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Abstract

This paper presents an analytical approach that combines the modified shear-lag model and the Monte-Carlo simulation technique to

simulate the fracture behavior, including the failure process and energy release rate, for unidirectional fiber-reinforced composites with an

initial crack at different temperatures. The simulated results, based on a unidirectional carbon fiber-reinforced polymeric (CFRP) composite,

were compared with existing experimental observations and measurements. Good agreement exists between the simulation and experimental

results. It is found that the critical energy release rate of the unidirectional CFRP composite increases with a decrease in temperature. This

increase is primarily due to the temperature-dependence of the composite constituents rather than the residual stresses caused by the change

in temperature.

q 2004 Elsevier Ltd. All rights reserved.

Keywords: A.Polymer-matrix composites (PMCs); B. Fracture toughness; B. Residual/internal stress; C. Statistical properties/methods; Monte-Carlo

simuation

1. Introduction

Fiber-reinforced polymer (FRP) composites have been

widely used for various kinds of structures in many

applications. For composites, a complete and accurate

understanding of their failure properties becomes important

in approaching the design requirements or in developing

new materials. To date, examinations of composite failure

behavior have mainly focused on experimental studies [1,2];

therefore, if a change in the composite design parameters is

required, a high cost for time and materials is incurred. In

this study, a numerical simulation with predictive capability

is proposed to obtain fracture properties of composites

at different temperatures. The study is limited to the

investigation of the tensile fracture properties of uni-

directional FRP composites. In most cases, a unidirectional

FRP composite layer is the basic constituent of composite

structures, and generally its tensile fracture dominates the

failure of composites, especially in the cryogenic environ-

ments of aerospace and superconductor applications [3].

Among existing micro-mechanical simulation tech-

niques for predicting the tensile failure process and strength

of unidirectional FRP composites [4–7], the Monte-Carlo

simulation technique coupled with the classical shear-lag

model has proven to be very fruitful [7,8]. In the classical

shear-lag model, the matrix is assumed to transfer the

interfacial shear stress only and not to undertake tensile load

(i.e. the tensile breaking of matrix cannot be simulated in the

analysis). This assumption is appropriate only if the

modulus and strength of the matrix are far lower than that

of the fiber (i.e. insignificant tensile stress and strength of

matrix). Also, in the model, the matrix is treated as the

interface between fibers. As a result, the shear strength of

the interface is assumed to be the same as that of matrix.

Several researchers [9,10] developed a modified shear-lag

model that contains tensile as well as shear deformation for

both fiber and matrix in the Monte-Carlo simulation for

composites, having comparable matrix and fiber moduli

(metal-based composites), to predict their tensile strengths.

In this study, the Monte-Carlo simulation technique with

the modified shear-lag model is extended to incorporate the

residual stresses, which are induced in the fiber and the

matrix due to the mismatch of the coefficient of thermal
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expansion (CTE). These residual stresses are more pro-

nounced, especially, for carbon fiber-reinforced polymeric

(CFRP) composites since the fiber has negative CTE along

its longitudinal direction. In a cryogenic environment, the

residual stress in the matrix is tensile. Also, the tensile

strength of polymer matrix increases as the temperature

decreases [11]. Thus, in order to take into account the stress

state and the tensile strength of the matrix, we used the

modified shear-lag model in the simulation to predict the

fracture behavior of a unidirectional CFRP composite with

an edge crack (which mimics a flaw in composites) at room

temperature and at cryogenic temperatures. Fracture tough-

ness of the CFRP is predicted in terms of the energy release

rate and compared with existing experimental results.

Essential details in Monte-Carlo simulation and the

calculation of the energy release rate from the simulation

will be described in Section 2. Validation of the simulation

as well as numerical results and discussion will be presented

in Section 3.

