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Steady-state distributions of water potential and salt concentration in coastal aquifers
are typically illustrated by the Henry problem, which consists of a fully coupled system of
flow and transport equations. Coupling is caused by the dependence of water density on
salt concentration. While the Henry problem often serves as a benchmark for numerical
codes, the accuracy of the existing numerical and approximate analytical solutions is
hard to gauge. We provide a closed form formulation of the flow problem in terms of salt
concentration and use a perturbation expansion in the coupling parameter to solve it
analytically. The perturbation procedure results in a recursive set of flow and transport
equations and their solutions that effectively decouples the two processes. This decoupling
approach can be applied to a range of problems involving variable density fluids and sheds
new light on coupled flow and transport mechanisms.

1. Introduction
Variable density flow and transport in porous media have received increasing attention

in the literature. A reason for such interest is that fluid density variations appear in many
relevant environmental problems. One of the most significant environmental problems
is that of pollution of freshwater bodies by water with high concentrations of salts in
dissolution. Salty water can come either from the sea (e.g., Custodio et al. 1987) or from
natural occurring brines (e.g., Schelkes et al. 2001; Herbert et al. 1988). High density
water can also result from landfill leachate and irrigation practices (e.g.,, Simmons et al.
2002). Another area of interest falling under the purview of variable density flows is the
problem of pollution by non-aqueous phase liquids (e.g., Taylor et al. 2001). In all these
problems one is concerned with flow in the shallow subsurface. Other studies deal with
density-driven flow in the deep subsurface, where density differences are caused mainly by
temperature or pressure. These variations can be both natural and anthropogenic. One
example of the latter arises from nuclear fuel waste heat generation, which renders the
study of variable-density flow relevant to performance assessment analyses (e.g., Ophori
2004; Yang & Edwards 2000).

It is well known that variable-density flows in porous media can become unstable.
Instabilities and fingering develop when a denser fluid lies above a lighter fluid (e.g.,
Manickam & Homsy 1995; Wooding et al. 1997). When lighter water is on top, flow is
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stable and mixing is caused by diffusive and/or dispersive mechanisms (e.g., Huppert
& Woods 1995). This is the flow scenario that usually occurs during seawater intrusion
into coastal aquifers (e.g., Alkalali & Rostron 2003) and is the subject of this study. This
problem poses significant environmental and economical challenges around the world
(Panday et al. 1993; Smith & Turner 2001; Aliewi et al. 2001; Paniconi et al. 2001) and
has important water resources management implications.

Seawater intrusion has been traditionally described by two alternative mathematical
models. The first approach assumes that a sharp interface separates the body of fresh
water from the intruding saltwater. By ignoring the existence of a transition zone, this
approach recasts the problem in terms of potential theory for interface propagation. The
use of its tools, such as conformal mapping, has led to a number of analytical solutions
(e.g., Bear & Dagan 1964; Huppert & Woods 1995; Naji et al. 1998; Kacimov & Obnosov
2001), which provide invaluable insights into the phenomenon. There exist, however, a
plethora of physical conditions for which the width of the transitional zone cannot be
neglected. This is especially so since even minute concentration of salt can make fresh
water undrinkable.

The second approach, which we adopt here, accounts for the presence of the transition
zone resulting from the dynamic equilibrium of moving fresh- and saltwater. The corre-
sponding mathematical model consists of a system of the variable-density (Darcy) flow
equation and the advection-dispersion/diffusion equation. The two governing equations
are fully coupled through the dependence of water density on salt concentration.

The intrinsic complexity of the coupled governing equations precludes the development
of closed form analytical solutions even for simple geometries and simple boundary con-
ditions. This, in turn, has led to the proliferation of numerous numerical codes, many
of which are reviewed in Bear et al. (1999). The absence of analytical solutions and the
relative scarcity of experimental data (Schincariol & Schwartz 1990; Oltean et al. 2004)
complicates the establishment of benchmark problems for testing the accuracy and ro-
bustness of these numerical codes. Instead, numerical solutions are compared with each
other, and the differences between them can be quite significant (Croucher & O’Sullivan
1995). Therefore, there is a need to provide analytical solutions for specific problems that
can be used for benchmarking (Weatherill et al. 2004).

This study is devoted to the analysis of the Henry problem (Henry 1964), which, de-
spite some reservations (Simpson & Clement 2003), remains one of the most widely used
benchmark problems. The importance of the Henry problem goes beyond benchmark-
ing, since it provides physical insight into transport processes associated with seawater
intrusion (Abarca et al. 2004). Available quasi-analytical solutions of the Henry problem
(Henry 1964; Segol 1994) are based on a Galerkin method and are rendered impractical
by their slow rates of convergence. Typically, the Henry problem is solved numerically
(Pinder & Cooper 1970; Segol et al. 1975; Galeati et al. 1992; Segol 1994), leading to
quantitatively different solutions (Croucher & O’Sullivan 1995).

