark performs 
one of 8 operations: reading, writing, read-modify-write (and tuned or manually unrolled 
versions of the same), memset and memcpy. These are performed for a certain sized data 
set thus stressing different parts of the memory hierarchy as the data set size increases. 
The results from executing cachebench on a single processor within a Lightning node are 
shown in Figure 2.2. 
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Figure 2.2 – Bandwidth to memory as measured by Cachebench 
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It should be noted that the bandwidth to main memory when reading is approximately 
2GB/s and for writing is approximately 1.8GB/s. These are comparable with the ES45’s 
in the Q system. 
 
Cachebench was also run in the presence of a second task on the second processor which 
constantly read from main memory. Thus, this measured the contention within a node 
when both processors access memory. The relative performance between a single 
processor accessing memory (as shown in Figure 2.2) and when both processors are 
active to memory is shown in Figure 2.3. The Y-axis is the relative performance – a value 
of 1 means that there is no difference in performance between 1 processor and both 
processors accessing memory whereas a value less than 1 indicates contention. It can be 
seen that there is no impact when the data set size is less than the L2 cache size (as 
expected), and that the impact when both processors are accessing main memory is 6% 
when reading and 18% when writing. 
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Figure 2.3 – Relative memory performance between 1 and 2 processors accessing 
memory within a node. 
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3. Computational Noise 
 
Figure 3.1 shows the total slowdown, computed on a per-node basis, on the four clusters 
of Lightning. Overall the slowdown is contained, only 0.7%, and deterministic. Also, 
there is no asymmetry between the nodes.  
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Figure 3.1. – Slowdown on each node due to Computation Noise. 

 
In Figure 3.2 we analyze the noise on a node of Lightning. A first, preliminary analysis  
would suggest that there are at least five distinct sources of noise (harmonics) that could 
lead to a performance degradation of at most 10% on a large system, for applications that 
exhibit bulk-synchronous behavior and have a computational granularity of 1ms. 
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 Figure 3.2 – Noise distribution on a single Lightning node.  



Lightning Testing/CCS-3 7 03/18/04 

 

Lightening Testing/CCS-3 7 03/18/04 

 
4. Communication Performance 

 
In this section we describe the performance of the MPI-CH version of MPI installed on 
Lightning at the time of our tests. 
 
4.1. Unidirectional Performance 
 
The network delivers a basic latency of 6.7 µs and an asymptotic bandwidth of 242 MB/s. 
These values are very close to the optimal performance that can be delivered by Myrinet. 
The data is plotted in Figures 4.1.1 and 4.1.2. 
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Figure 4.1.1 – Unidirectional Ping Bandwidth between adjacent nodes. 
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Figure 4.1.2 – Unidirectional Ping Latency between adjacent nodes. 

 
4.2. Bidirectional Performance 
 
The network is able to sustain bidirectional traffic without incurring any measurable 
performance degradation. The asymptotic bandwidth is about 240 MB/s and the basic 
latency 10 µs, as shown in Figures 4.2.1 and 4.2.2. 
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Figure 4.2.1 – Bidirectional Ping Bandwidth between adjacent nodes. 
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Figure 4.2.2 – Bidirectional Ping Latency between adjacent nodes. 

 
 
4.3. Intra-node 
 
The MPI-CH implementation obtains excellent in-box performance with 900 MB/s of 
bandwidth and only 1µs of latency (Figure 4.3.1 and 4.3.2).  
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Figure 4.3.1 – In-box Unidirectional Ping Bandwidth. 
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Figure 4.3.2 – In-box Unidirectional Ping Latency. 

 
4.4. Distance 
 
 
As shown in Figure 4.4, the network is almost insensitive to node distance. The graph 
doesn’t report all nodes, because we couldn’t collect all data due to the benchmark 
crashing multiple times.  
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Figure 4.4 – Unidirectional Ping Bandwidth from Node 0 to all other nodes. 
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4.5. Hotspot 
 
As seen in Figure 4.5, the network delivers acceptable performance under hot-spot traffic, 
up to 64 nodes. With more communication partners the performance degrades gracefully 
down to 110 MB/s. 
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Figure 4.5 – Hotspot bandwidth. 