2. Monte-Carlo simulation and the calculation of energy

release rate

A two-dimensional schematic of a unidirectional FRP

with an edge crack for Monte-Carlo simulation is shown in

Fig. 1. The composite was under a tensile deformation ðv0Þ

at the far-field and subjected to a change in temperature

ðDTÞ from room temperature, which was assumed to be

stress-free state with respect to thermal stresses. In the

simulation, the composite is composed of m strips of the

fiber and m 2 1 strips of the matrix with length L (total

strips: 2m 2 1). Also, the fibers and matrix are divided into

n 2 1 segments of length Dx along the fiber direction. As

shown in Fig. 1, an edge crack is in the middle of the

composite specimen. According to the modified shear-lag

model [9], both fiber and matrix are considered to carry

axial stress as well as shear stress. Fig. 2(a) displays

the representative segments of Fig. 1 used for the

simulation. Here, v is the displacement at the centerline of

the fiber or matrix strips. Fig. 2(b) gives the free body

diagram of stress distribution for each individual fiber and

matrix segment. The normal stresses in the fibers or matrix

are denoted by s: The interfacial shear stress between the

fiber and matrix is denoted by t: It is assumed that the fiber

and matrix are linearly elastic and homogeneous materials.

Considering the equilibrium of each segment, one can

obtain the governing equations expressed in the following

form [12]

d2vði;jÞ

dx2
þ Sði;jÞ ¼ 0 ð1Þ

with

Sði;jÞ ¼
h

Eði;jÞAði;jÞ

ðtði;jÞ 2 tði21;jÞÞ ð2Þ

where the subscripts ði; jÞ indicate the jth segment of the ith

strip. i is equal to 1; 3;…; 2m 2 l for fiber segments and

2; 4;…; 2m 2 2 for matrix segments; j is equal to 1; 2;…; n:

A and E are the cross-sectional area and Young’s modulus of

the segment, respectively. h is the thickness of the

unidirectional composites. The boundary conditions in the

simulation are

vð0Þ ¼ 0 and vðLÞ ¼ v0 ð3Þ

where v0 is the displacement applied at the end of the

composite. At the crack surface ðx ¼ L=2Þ; the boundary

condition is

dvði;jÞ

dx
¼ 0 ði ¼ 1; 2;…kÞ ð4Þ

where k is the number of fiber and matrix segments

associated with the crack surface.

At a given temperature, the strength of the matrix and the

interfacial strength between the fiber and matrix are

assumed to be constant. However, the fiber strength is

described statistically by the two-parameter Weibull

distribution [6]

FðXÞ ¼ 1 2 exp 2
l

l0

X

s0

� �b� �
ð5Þ

where FðXÞ is the probability that the fiber strength less than

or equal to X; s0 and b are the Weibull scale and shape

parameters, respectively. Note that l0 is the original gage

length at which the single filament tension test and

estimation of Weibull parameters are conducted (usually

considered as the unit length). l is the extrapolated fiber

length of interest. In this study, the length l is taken as the

segment length ðDxÞ used in the simulation, and l0 is taken

as 20 mm.

In the simulation, it is assumed that a constant friction

force ðtcÞ exists at the interface when debonding occurs
Fig. 1. Two-dimensional schematic of unidirectional composites for Monte-

Carlo simulation.
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between the matrix and fiber. Also, it is assumed that the

tc ¼ tmax=2; where tmax is the interfacial shear strength [8].

Therefore, the interfacial shear stress ðtiÞ is as follows

ti ¼

2Gm

dm

ðvðiþ1;jÞ 2 vði;jÞÞ bonded interface

tc unbonded interface

8><
>: ð6Þ

where Gm is the shear modulus of matrix, dm is the distance

between the adjacent fibers.