In the present study we present a new methodology for the analytical solution the
Henry problem and other similar problems describing variable-density flows in porous
media. Section 2 contains a mathematical formulation of the Henry problem and intro-
duces relevant dimensionless parameters. In Section 3, we provide an exact solution for
the flow problem as a functional of the salt concentration and derive an integral equation
for the salt concentration. These serve as a basis for a perturbation solution of the fully
coupled system of variable-density flow equations, which we derive in Section 4. The
accuracy and convergence rate of this perturbation expansion are examined in Section 5,
which also contains a discussion on the importance of coupling.
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2. Henry Problem: Steady-State Flow and Transport
2.1. Problem Formulation

The Henry formulation of seawater intrusion describes the steady-state position of a
diffused salt-water wedge within a confined aquifer balanced against a flowing fresh-water
field. Within this framework, fluid flow in porous media is governed by the modified Darcy
law (e.g., Bear 1972),

u = −k

µ
{∇ p + ρ g e3} , (2.1)

where u is the fluid flux, k is the intrinsic permeability of the porous medium, µ is the
viscosity of the fluid, p is pressure, g is gravitational acceleration, ρ is the concentration-
dependent density of the fluid, and e3 denotes the unit vector in the vertical direction.
In the absence of sources and sinks, fluid continuity in steady state is expressed by

∇ · {ρu} = 0. (2.2)

The fluid density ρ varies with the salt concentration C, with the latter satisfying the
steady-state advection-diffusion equation, which Henry (1964) wrote as,

∇ · {uC − θ D∇C} = 0, (2.3)

where D is the constant diffusion coefficient. Both permeability k and porosity θ are
constant for homogeneous porous media.

Equations (2.1) – (2.3) are closed by specifying a constitutive relationship ρ = ρ(C)
between fluid density ρ and salt concentration C. While a number of such relationships
exist (e.g., Holzbecher 1998; Diersch et al. 2002), the linear relationship

ρ = ρf

(
1 + ε

C

Cs

)
(2.4)

originally used by Henry (Henry 1964) remains the most popular. Here Cs is the con-
centration of salt in seawater and ε denotes the relative density contrast between the
densities ρf of freshwater and ρs of saltwater,

ε ≡ ρs − ρf

ρf
. (2.5)

Note that C 6 Cs and, hence, ρf 6 ρ 6 ρs.
The density of freshwater for the usual range of temperatures in aquifers is ρf =

103 kg/m3. The density of seawater generally increases with decreasing temperature,
increasing salinity, and increasing depth in the ocean. The density of seawater at the
surface of the sea/ocean varies (with a few exceptions) between 1.020 and 1.029 kg/m3,
with a worldwide average value of 1.025 kg/m3. Thus, under typical ocean conditions
ε = 1/40, and the Oberbeck-Boussinesq approximation (e.g., Diersch et al. 2002) is
usually invoked to replace (2.2) with

∇ · u = 0. (2.6)

A usual justification for this approximation is that in coastal aquifers density gradients
are of subleading order and can be neglected. Another, and possibly stronger, justification
is that the average direction of flow in shallow coastal aquifers is nearly orthogonal to
that of the density gradient, i.e., u · ∇ρ ≈ 0.

The Henry problem (Henry 1964) and its subsequent modifications (Segol 1994; Croucher
& O’Sullivan 1995) consider the two-dimensional versions of equations (2.1), (2.3), (2.4),
and (2.6), which are defined on the vertical cross-section x ≡ (x1, x3)T ∈ Ω, where
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Figure 1. Illustration of the flow and transport scenario (after Croucher & O’Sullivan (1995)).
Pressure is hydrostatic at the inland (x1 = 0) and sea (x1 = L) boundaries. The salt concentra-
tion is zero at the freshwater boundary, and equal to the (constant) concentration Cs of salt in
seawater at the sea boundary. The top and bottom of the domain are impermeable.

Ω = [0, L]× [0, d] is a rectangle shown in Figure 1. In this formulation, freshwater enters
the confined aquifer Ω through an inland boundary x1 = 0 and discharges into a coastal
boundary x1 = L. Saltwater from the coastal boundary x1 = L advances and mixes with
the discharging freshwater, so that a transitional zone from purely fresh- to seawater is
formed. At the coastal boundary x1 = L a discharge of both freshwater and mixed water
takes place. The horizontal boundaries x3 = 0 and x3 = d are assumed to be impermeable
to both flow and transport.

The corresponding boundary conditions for flow equations (2.1) and (2.6) are as follows.
Fluid pressure p(x) is prescribed at the freshwater and saltwater boundaries, where it is
given by the pressure of hydrostatic saltwater. This yields

p(x1 = 0, x3) = p0 − ρf g x3 and p(x1 = L, x3) = ρs g (d− x3), (2.7a)

where p0 is a reference pressure. At the impermeable top and bottom, the vertical com-
ponent of the Darcian velocity u = (u1, u3)T is zero:

u3(x1, x3 = 0) = 0 u3(x1, x3 = d) = 0. (2.7b)

The boundary conditions for transport equation (2.3) are as follows. At the freshwater
and sea boundaries the salt concentration

C(x1 = 0, x3) = 0, C(x1 = L, x3) = Cs, (2.8a)

respectively. At the impermeable boundaries at the top and the bottom of the transport
domain, mass flux is zero:

∂C(x1, x3 = 0)
∂x3

= 0
∂C(x1, x3 = d)

∂x3
= 0. (2.8b)

Note that the existence of a steady-state regime described by the Henry model requires
that the freshwater-saltwater interface be in dynamical equilibrium with average global
sea levels, and that the variations in the total flowing freshwater be negligible.