 
4.6. Complement Traffic 
 
In  the complement permutation pattern each node sends messages to a partner node 
which is identified by the complement of its bit string. For example, on a 512-node 
machine, node 0 sends messages to node 511, node 1 to node 510, etc.  The complement 
traffic exposes the aggregate network performance as a whole, because it stresses many 
network routes, the routing algorithm and the flow control. As seen in Figure 4.6, only 
three pairs reach the full bandwidth. In all other cases we get sub-optimal values, with an 
average of 100 MB/sec. This is a feature of the Myrinet’s routing algorithm, which is 
deterministic. In fact, for each pair of communicating processors, a static route is chosen 
at initialization time by a mapper, and this leads inevitably to congestion in the network. 
This experiment emphasizes the need for adaptive routing, where the network switches 
are able to identify local congestion and use alternative routes.  
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Figure 4.6 – Complement bandwidth. 

 
 
4.7. Collectives 
 
Both barrier and allreduce, two important collective patterns for the ASCI workload, 
scale logarithmically. The latency on the whole machine is about 250 µs, when we use 
both processors in each node. The gap between the two and one processor graphs, almost 
a factor of two at scale, is due, in part, to the noise in the system. 
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Figure 4.7.1 – Allreduce Latency. 
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Figure 4.7.2 – Barrier Latency. 

 
 
4.8  Elimination of  Routing and Network Problems 
 
In the initial phase of our tests we were able to pinpoint a serious performance problem 
that was reducing the communication performance by a factor of four, in the worst case.  
A small number of nodes connected to a common crossbars were mis-routed to the upper-
level switches (figure 4.8).  This resulted in congestion in what should have been 
contention-free communication.   The test was simple but representative of 
communication patterns in the ASCI workload.  It was later determined that the problem 
was related to incorrect cabling and has since been corrected.  Initial investigation with 
SAGE showed a improvement of up to 10% on 100 processors. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8 Erroneous routes to nodes on common cross-bar  
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5. Application Performance 
 
5.1. Sweep3D 
 
The performance of Sweep3D was measured on Lightning on two problem sizes, and for 
each size using 2 blocking factors (four input decks total). Problem sizes of 50x50x50 
cells and 5x5x400 cells per processor were used in a weak-scaling mode. The blocking 
was chosen either using 1-plane in the Z-direction (k-plane)/1 angle, or 10 k-planes/3 
angles per block. The performance of these four cases was measured when using one 
processor per node (ranging from 1 to 1,020 processors) and when using both processors 
per node (ranging from 2 to 2,040 processors). The intention of these experiments was to 
determine how well Sweep3D performs and how well it scales for both coarse- and fine-
grained problems, smaller and larger messages, and with and without memory/network 
contention. 
 
The performance shown by the curves in Figures 5.1.1 to 5.1.4 are all quite reasonable 
for a system with Lightning's architecture. Each figure contains two curves showing the 
performance of Sweep3D when using either 1 processor or 2 processors per node.  
 
Figure 5.1.1, the 50x50x50 case with 1 k-plane/1 angle blocking, shows a fairly flat 
performance with only slight overhead penalties at larger processor counts. The 
difference when using both PEs per node to the case when using only 1 PE can be seen to 
be approximately 10%, i.e. the overhead when using both PEs results in a 10% increase 
in runtime but a doubling of the number of processors used. 
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Figure 5.1.1 – Sweep3D performance on Lightning (50x50x50, MK=1, MMI=1) 
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Figure 5.1.2, the 50x50x50 case with 10 k-planes/3 angles blocking represents the most 
coarse-grained test. The poor scaling is, in fact, caused mainly by the complex behavior 
of Sweep3D itself and is not an idiosyncrasy of Lightning. There exist many idle 
processors during the sweep processing in this test, a result of the small number of blocks 
in the k-dimension, in turn caused by the large blocking parameters.  
For the subgrid size of 50x50x50 cells per processor, a higher performance is achieved 
with 1 k-planes/1 angle per block than with 10 k-planes/3 angles per block. 
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Figure 5.1.2 – Sweep3D performance on Lightning (50x50x50, MK=10, MMI=3) 
 