By solving Eq. (1) using the finite difference method

for the segment ði; jÞ with appropriate boundary conditions,

one can obtain the displacement of the segment, vði;jÞ; as

follows [12]

vði;jÞ ¼
1

c1 þ c2c3Dx2
½u1 þ u2 þ c2Dx2ðu3 þ u4Þ� ð7Þ

with

c1 ¼
Hi;jþ1 þ Hi;j j ¼ 1; 2;…n 2 2

Hi;j j ¼ n 2 1

(

c2 ¼
ð2 þ Hi;j þ Hi;jþ1ÞWi;j=4 j ¼ 1; 2;…n 2 2

ð2 þ Hi;jÞWi;j=4 j ¼ n 2 1

(

c3 ¼

Pi;j i ¼ 1

Pi;j þ Pi21;j i ¼ 2; 3;…2m 2 2

Pi21;j i ¼ 2m 2 1

8>><
>>:

u1 ¼
Hi;jvi;j21 j ¼ 2; 3;…n

0 j ¼ 1

(

u2 ¼
Hi;jþ1vi;jþ1 j ¼ 1; 2;…n 2 2

Hi;jþ1v0 j ¼ n 2 1

(

u3 ¼

Pi;jviþ1;j þ Dtcð1 2 Pi;jÞ

� sgnðviþ1;j 2 vi;jÞ=Gm i ¼ 1; 2;…2m 2 2

0 i ¼ 2m 2 1

8>><
>>:

u4 ¼

Pi21;jvi21;j 2 Dtcð1 2 Pi21;jÞ

� sgnðvi;j 2 vi21;jÞ=Gm i ¼ 2;…2m 2 1

0 i ¼ 1

8>><
>>:

where

Hi;j ¼
0 ðXi;j # si;jÞ

1 ðXi;j . si;jÞ

(

Pi;j ¼
0 ðtm # lti;jlÞ

1 ðtm . lti;jlÞ

(

sgnðjÞ ¼

0 ðj ¼ 0Þ

1 ðj . 0Þ

21 ðj , 0Þ

8>><
>>:

and Wij ¼ ðGmhÞ=ðEðijÞAði;jÞDÞ: D is half of the distance

between the adjacent fibers ðD ¼ dm=2Þ: Subsequently,

using the over-relaxation method [13] to solve Eq. (7), the

normal stress (s; in the loading direction) of the segment

ði; jÞ is

sði;jÞ ¼ Eði;jÞ1ði;jÞ ð8aÞ

with the corresponding strain 1ði;jÞ as

1ði;jÞ ¼
vði;jÞ 2 vði;j21Þ

Dx
2 aði;jÞDT ð8bÞ

where E and a are the modulus and CTE of the fiber or

matrix segments, respectively.

The interfacial shear stress ðtÞ of the segment ði; jÞ is:

tði;jÞ ¼ Gm

vðiþ1;jÞ 2 vði;jÞ

D
ð9Þ

Fig. 2. Representative segments and free body diagram. (a) Representative segments for the simulation. (b) The free body diagram of fiber or matrix segment.
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In general, the simulation procedure can be described as

follows:

(a) Allocate a strength to each fiber segment

(b) For a displacement v0 applied at the boundary, the vði;jÞ
are calculated by the successive over-relaxation

algorithm, and the normal and interfacial stresses for

each segment are then obtained from Eqs. (8) and (9).

(c) Determine the occurrence of a segment break or

interfacial debonding. If no break or debonding occurs,

the segment stresses are calculated. Otherwise, the

governing equation is solved again taking into account

the breakage or debonding. This step is repeated until

no new breakage occurs.

(d) By increasing the value of v0 and repeating steps (b)

and (c), an apparent stress/strain curve up to composite

failure is constructed, and the simulation process ends

when the stress drops suddenly. The stress is defined as

the averaged applied stress and the strain is defined as

the ratio of the specimen displacement to its original

length.