Henry (1964) originally formulated his problem in terms of streamfunctions. He implic-
itly forced the inland boundary to represent hydrostatic pressure by forcing the gradient
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of the streamfunction to be parallel to the boundary, but he did not specify the refer-
ence pressure. Instead, he specified the total flow rate across the freshwater boundary.
Obviously there is a bijective monotonic relationship between p0 and the total flow rate.
Therefore our formulation is equivalent to Henry’s. Specifically, neither of them implies
a uniform freshwater flux across the boundary as used by many numerical solutions. In
fact, one should expect the freshwater flux to be slightly larger at the top than at the
bottom of the boundary. While this difference should be small for most problems, it must
be kept in mind when doing detailed comparisons.

2.2. Freshwater Head Formulation
We start our analysis by reformulating the generalized Darcy law (2.1) in terms of the
equivalent freshwater hydraulic head

h =
p

ρf g
+ x3. (2.9)

Substituting (2.4) and (2.9) into (2.1) gives

u = −K

(
∇h + e3 ε

C

Cs

)
, K ≡ k ρf g

µ
, (2.10)

where K is the hydraulic conductivity of a porous medium. Combining (2.6) and (2.10)
yields the flow equation written in terms of the freshwater head h,

∇2 h = − ε

Cs

∂C

∂x3
. (2.11)

In terms of hydraulic head (2.9), boundary conditions (2.7a) and (2.7b) are recast as

h(x1 = 0, x3) =
p0

ρf g
≡ h0, h(x1 = L, x3) = d + ε (d− x3), (2.12a)

and
∂h(x1, x3 = 0)

∂x3
= −ε

C(x1, x3 = 0)
Cs

,
∂h(x1, x3 = d)

∂x3
= −ε

C(x1, x3 = d)
Cs

, (2.12b)

respectively.
Substituting (2.6) and (2.10) into (2.3) leads to the steady-state transport equation

expressed in terms of the freshwater head h,

K∇h · ∇C + K
C

Cs

∂C

∂x3
+ θ D∇2 C = 0. (2.13)

Equation (2.13) is subject to the boundary conditions (2.8).

2.3. Dimensionless Form of the Governing Equations
Next, we recast the governing equations (2.11) and (2.13) in a dimensionless form. Let
ξ = (ξ1, ξ3)T denote a rescaled (dimensionless) spatial position vector and ζ an aperture,

ξ1 =
x1

L
, ξ3 =

x3

L
, ζ =

d

L
, (2.14)

respectively. This transformation maps the flow domain Ω = [0, L] × [0, d] onto Ωd =
[0, 1]×[0, ζ]. From now on,∇ is understood to operate with respect to the non-dimensional
coordinates ξ. Dimensionless freshwater hydraulic head H and salt concentration c are
defined by,

H(ξ) =
h(Lξ)− d

∆ h0
and c(ξ) =

C(Lξ)
Cs

, (2.15)
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where
∆ h0 = h0 − d (2.16)

is the global head difference imposed by the inland and sea boundaries in the absence of
density effects. Finally, we introduce the dimensionless parameters,

α =
ε L

∆ h0
, β =

θ D

K ∆ h0
. (2.17)

Then the flow problem (2.11) and (2.12) becomes

∇2 H(ξ) = −α
∂c(ξ)
∂ξ3

(2.18)

subject to boundary conditions

H(0, ξ3) = 1, H(1, ξ3) = α (ζ − ξ3), (2.19a)

∂H(ξ1, ξ3 = 0)
∂ξ3

= −α c(ξ1, 0),
∂H(ξ1, ζ)

∂ξ3
= −α c(ξ1, ζ), (2.19b)

and the transport problem (2.13) and (2.8) becomes

∇H(ξ) · ∇ c(ξ) + α c(ξ)
∂c(ξ)
∂ξ3

+ β∇2 c(ξ) = 0 (2.20)

subject to the boundary conditions

c(0, x3) = 0, c(1, x3) = 1, (2.21a)

∂c(ξ1, ξ3 = 0)
∂ξ3

= 0,
∂c(ξ1, ξ3 = ζ)

∂ξ3
= 0. (2.21b)

It now becomes apparent that the Henry problem for seawater intrusion in coastal
aquifers (2.18) – (2.21) is completely characterized by the dimensionless parameters α and
β in (2.17). The coupling parameter α is the ratio of the characteristic velocity induced
by density effects, K ε, to the flow velocity in the absence of density effects, K ∆ h0/L.
The strength of coupling between the flow and salt transport processes increases with α.
The Peclet number β compares the strength of diffusion, D, to a typical total flux per
unit length in the absence of density effects, K ∆ h0 L/θ.

3. Green Function Solutions
In the following, we derive an exact solution for the flow problem (2.18) – (2.19) as a

functional of the salt concentration c(ξ), and an integral equation for the salt concentra-
tion, which serve as a basis for a perturbation solution for the fully coupled system of
flow and transport equations.

