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Abstract

Many numerical models use periodic boundary conditions in solving the radiative transfer through
heterogeneous media speci0ed over a 0xed domain. A reciprocity principle applicable to solutions from
these models is derived for the common situation of a scattering and absorbing heterogeneous medium
that is illuminated over the entire domain from a single direction. The derived reciprocity principle states
that the domain-averaged bidirectional re4ectance distribution function remains invariant when incoming
and outgoing directions are interchanged, regardless of the heterogeneity of the medium and the size of
the domain. This reciprocity principle provides a simple and useful benchmark test for radiative transfer
models that use periodic boundary conditions. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Reciprocity principles in radiative transfer theory have been widely used in deriving analyt-
ical and numerical solutions of radiative transfer problems [1,2], in testing numerical models
of radiative transfer [3], and in remote sensing applications [4,5]. In the most widely studied
case, that of a horizontally homogeneous medium completely illuminated at the top boundary
by a constant, unidirectional irradiance, the reciprocity principle states that the bidirectional re-
4ectance distribution function (BRDF), R, at the top boundary of the medium is invariant under
a change in the incident and outward directions [6]; that is, at the top boundary of the medium,

R(−�1;�2)=R(−�2;�1); (1)
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where � represents the directional unit vector with the outward direction negative. For a uni-
directional irradiance, F ,

R(−�1;�2)= I(−�1;�2)
�2 · nF(�2) ; (2)

where I is the radiance and n is a unit vector that is outward normal at the top boundary (i.e.,
n ·�¡ 0 represents a direction incident at the top boundary of the medium).
Eq. (1) has been derived for the idealized case of a horizontally homogeneous medium

completely illuminated at the top boundary by a constant irradiance [6]. For this case, the hor-
izontal 4ux divergence is zero, and the solution of the radiative transfer is one-dimensional
(1-D); that is, the radiance 0eld only varies in the vertical dimension. Radiative transfer mod-
els for the solution of this idealized case require only the vertical distribution of the optical
properties of the medium as input into the model.
In the case of a 3-D heterogeneous medium illuminated everywhere at the top boundary,

the radiative transfer solution is much more complicated to handle than the 1-D case. One
complicating factor is that the optical properties of the medium need to be speci0ed in all three
spatial dimensions. Often, only the optical properties of the medium over a 0nite horizontal
domain are speci0ed, even though the radiative transfer solution for the medium within the
domain depends on the optical properties of the medium outside the domain. To handle this
problem, periodic boundary conditions (PBC) are often employed. When PBC are employed,
the optical properties of the medium within the model domain are assumed to inde0nitely repeat
themselves outside the model domain, as illustrated in Fig. 1. This type of boundary condition

Fig. 1. An illustration of a medium modeled in a radiative transfer model that uses periodic boundary conditions
(PBC). Only the optical properties of the medium (shaded in gray) within the model domain, which is bound at
the top by the surface D, are speci0ed in the model. By employing PBC, the radiative transfer model’s solution to
the radiance 0eld across the surface D eJectively solves for the case when the medium inde0nitely repeats itself
around D. The dashed arrows represent the medium extending out to in0nity in all horizontal directions.
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is easily handled in model calculations. For example, in Monte Carlo radiative transfer models
that employ PBC, a photon leaving the model domain reappears on the opposite side of the
domain, traveling in the same direction as when it left the domain.
In general, 3-D radiative transfer solutions obey reciprocity principles that have spatial and

directional attributes [7,8]. Note that Eq. (1) is strictly a directional reciprocity principle. The
purpose of this article is to provide a formal proof that the domain-averaged BRDF obeys a
directional reciprocity principle, regardless of the heterogeneity of the medium and the size of
the model domain, for cases when the top boundary of the model domain is illuminated by a
constant unidirectional source and the model employs PBC.