The energy required for a unit area of crack growth (G;

energy release rate) in a cracked plate, with fixed boundary

conditions at the ends, subjected to a constant displacement

v0 (Fig. 1) can be written in the following equation

G ¼ 2
›U

›A

� �




v¼v0

¼ 2
Ua 2 Ub

DA
ð10Þ

where U is the strain energy stored in the plate. The

subscript a indicates the state after cracking and the subscript

b represents the state before cracking. DA is the area

associated with the crack extension. In the Monte-Carlo

simulation, with the modified shear-lag model for uni-

directional FRP, the energy release is due to the failure of

fiber ðDUfÞ; matrix ðDUmÞ or interface ðDUIÞ during the

crack extension, and the total energy release of the

composite can be written as follows

Ua 2Ub ¼DUf þDUm þDUI

¼
Dx

2

XNf

i¼1

Afðs
i
fa1

i
fa 2si

fb1
i
fbÞ

 

þ
XNm

j¼1

Amðs
j
ma1

j
ma 2s

j
mb1

j
mbÞ

1
A22NIhgDx ð11Þ

and

DA¼ nfAf þnmAm ð12Þ

where Nf and Nm are the total number of segments of fibers

and matrix in the simulation, respectively. nf and nm are the

number of failed segments of fibers and matrix, respectively.

NI is the number of interfacial failures between the fiber

and matrix segments. g is the surface energy density of

the interface. Nf and Nm should be large enough to make

the simulation more representative for the statistical

distribution of fiber strength. Here, the values for Nf and

Nm were chosen to be 30 according to our numerical

experiment. Also, in our simulated results presented later in

the paper, it is found that DUI is much smaller than DUf and

DUm for the jagged nature of crack growth in a composite.

And the results would not make any significant difference

with or without the contribution of DUI in Eq. (11).

Substituting Eqs. (11) and (12) into Eq. (10), the energy

release rate can be rewritten as the following form:

G¼Dx
1

2

XNf

i¼1

Afðs
i
fa1

i
fa2si

fb1
i
fbÞ

 "

þ
1

2

XNm

j¼1

Amðs
j
ma1

j
ma2s

j
mb1

j
mbÞ

1
A22NIhg

3
5=ðnfAfþnmAmÞ

ð13Þ

3. Results of numerical simulations and discussion

Two model problems calculating the energy release rate

have been solved to validate the Monte-Carlo simulation

with the modified shear-lag model. The first problem dealt

with the energy release rate of a homogeneous plate, and the

second problem considered a FRP composite plate. The

simulated results were compared with existing analytical

solutions for validation. Afterwards, the validated simu-

lation was used to obtain the energy release rates for CFRP

plate with an edge or center cracks under tensile

deformation (Fig. 3) at room or cryogenic temperatures,

and the results were compared with existing experimental

measurements.

3.1. Validation of the simulation

As shown in Fig. 3(a), a homogeneous plate with a crack

embedded in the center and under a remote tensile

Fig. 3. Sample for simulation and experiment with center and edge notch.

(a) Center notch. (b) Edge notch.
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deformation was simulated for the crack extension. For this

simulation, the properties of segments associated with the

fiber and matrix were assigned to be identical to mimic a

homogeneous plate. The initial crack length a is 0.12 mm,

and the width of the plate ðWÞ is 1.2 mm. Fig. 4 shows the

energy release rate obtained from the simulation, which is

normalized by the analytical solutions, as a function of

segment length ðDxÞ: It is found that the simulated results

approach the theoretical results as Dx decreases, because the

numerical error due to the finite difference form associated

with Eq. (1) depends on the value of Dx: However, for

composite materials, the segment size, Dx; was usually

chosen as the ineffective length of the fiber (the length over

which the fiber longitudinal stress recovers from zero at a

fiber breakage point to the applied stress [14]). This length

depends on the mechanical properties of the fiber and

matrix. Usually, the value of Dx has been suggested to be

(6–10) df (fiber diameter) [14,15]. Also, in the simulation,

rational numbers of m and n should be chosen according to

the accuracy of the result and the consumed time of the

simulation. It is found that with the increase in the

magnitude of m and n; the simulated results approach to a

stationary value. Therefore, in this study, m; n and Dx were

chosen as (100, 100 and 10) df ; respectively.