3.1. Solution of the Flow Problem
Let G(ξ, ξ′) be the Green’s function for the flow problem (2.18) – (2.19) defined as the
solution of the Poisson equation

∇2 G(ξ, ξ′) = −δ(ξ − ξ′), (3.1a)

where δ(ξ) is the Dirac delta function, subject to the homogeneous boundary conditions

G|ξ1=0 = G|ξ1=1 = 0,
∂G

∂ξ3 |ξ3=0

=
∂G

∂ξ3 |ξ3=ζ

= 0. (3.1b)
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Then a formal solution of (2.18) – (2.19) can be written as

H(ξ) = α

∫
Ωd

G
∂c

∂ξ′3
dξ′ +

∫
∂Ωd

[
e3 G

∂H

∂ξ′3
− e1 H

∂G

∂ξ′1

]
· dn, (3.2)

where n is the unit normal vector for the domain boundary ∂Ωd.
We derive in Appendix A.1 two alternative representations for the Green’s function

G(ξ, ξ′). The first representation is given by

G(ξ, ξ′) =
2
π

∞∑
m=1

sin(m π ξ1) sin(m π ξ′1) cosh(m π ξ′3)
cosh[m π (ζ − ξ3)]

m sinh(m π ζ)
. (3.3)

for ξ′3 < ξ3. For ξ′3 > ξ3 the arguments ξ3 and ξ′3 are switched in (3.3). The second
representation for G(ξ, ξ′) is

G(ξ, ξ′) =
ξ′1
ζ

(1− ξ1) +
2
π

∞∑
n=1

cos
(
n π

ξ3

ζ

)
cos

(
n π

ξ′3
ζ

)
×

sinh
(n π ξ′1

ζ

) sinh
[
n π

ζ
(1− ξ1)

]
n sinh

(
n π

ζ

) (3.4)

for ξ′1 < ξ1. For ξ′1 > ξ1 the arguments ξ1 and ξ′1 are switched in (3.4).
We use representation (3.3) to evaluate the first boundary integral on the right side

of (3.2) and representation (3.4) to evaluate the second boundary integral. Thus, (3.2)
gives a solution for the non-dimensional freshwater head,

H(ξ) = (1− ξ1) + α ηB(ξ) + α ηC [ξ, c(ξ)], (3.5)

where

ηB =
ξ1 ζ

2
+

∞∑
l=1

al cos
( l π ξ3

ζ

) sinh
( l π ξ1

ζ

)
sinh

( l π

ζ

) , al =
2 ζ (1− (−1)l)

l2 π2
(3.6)

is a contribution to H stemming from the boundary conditions at the saltwater boundary,
and

ηC =
∫
Ωd

G
∂c

∂ξ′3
dξ′+

∞∑
l=1

1
l π

sin(l π ξ1)
sinh(l π ζ)

{
b
(1)
l cosh [l π (ξ3 − ζ)]−b

(2)
l cosh(l π ξ3)

}
, (3.7a)

b
(1)
l = 2

1∫
0

c(ξ1, 0) sin (l π ξ1) dξ1, b
(2)
l = 2

1∫
0

c(ξ1, ζ) sin (l π ξ1) dξ1 (3.7b)

is a contribution to H resulting entirely from the coupling of flow and salt transport.
Note that ηC [ξ, c(ξ)], and hence H, is a linear functional of the salt concentration

c(ξ). One way to close the expression for H(ξ) is to assume that flow and transport are
coupled only via the boundary condition at the saltwater boundary at ξ1 = 1, i.e., to
disregard the spatial variability of water density ρ. We refer to this approximation as the
“decoupled” model (Simpson & Clement 2003). Its solution for the salt concentration
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takes the form of the the Heaviside function Θ,

cdec(ξ) = Θ(ξ1 − 1 + γ), (3.8)

where γ � 1 is a model parameter. Substituting (3.8) into (3.5) – (3.7) and disregarding
subleading contributions of order γ yields ηC = 0 and a decoupled solution for the
freshwater hydraulic head

Hdec(ξ) = 1− ξ1 + α ηB(ξ). (3.9)

We use a perturbation expansion in the coupling parameter α to derive a solution for
the fully coupled flow and transport problem (2.18) – (2.21) in the next section. As a
prerequisite for such a solution, we first derive an integral equation for the transport
problem (2.20) and (2.21).

3.2. Integral Equation for the Transport Problem

Substituting (3.5) into (2.20) leads to a transport equation

∂c

∂ξ1
− β∇2c = α∇ηB · ∇c + α

(
∇ηC · ∇+ c

∂

∂ξ3

)
c. (3.10)

Let g(ξ, ξ′) be the Green’s function defined as the solution of the advection-diffusion
equation

β∇2 g(ξ, ξ′)− ∂g(ξ, ξ′)
∂ξ1

= −δ(ξ − ξ′), (3.11a)

subject to homogeneous boundary conditions

g|ξ1=0 = g|ξ1=1 = 0,
∂g

∂ξ3 |ξ3=0

=
∂g

∂ξ3 |ξ3=ζ

= 0. (3.11b)

Rewriting (3.10) in terms of ξ′, multiplying the result with g(ξ, ξ′), integrating over Ωd,
and applying the Green’s theorem yields an integral equation

c(ξ) = c0(ξ) + α

∫
Ωd

g∇′ηB · ∇′cdξ′ + α

∫
Ωd

g

(
∇′ηC · ∇′ + c

∂

∂ξ′3

)
cdξ′. (3.12)

Here

c0(ξ) = β

∫
∂ Ωd

(g∇′ c− c∇′ g) · dn−
∫

∂ Ωd

c g e1 · dn (3.13)

represents boundary effects on the salt concentration distribution c(ξ). The second term
on the right side of (3.12) reflects the influence of the hydrostatic saltwater boundary on
salt transport, while the third contribution quantifies the linear coupling between flow
and transport. Note that (3.13) is a solution of the transport problem (3.10) and (2.21)
in the absence of density effects, i.e., when α = 0.