2. Proof

For an external unidirectional illumination, Di Girolamo [8] derived the following reciprocity
principle:

�2 · n
∫
D
F2(r; �2)I(r;−�2;C;�1) dr=�1 · n

∫
C
F1(r; �1)I(r;−�1;D;�2) dr; (3)

where I(r;−�2;C;�1) is the radiance at position r in direction −�2 caused by illuminating the
surface C with a unidirectional irradiance F1(r; �1) from direction �1; I(r;−�1;D;�2) is the
radiance at position r in direction −�1 caused by illuminating the surface D with a unidirectional
irradiance F2(r; �2) from direction �2, and surface integration is taken over surfaces C and D.
Eq. (3) is quite general and applies to any absorbing and scattering medium, regardless of its
heterogeneity. The only assumption used in its derivation is that the scattering phase function
of the scatterers that form the medium have time-reversal symmetry.
Surfaces C and D may represent any surface in space. However, for this proof, let C be

the horizontal surface that extends out to in0nity in all horizontal directions, located at the
top boundary of the model domain, and illuminated everywhere with a constant unidirectional
irradiance. In practice, the model domain is 0nite and is bound at the top by a horizontal surface,
D. Thus, D is a subset of C. As shown in Fig. 1, the domain can be considered periodic out
to in0nity in all horizontal directions when PBC are used. Thus,

C=
N∑
i=1

Di; N → ∞; (4)

where Di represents the top surface of an individual domain as shown in Fig. 1. Summing both
sides of Eq. (3) over all Di and dividing by N yields

�2 · n
N

N∑
i=1

∫
Di
F2(r; �2)I(r;−�2;C;�1) dr= �1 · nN

N∑
i=1

∫
C
F1(r; �1)I(r;−�1;Di; �2) dr: (5)

For the case of PBC, the integral on the left-hand side of Eq. (5) is the same for all Di; that is∫
Di
F2(r; �2)I(r;−�2;C;�1) dr=

∫
D
F2(r; �2)I(r;−�2;C;�1) dr ∀ Di; (6)
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where D is any one realization of Di, which is simply the surface of the top boundary of the
model domain. With Eq. (6), Eq. (5) becomes

�2 · n
∫
D
F2(r; �2)I(r;−�2;C;�1) dr= �1 · nN

N∑
i=1

∫
C
F1(r; �1)I(r;−�1;Di; �2) dr: (7)

Note, with reference to Eq. (4), the integral on the right-hand side of Eq. (7) can be written as
∫
C
F1(r; �1)I(r;−�1;Di; �2) dr=

N∑
j=1

∫
Dj
F1(r; �1)I(r;−�1;Di; �2) dr: (8)

Substituting Eq. (8) into Eq. (7) yields

�2 · n
∫
D
F2(r; �2)I(r;−�2;C;�1) dr= �1 · nN

N∑
i=1

N∑
j=1

∫
Dj
F1(r; �1)I(r;−�1;Di; �2) dr

=
�1 · n
N

N∑
j=1

N∑
i=1

∫
Dj
F1(r; �1)I(r;−�1;Di; �2) dr

=
�1 · n
N

N∑
j=1

∫
Dj
F1(r; �1)I(r;−�1;C;�2) dr: (9)

For the case of PBC, the integral on the right-hand side of Eq. (9) is the same for all Dj;
that is∫

Dj
F1(r; �1)I(r;−�1;C;�2) dr=

∫
D
F1(r; �1)I(r;−�1;C;�2) dr ∀ Dj; (10)

where D is any one realization of Dj, which is simply the surface of the top boundary of the
model domain. Substituting Eq. (10) into Eq. (9) yields

�2 · n
∫
D
F2(r; �2)I(r;−�2;C;�1) dr=�1 · n

∫
D
F1(r; �1)I(r;−�1;C;�2) dr: (11)

In the case when F1 and F2 are independent of r (i.e., constant illumination), Eq. (11) can be
written as∫

D I(r;−�2;C;�1) dr
�1 · nF1(�1) =

∫
D I(r;−�1;C;�2) dr
�2 · nF2(�2) : (12)

When divided through by the area of D, Eq. (12) states that the average BRDF over the domain
D obeys directional reciprocity.

3. Discussion

It was shown in this article that the domain-averaged BRDF remains invariant when incoming
and outgoing directions are interchanged, regardless of the heterogeneity of the medium and the
size of the model domain, for cases when the top boundary of the model domain is illuminated
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by a constant unidirectional source and the model employs PBC. This statement is also true
when vacuum boundary conditions (VBC) are employed; that is, photons exiting the domain
never return. The proof is straightforward: for VBC, C=D= top boundary of model domain
in Eq. (3). Setting F1 and F2 independent of r leads directly to Eq. (12).
Eq. (12) provides a useful benchmark test for 3-D radiative transfer codes. These codes

traditionally have had very few benchmark tests upon which to draw. Eq. (12) is currently
being used as a benchmark test in the NASA=DOE Intercomparison of 3-D Radiation Codes
project [9].
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