In the second example, a unidirectional FRP plate with

an initial crack embedded in the center was simulated for

crack extension (shown in Fig. 3(a)). Assuming perfect

bonding between the fibers and matrix and neglecting the

yield and failure in the matrix, the fiber strength becomes

the only relevant parameter and the crack will propagate

along the initial crack plane. The energy release rate ðGÞ can

be written in the following form [6]

G <
p

4
ðM þ 1ÞVfs

2

ffiffiffiffiffiffiffiffiffiffi
dmAf

EfGmh

s
ð14Þ

where M is the number of broken fibers at the initial

crack, Vf is the fiber volume fraction, s is the far-field

stress applied on the plate, dm is the distance between the

adjacent fibers, and Gm is the shear modulus of the matrix.

The energy release rate calculated from the simulation is

1.03 times the value calculated using Eq. (14), with M set

to 40, and the other needed parameters are inserted from

Table 1. Based on these comparisons, the simulation

procedure developed in this study is concluded to be

valid.

3.2. Numerical simulations of fracture behavior for

unidirectional CFRP

Table 1 lists material parameters used for the uni-

directional CFRP plate in simulating the energy release

rate [16–20]. Fig. 5(a) shows the simulated apparent

stress–strain relationships for the CFRP plate with an edge

crack (Fig. 3(b)) under tensile deformation at different

temperatures. Fig. 5(b) presents the relationships obtained

from an experimental measurement [21]. The simulated

results have good agreement with the experimental

measurements for specimens at temperatures of 77 and

296 K. Both the simulated and experimental results

indicate that the slope of the apparent stress–strain curve

at 77 K is larger than the one at 296 K, and the

relationships are all linear. Fig. 6 presents the simulated

failure process (crack extension) of the plate. The

simulated failure process starts with the rebounding at

the interface along the fiber direction at the crack tip as

shown in Fig. 6(a), and then the break occurs at the

weakest fiber segment. Subsequently, the matrix breaks,

and the interfacial debonding occurs near the breakpoint of

the broken fiber. By increasing the loading (deformation),

more break events in the fibers, matrix and the interface

occur as shown in Fig. 6(b). With further loading,

Fig. 4. The relation of simulated normalized critical energy release rate G

with the length of segment Dx:

Table 1

Parameters used in the present simulation

Material parameters 296 K 77 K

Carbon Epoxy Carbon Epoxy

Elastic modulus, E (GPa) 230 3.2 230 6

Failure strain, 1m (%) – 6 – 4

Interfacial shear strength, tmax (MPa) 59.5 – 150 –

Slide friction of interface, tc (MPa) 29.75 – 75 –

Weibull shape parameter, b 6.13 – 6.13 –

Weibull scale parameter, s0 (MPa) 4134 – 4658 –

Shear modulus of matrix, Gm (MPa) – 1130 – 2119

Coefficient of thermal expansion

along fiber direction, aL (1026 K21)

21.1 48 21.1 48

Cross-sectional area of fiber, Af (mm2) 38.46 – 38.46 –

Volume fraction of fiber, Vf (%) 55 – 55 –

Thickness of composite plate, h (mm) 6.2 – 6.2 –

Density of surface energy

of interface, g (J/m2)

61 61 –
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Fig. 5. Apparent stress/strain curve for carbon/epoxy unidirectional composite with edge notch at 296 and 77 K ða=W ¼ 0:5Þ: (a) Simulated results.

(b) Experimental results.

Fig. 6. Fracture process of carbon/epoxy unidirectional composite with edge notch at 77 K. (O, breakage of fiber and matrix; £ , debondings of interface).