We show in Appendix A.2 that for ξ′1 < ξ1 the Green’s function g(ξ, ξ′) is given by

g(ξ, ξ′) = exp
(ξ1 − ξ′1

2 β

) 2
β ζ

∞∑
m=0

cm cos
(
m π

ξ3

ζ

)
cos

(
m π

ξ′3
ζ

)
×

sinh[Bm ξ′1]
sinh[Bm (1− ξ1)]

Bm sinh(Bm)
, (3.14)
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where c0 = 1/2, cm = 1 (m > 0), and

Bm =

√
1

4 β2
+

(m π

ζ

)2

. (3.15)

For ξ′1 > ξ1, the Green’s function g(ξ, ξ′) is obtained from (3.14) by switching the ar-
guments ξ′1 and ξ1. Substituting (3.14) into (3.13), while recalling boundary conditions
(2.21), gives

c0(ξ) ≡ c0(ξ1) =
exp(ξ1 β−1)− 1
exp(β−1)− 1

. (3.16)

Since hydraulic head H(ξ) in (3.5) and salt concentration c(ξ) in (3.12) are coupled, the
transport equation (3.10) is non-linear in c(ξ). We solve this non-linear coupled problem
analytically via a perturbation expansion in the coupling parameter α.

4. Perturbation Schemes
The coupling parameter α compares a typical flow velocity induced by density contrasts

at the saltwater boundary with the flow velocity without density effects. As such, its
physical meaning is twofold. It measures the deviation of the flow velocity from uniform
flow, i.e., from the x-coordinate, due to hydrostatic saltwater at the boundary ξ1 = 1.
Its magnitude is quantified by ηB(ξ) in (3.6). Furthermore, α quantifies the influence of
density effects on the flow velocity due to intruding saltwater. As such, it is a measure
of the strength of the coupling between fluid flow and salt transport, as quantified by
ηC [ξ, c(ξ)] in (3.7).

For a weak coupling, i.e., for small α, the integral equation (3.12) can be expanded
into a perturbation series in powers of α, which leads to

c(ξ) =
∞∑

k=0

αk c(k)(ξ) . (4.1)

Since ηC [ξ, c(ξ)] given by (3.7) is linear in c(ξ), it can be expanded as

ηC

[
ξ,

∞∑
k=0

αk c(k)(ξ)

]
=

∑
k=0

αk ηC

[
ξ, c(k)(ξ)

]
. (4.2)

Thus, we obtain an expansion of hydraulic head H in the coupling parameter α,

H(ξ) =
∞∑

k=0

αk H(k)(ξ). (4.3)

Substituting (4.2) into (3.5) gives an explicit expression for the expansion of H(ξ) in
terms of the expansion of c(ξ) in (4.1),

H(ξ) = 1− ξ1 + α
{

ηB(ξ) + ηC [ξ, c(0)(ξ)]
}

+
∞∑

k=2

αk ηC

[
ξ, c(k−1)(ξ)

]
. (4.4)

The comparison of (4.3) and (4.4) shows that

H(0)(ξ) = 1− ξ1, H(1)(ξ) = ηB(ξ) + ηC

[
ξ, c(0)(ξ)

]
,

H(k)(ξ) = ηC

[
ξ, c(k−1)(ξ)

]
, k > 1. (4.5)
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Equations (4.5) reveal that the terms H(k)(ξ) with k > 1 in the expansion (4.3) depend
on the terms c(k−1)(ξ) in the expansion (4.1).

Substituting (4.1) and (4.2) into (3.12) yields

c(ξ) = c0(ξ1) +
∞∑

k=1

αk
{∫

Ω

g∇′ηB · ∇′c(k−1) dξ′

+
k−1∑
m=0

∫
Ω

g
(
∇′ηC [ξ′, c(m)] · ∇′ + c(m) ∂

∂ξ′3

)
c(k−m−1)dξ′

}
. (4.6)

The comparison of (4.1) and (4.6) reveals that c(0)(ξ) ≡ c0(ξ1) and, for k > 1,

c(k)(ξ) =
∫
Ω

g∇′ηB · ∇′c(k−1) dξ′

+
k−1∑
m=0

∫
Ω

g
(
∇′ηC [ξ′, c(m)] · ∇′ + c(m)(ξ′)

∂

∂ξ′3

)
c(k−m−1) dξ′. (4.7)

Thus our perturbation expansions generate a hierarchy of recursion relations for c(k)(ξ),
which in turn determine the terms H(k+1)(ξ) in the expansion of hydraulic head H(ξ).
As such, the fully coupled system of equations for flow and transport has been decoupled
on the level of an expansion in the coupling parameter α.

For the decoupled model (3.8) and (3.9), the transport equation (3.10) is linear in c(ξ),
the second term on the right-hand side of (4.7) is zero, and each c(k)(ξ) (k > 1) in (4.7)
depends only on the lower-order expansion term c(k−1)(ξ). Hydraulic head H(ξ) is exact
to first order in α for the decoupled problem. In this case, the perturbation solution
represents an expansion in the deviations of the exactly known flow field from constant
uniform flow in the ξ1-direction, and every approximation order increases the accuracy
of a solution for salt concentration.