Figure 5.1.3, the 5x5x400 case with 1 k-plane/1 angle blocking, shows a large 
performance penalty as the machine size scales upwards. While a single-processor run 
completes in 1.6 seconds, a 1020-processor run takes 6.6 seconds or a factor of 4.1 times 
longer to complete. At 32 processors and above, there is a constant gap (~2.2 seconds) 
between the 1 PE per Node curve and the 2 PEs per Node curve. This is likely caused by 
contention for the network. Starting at 32 CPUs, there are CPUs that both send and 
receive two messages on each sweep. The likelihood that the two CPUs in some node 
both try to send simultaneously therefore increases significantly at 32 CPUs.  Because 
Sweep3D is tightly coupled, any contention slows down the entire run.  
 
Figure 5.1.4, the 5x5x400 case with 10 k-plane/3 angle blocking, behaves largely as 
expected for Sweep3D running in a weak-scaling mode: runtime gradually increases with 
the processor count. Note that the blocking of the 5x5x400 case with 10 k-planes/3 angles 
per block results in a much better scaling performance than the same case with the 1 k-
plane/1 angle blocking shown in Figure 5.1.3. The former blocking parameters result in a 
reduced number of messages between processors with each message having a higher 
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payload than for the latter case. The latter case thus has a higher number of messages 
with a smaller payload and is thus more sensitive to the network latency.  
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Figure 5.1.3 – Sweep3D performance on Lightning (5x5x400, MK=1, MMI=1) 
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Figure 5.1.4 – Sweep3D performance on Lightning (5x5x400, MK=10, MMI=3) 
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5.2. Sage 
 
Several tests of SAGE were performed on the available 1020 nodes of Lightning. The initial test 
examined the single processor and single node performance of the Lightning system. This was 
undertaken using both SAGE versions v20030505 and v20001220. Four input decks were used in 
this study: timing.input, timing_a.input, timing_b.input, timing_c.input, and timing_h.input. 
SAGE was compiled using both the PGI compiler and the Absoft compiler. In general it was 
found that the PGI compiler resulted in a performance on SAGE which was 10% higher than 
when using the Absoft compiler. 
 
To examine the scaling behavior of SAGE, two tests were done. The first test used SAGE 
v20001220 with the timing.input deck which was done to stress the communication aspects of the 
application. This input deck has 13,500 cells per processor and does not use the solver. SAGE 
v20001220 was used in this test to allow a comparison with the SAGE performance already 
reported for ASCI Q. The second test used SAGE v20030505 with the timing_h.input deck which 
has the solver turned on and processes 35,000 cells per processor. 
 
Figure 5.2.1 shows the single processor and single node performance of SAGE v20030505 on 
four input decks. The performance metric used on the Y-axis is the number of cell-updates per 
second per processor (cc/s/pe). It can be seen that when using both processors per node, the 
performance per processor degrades by 15% to 20%. 
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Figure 5.2.1 – Lightning single processor and single node performance of SAGE. 
 
Figure 5.2.2 shows the scaling performance of SAGE v20001220 using the timing.input 
deck on Lightning when using either 1 processor per node or both processors per node. 
Here the metric used on the Y-axis is the time taken to perform a single iteration of 
SAGE (cycle time in seconds). Overall the sage scaling behavior is good – when using 
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both processors per node, the cycle time increases from 0.41s to 0.77s. This represents an 
efficiency at 2040 processors of 53%.  
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Figure 5.2.2 – SAGE v20001220 performance on Lightning (timing.input). 
 