Diagrams (a)–(c) are at higher magnification than diagram (d). (a) s ¼ 0:21 GPa: (b) s ¼ 0:54 GPa: (c) s ¼ 0:79 GPa: (d) The locus of the failure.
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the failure process progresses (Fig. 6(c)) and leads to the

final rupture of the plate as shown in Fig. 6(d). Generally,

for unidirectional FRP composites, the energy release rate

was calculated under the assumption that the crack

extension was along the notch plane, such as the shear-

lag model [6] and the Zeweben model [22]. However,

from the simulated results (Fig. 6) and experimental

observations [21], it is found that the locus of failure has a

jagged appearance and the crack does not extend along the

notch plane. These random and irregular crack extensions

can be attributed to the statistical distribution of fiber

strength. Fig. 7 presents the variation of energy release

rate, G; with the crack extension obtained from the

simulation shown in Fig. 6(d). The solid line is a curve

fitting of the energy release rates corresponding to the

crack extensions up to 65 mm. By extrapolating the line to

the point having the initial crack length (no crack

extension), one obtains the critical energy release rate

ðGcÞ of 3.22 kJ/m2.

Fig. 8 presents the comparisons of work of fracture

obtained from the simulation with the experimental

observations [21] for the unidirectional CFRP plate with

different initial crack lengths (edge crack) at 77 and

296 K. The work of fracture ðgÞ is defined as the

total energy per unit fracture area, where g ¼

ðsmax1maxAtotalLÞ=ð4AcrackÞ: smax is the maximum apparent

tensile stress applied on the specimen and 1max is the

corresponding strain. Atotal is the total cross-sectional area of

the specimen and Acrack is the fractured area of the

specimen. One can see from Fig. 8 that within the

uncertainty good agreement exists between the simulation

and the experimental results for the initial crack lengths

studied (the uncertainty due to different random distri-

butions of fiber strength is less than 0.5%). Also, both the

experimental and simulation results indicate that the

fracture work of the CFRP plate increases with a decrease

in temperature. Fig. 9 presents the variation of the simulated

Gc of the plate as a function of initial crack length. As

expected, from Fig. 9, Gc is found to be independent of the

initial crack length. Also, the Gc increases at 77 K by 23%

relative to the Gc at 296 K. The increase of the Gc at low

temperature can be attributed to the temperature-dependent

constituent properties and the residual stresses caused by the

change in temperature. By a separate study in the

simulation, two attributes were independently considered.

It is found that the residual stresses are not essential causes

for the trending upward of the Gc at low temperature. The

temperature-dependence of s0 (Weibull scale parameter,

Eq. (5)) and the interfacial shear strength are the dominant

factors in the increase of the energy release rate at low

temperatures.

Finally, it is worthwhile to examine the validity of Eq. (14)

for evaluating the Gc of unidirectional fiber-reinforced

composite. Fig. 10 displays the Gc obtained from Eq. (14)

and the simulation as a function of Weibull shape parameter

ðbÞ: As indicated in Fig. 10 one can see that, when b $ 20;

Fig. 7. Simulated relation of energy release rate G with the crack extension.

Fig. 9. The simulated critical energy release rates of unidirectional CFRP

with different initial crack length at 77 and 296 K ðVf ¼ 0:55Þ:

Fig. 8. The simulated and tested fracture work of unidirectional CFRP with

different initial crack length at 77 and 296 K ðVf ¼ 0:55Þ:
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the values of Gc become steady state and Eq. (14) would be

much closer to the true situation (simulation).

4. Conclusion

By coupling the Monte-Carlo simulation with the

modified shear-lag, model, a simulation procedure with an

analytical method has been developed in this study to

predict the failure process including the fiber breaking,

matrix cracking and interfacial debounding. The simulation

can predict the critical energy release rate (or the fracture

work) for the unidirectional CFRP composites at different

temperatures. Also, the proposed procedure could be

applied to any unidirectional fiber-reinforced composite.

The simulated results showed a good agreement with the

experimental data for the stress–strain relation and energy

release rate of unidirectional CFRP composites. More

importantly, the critical energy release rate of the uni-

directional CFRP composite, which is relevant to the

fracture toughness, increases with a decrease in tempera-

ture. This increase is primarily due to the temperature-

dependence of the composite constituents rather than the

residual stresses induced due to the change in temperature.
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