For the fully coupled model, the non-linearity of the transport equation (3.10), caused
by the dependence of H on salt concentration, manifests itself through the dependence
of the expansion terms c(k)(ξ) (k > 1) on all previous c(j)(ξ) with j ∈ [1, . . . , k−1]. Here,
every approximation order in α simultaneously increases the accuracy of solutions for c
and H. In other words, to every order of approximation, one determines a solution to a
slightly modified flow and transport problem.

5. Flow and Transport Behavior
In the following, we evaluate expressions (4.1) and (4.3) to first order in α. We consider

both the decoupled and coupled flow and transport problems, and compare the results
with numerical simulations obtained from SUTRA (Voss & Provost 2002). Since SUTRA
is a well tested and widely used software, we treat the solutions computed by SUTRA
as a yardstick.

5.1. First-Order Approximations and Numerical Simulations

For the decoupled problem, the expression for hydraulic head H(ξ) is exact to first-
order in α and given by (3.9). The first-order approximation of the salt concentration
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distribution is given by

c(ξ) = c0(ξ1) + α

∫
Ωd

g
∂ηB

∂ξ′1

∂c0

∂ξ′1
dξ′ + O

(
α2

)
. (5.1)

For the fully coupled problem, the first-order approximations of hydraulic head H(ξ)
and salt concentration c(ξ) are given by

H(ξ) = 1− ξ1 + α ηB(ξ) + α ηC [ξ, c0(ξ)] + O
(
α2

)
(5.2)

and

c(ξ) = c0(ξ) + α

∫
Ωd

g
∂ηB

∂ξ′1

∂c0

∂ξ′1
dξ′ + α

∫
Ωd

g
∂ηC [ξ′, c0(ξ′1)]

∂ξ′1

∂c0

∂ξ′1
dξ′ + O

(
α2

)
, (5.3)

respectively. The coefficients b
(1)
l and b

(2)
l in the expression for ηC (3.7) are evaluated

explicitly to yield

b
(1)
l ≡ b

(2)
l = 2

(−1)l − 1
[1 + (l π β)2] l π [exp(β−1)− 1]

− 2
(−1)l l π β2

1 + (l π β)2
. (5.4)

The infinite summations in the expressions for the Green’s function g in (3.14), ηB in
(3.6) and ηC in (3.7) converge exponentially with the summation index. Their numerical
evaluations requires a relatively small number of terms (10, in our numerical calculations).
The quadratures in (5.1) and (5.3) were evaluated numerically with a ten-point Gauss-
Legendre integration (Press et al. 1992).

Direct numerical simulations of the flow and transport problems (2.18) – (2.21) were
performed with SUTRA (Voss & Provost 2002), a finite element code for solving a time-
dependent system of partial differential equations for variable-density flow and transport.
The calculations for the decoupled and coupled transport problems were performed with
a spatial resolution of ∆ ξ1 = ∆ ξ3 = 1/128, which corresponds to 256×128 elements. For
the decoupled problem, heads and concentrations were obtained by solving the steady-
state flow and transport equations. For the coupled problem, heads and concentrations
were determined iteratively as an asymptotic limit of the respective transient solutions.
The solutions were asymptotically stationary and did not change after a simulation time
of 6× 105 seconds.

5.2. Results
In the following simulations, we set an aperture ζ = 0.5 and the Peclet number β = 0.1.
The former corresponds to the original shape of the flow domain in the Henry problem.
The latter represents the Peclet number for which the intrusion of seawater is noticeable
without being dominated by diffusion. We considered a range of values of the coupling
parameter α varying from α = 0.25 to 2.0. Since we set ε = 1/40, the lowest value
corresponds to a freshwater hydraulic head gradient of 10%, which should be considered
as high, while the other extreme (α = 2) corresponds to a freshwater hydraulic head
gradient of 1.25%, which it typical for many coastal aquifers.

5.2.1. Freshwater Head
Figure 2 illustrates the first-order solutions (3.9) and (5.2) for the decoupled and cou-

pled flow and transport models, respectively. For weak coupling (α = 0.25 and 0.5), the
solutions for hydraulic head H(ξ) resulting from the two models coincide at some distance
from the saltwater boundary ξ1 = 1, while differing significantly in the region adjacent to
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Figure 2. Equipotential lines of the first-order approximation of dimensionless freshwater head
H(ξ) corresponding to the coupled model (solid lines) given by (5.2) and to the decoupled model
(dashed lines) given by (3.9), for ζ = 0.5, β = 0.1, and (a) α = 0.25, (b) α = 0.5, (c) α = 1.0,
and (d) α = 2.0. The isolines are equidistant with ∆ H = 0.1.

this boundary. Hydraulic head is dominated by the saltwater boundary conditions, yet
visible density effects due to the intruding saltwater are apparent. The head isolines in
the coupled model are more curved than their decoupled counterparts, which indicates
an increasing vertical component of the flow velocity.