Figure 5.2.3 shows the scaling performance of SAGE v20030505 using the 
timing_h.input deck on Lightning when using either 1 processor per node or both 
processors per node. On this input deck it can be seen that the cycle time increases from 
3.0s to 9.0 at 2040 processors representing an efficiency of 33%.  
 
Figure 5.2.4 shows the relative performance of using both processors per node in 
comparison to using only 1. Note that the x-axis is the node count. For both the two 
scaling sets of data included in Figure 5.2.2 and 5.2.3, the relative performance is 
between 1.7 (when using 1 node) and 1.3 when using all 1020 nodes. The difference 
when using only 1 node is due to contention within the node. The difference when using 
all 1020 nodes is due to both contention within the node, and contention when sharing the 
communication network from each node. The maximum number using this relative 
performance metric is 2, i.e. using both processors is at best twice as good as using only 
one processor per node.  
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Figure 5.2.3 – SAGE v20030505 performance on Lightning (timing_h.input). 
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Figure 5.2.4 – Effectiveness of using 2 processors per node on SAGE. 
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5.3. Partisn 
 
The performance of Partisn (version 3.02) was examined when using four input decks. 
The first input deck, sntiming, is the default testing input deck as included  in the Partisn 
distribution. This input uses a 3-D spatial cube which grows in size with the processor 
count and maps approximately 13,000 cells to each processor. A modified version of this 
input, sntiming5x5, maps a subgrid of 5x5x400 cells to each processor irrespective of the 
processor count. Two further input decks, Rep1 and Rep15x5 correspond to sntiming and 
sntiming5x5, but have an increased processing requirement – having a greater SN order 
(S8 in comparison to S6). 
 
The total runtime for each of these input decks was obtained and is plotted in Figure 5.3. 
It can be seen in Figure 5.3 that the Rep1 and Rep15x5 have an increased processing time 
in comparison to their corresponding sntiming inputs. Since all input decks are for a 
constant problem size per processor (weak scaling), the ideal runtime is a constant. 
However, the runtime does increase as a result of scaling. The runtime at 2040 processors 
is between a factor of 3.2 (Rep15x5) and 11.3 (sntiming) longer than on a single 
processor. All results are reported when using both processors per node. The apparent 
jagged look to the 5x5x400 sub-grid cases are not unusual being due to the processing 
requirements of the solver. 
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Figure 5.3 – Partisn performance on Lightning on four input decks. 
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6. Summary 

 
 
We have benchmarked Lightning in its incarnation as of mid-December 2003, up to the 
full configuration of 1020 nodes. 
 
The overall performance and scalability of the machine is in line with the expectations 
given the actual hardware configuration of the cluster, and given that the hardware and 
software are still being deployed and refined.  
 
We summarize below some of the performance problems we identified, in particular 
those deficiencies that could be solved in order to improve the overall performance of the 
machine. 
 
The Linux kernel running on Lightning was not configured to take locality into 
consideration when allocating memory.  As a result, the operating system arbitrarily 
scatters a process’s pages across local and remote memory within a node, as described in 
Section 2.1. Our analysis indicates that the latency can be reduced significantly, by more 
than 10%, by recompiling the kernel specifically for the Opteron and enabling NUMA 
support to keep allocations local. 
 
We have found serious problems with the network, as described in Section 4.8. 
Debugging of the network took a significant amount of resources, after the actual running 
of the tests. This required devising microbenchmarks, analyzing large amounts of data 
and proposing solutions and helping with their implementation by working together with 
CCN-7 and Linux Networks. As of the release of this report most of the hardware 
problems with the network have been eliminated. 
 
The performance of the collectives, described in 4.7, is negatively impacted by the 
network design and by the existing “computational noise” (Section 3) in the system. 
Further investigation on the noise is under way in collaboration with CCS-1. 
 
All of the relevant performance data (network/communication and apps) was collected 
using MPI-CH available at the time of the data collection. No LA-MPI numbers are 
included. 
 
The performance of the applications tested is in-keeping with the current status of the 
system. 
 
 
 
 