For a stronger coupling (α = 1.0 and 2.0), the differences between the head isolines
for the two models become more pronounced. The distance between the isolines in the
left half of the flow domain increases compared to the weaker coupling, which indicates
a decreasing freshwater flow. In the upper right corner, the isolines become closer, which
implies an increasing freshwater outflow. The head isolines connecting the bottom of
the flow domain with the saltwater boundary indicate a convection cell developing in the
lower right corner. For the coupled model, this convection cell intrudes more into the flow
domain than for the decoupled model. Note that H(ξ) for the decoupled model is exact
to first order in α, as discussed in the previous section. The first-order approximation
for the coupled model, however, is not expected to be consistent for such values of α,
because it is strictly valid only for a weak coupling. This issue is discussed below.

Figure 3 compares the head isolines obtained from the first-order approximation (5.2)
of the coupled problem (solid lines) and from direct numerical simulations (dashed lines)
of the full problem (2.18) – (2.21). (SUTRA simulations of the decoupled problem produce
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Figure 3. Equipotential lines of the first-order approximation of dimensionless freshwater head
H(ξ) resulting from the coupled model (solid lines) given by (5.2) and of the numerical solution
of the full problem (2.18) – (2.21) obtained with SUTRA (dashed lined), for ζ = 0.5, β = 0.1,
and (a) α = 0.25, (b) α = 0.5, (c) α = 1.0, and (d) α = 2.0. The isolines are equidistant with
∆ H = 0.1.

solutions for freshwater heads that are identical to the exact analytical solution (3.9),
and not displayed here.)

For weak coupling (α = 0.25 and 0.5), the head isolines obtained from the first-order
approximation coincide with those obtained from SUTRA, confirming the consistency
and accuracy of our perturbation solution. As α increases, the first-order solution deviates
from its numerical counterpart. For α = 1, the first-order approximation remains fairly
robust. The largest deviations from the numerical solutions are observed in the lower right
half of the flow domain, close to the saltwater boundary. This is because the boundary
conditions at the bottom and top of the flow domain are expressed by (2.18) and (3.7b)
in terms of the salt concentration c(ξ). The first-order approximation of c(ξ) is given by
the “bare” solution c0(ξ1), which is independent of ξ3. However, saltwater intrusion is
most pronounced in the lower right corner, where a convection cell develops resulting in
a strong dependence on ξ3. This feature is a higher-order effect and cannot be taken into
account by the first-order approximation.

For strong coupling with α = 2, the differences between the two solutions are significant
and occur throughout the flow domain Ωd. The isolines of the full numerical solution are
more curved than those given by the first-order approximation indicating larger vertical
flow. On a separate note, Figure 3 shows that the extent of the convection cell increases



14 Dentz et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.91  0.915  0.92  0.925  0.93  0.935  0.94

ξ 3

ξ1

C-PT
DC-PT

C-S
DC-S

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.89  0.9  0.91  0.92  0.93  0.94  0.95

ξ 3

ξ1

C-PT
DC-PT

C-S
DC-S

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.85  0.875  0.9  0.925  0.95

ξ 3

ξ1

C-PT
DC-PT

C-S
DC-S

(c)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.7  0.75  0.8  0.85  0.9  0.95  1

ξ 3

ξ1

C-PT
DC-PT

C-S
DC-S

(d)

Figure 4. Isolines c(ξ) = 0.5 for the salt concentration given by the first-order solutions (5.3)
and (5.1) of the coupled (C-PT) and decoupled (DC-PT) problems, respectively, as well as by
direct numerical simulations with SUTRA for the coupled (C-S) and decoupled (DC-S) problems,
for ζ = 0.5, β = 0.1, and (a) α = 0.25, (b) α = 0.5, (c) α = 1.0, and (d) α = 2.0. The vertical
solid lines are the c0(ξ1) = 0.5 isolines corresponding to the zeroth-order approximation of c(ξ).

with the degree of coupling between the flow and transport processes, i.e., with increasing
coupling parameter α.

Of course, it should come as no surprise that the accuracy of the perturbation solu-
tion (5.2) deteriorates with increasing α. Indeed, the use of α as a (small) perturbation
parameter formally limits the range of applicability of (5.2) to α � 1. Nevertheless, Fig-
ure 3 demonstrates that the perturbation solution (5.2) for freshwater head H(ξ) remains
accurate for moderate coupling with α as high as 1.

5.2.2. Salt Concentration
Figure 4 shows the c(ξ) = 0.5 isolines for the salt concentration c(ξ) computed with

the first-order approximations of analytical solutions of the coupled (5.3) and decoupled
(5.1) problems, as well as with direct numerical simulations (SUTRA) of these problems.
One can see how the heavier saltwater intrudes at the right bottom of the flow domain,
while it is pushed back by the outflowing lighter freshwater at the right top.

For small to moderate coupling (α = 0.25, 0.5, and 1), the bare solution c0(ξ1) sig-
nificantly underestimates the extent of seawater intrusion in the lower two thirds of the
flow domain, and underestimates it in the upper part of the flow domain. The first-order
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approximations of both the coupled and decoupled problems qualitatively capture the
behavior of the front. For strong coupling with α = 2, the convection cell developing at
the right bottom transports sufficient amounts of saltwater to the upper part of the flow
domain to induce, together with diffusion as a transverse spreading mechanism, a deeper
intrusion than it would for purely diffusive transport in uniform flow, as represented by
c0(ξ1). This higher-order feature is not captured by the first-order approximations.

For all α, the difference between the coupled and decoupled concentration isolines is
significant, and is reflected in the first-order solution. In the coupled model, saltwater
intrudes consistently more at the top of the domain and less at the bottom than for the
decoupled case. As saltwater intrudes, it loses energy due to diffusion of salt, a feature
which is inherently connected to the coupled nature of flow and transport. As such it is
not present in the decoupled model, and saltwater can intrude further. As α increases, the
intersection between the coupled and decoupled isolines moves upwards and the convexity
of the decoupled isolines increases.

As α becomes larger, coupling effects become more important, which leads to more
pronounced differences between the decoupled and coupled solutions. These features are
not completely accounted for by the first-order perturbation approximations because, as
discussed in the end of Section 4, the low order in α means the low order with respect
to an approximation of the transport solution for the decoupled model, while in the
coupled model it implies the low order with respect to a simultaneous approximation
of the solutions for the flow and transport problems. The density effects leading to the
above features are of higher order in α.

For weak coupling with α = 0.25 and 0.5, the first-order approximation of the coupled
and decoupled solutions are in a good agreement with “true” solutions obtained by SU-
TRA. The discrepancy between the first-order solutions and their numerical counterparts
increases with α, as should be expected from the perturbative nature of the former.

6. Summary and Conclusions
We analysed steady-state density-dependent flow and transport in homogeneous porous

media, as described by the Henry problem. This setup is often used to represent seawa-
ter intrusion in coastal aquifers, wherein fresh water is discharged to the sea, while salt
water is advected and diffused into the aquifer. In the process, a transition zone between
fresh and saline water develops, thus endangering the quality of fresh groundwater. The
coupling of flow and transport phenomena is caused by the dependence of water density
on salt concentration in water. We used a perturbation analysis to derive analytical solu-
tions for the spatial distributions of water potential and salt concentration. This allowed
us to analyze the relative effects of various transport mechanisms, as well as the strength
of coupling between flow and transport processes. We also compared our perturbative
solutions to direct numerical simulations, which were used to test the accuracy of our
perturbative approach.

Our analysis leads to the following major conclusions
• Dimensionless groups controlling the flow and transport processes are the Peclet

number β and a coupling parameter α. They quantify the relative effects of advection
and diffusion, and the relative importance of density effects and boundary conditions,
respectively. The coupling parameter α is of fundamental importance in the perturbative
scheme we adopt. Its physical relevance resides in that it measures the strength of the
coupling between fluid flow and salt movement, as well as quantifies the deviation of the
flow velocity driven by the sea-side boundary condition from a uniform flow condition.
• A solution of the Henry problem is developed by using a Green’s function approach.
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Closure of the resulting system of coupled equations is attained for two scenarios: first,
we assume that coupling of flow and transport is due only to the saltwater boundary
condition at the seaside, while neglecting effects of density variations within the domain
(we refer to this approximation as the decoupled scenario); second, we analyze a fully
coupled problem (we refer to this as the coupled scenario).
• The governing equations are solved analytically by means of a perturbation expan-

sion in the coupling parameter α. The salient feature of the perturbative scheme is that
it generates a hierarchy of recursive relationships governing the distributions of hydraulic
head and salt concentration, which effectively decouples flow and transport problems at
every approximation order.
• The meaning of the approximation order in α is different in the two scenarios con-

sidered. When coupling is due only to the saltwater boundary conditions, hydraulic head
is exact to first order (in α), while transport is linear and the solution for concentration
at the k-th step depends only on the concentration at the previous approximations level,
k − 1. For the fully coupled problem, the transport equation is nonlinear due to the
linear coupling of flow and transport. As a consequence, the solution to a given order
(in α) simultaneously increases the order of approximation of both hydraulic head and
concentration fields.
• We developed explicit first-order expressions for the freshwater head and concentra-

tion distributions. For moderate density coupling (α 6 0.5), these approximations of the
solutions of the coupled flow and transport problem compare well with direct numeri-
cal simulations obtained from SUTRA . For increasing stronger coupling of flow and salt
transport, higher-order contributions of the perturbation series gain importance and lead
to deviations from the “true” numerical solution.

The developed perturbation formalism provides a systematic analytical tool for the
analysis of stable density dependent flow problems and sheds new light on coupled flow
and transport mechanism in homogeneous porous environments. This general methodol-
ogy can be applied to a range of boundary value problems and is not restricted to the
particular conditions considered here. Furthermore, it can be readily extended to include
time-dependent flow and transport scenarios as well as the heterogeneity of porous media.
As such, the presented analytical method can serve as the basis for a systematic inves-
tigation of the influence of ever present small-scale medium heterogeneities on effective
large scale flow and transport.
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Secretaŕıa de Estado de Educación y Universidades and the program ‘Ramon y Cajal’
of the Spanish Ministry of Science and Technology. The authors thank the Departament
d’Universitat, Recerca i Societat de la Informació of the Catalan government for financial
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Appendix A. Green’s Functions
In the following we derive the Green’s functions for the flow problem in Section 3.1,

and for the integral formulation of the transport problem in Section 3.2.

A.1. Green Functions for the Flow Problem

The Green’s function G(ξ, ξ′) for (2.18) – (2.19) can be obtained by taking the limit of
the Green’s function for the corresponding time-dependent diffusion problem (Carslaw
& Jaeger 1959),

G(ξ, ξ′) =
2

ζ π2

∞∑
m=1

1
m2

sin
(
m π ξ1

)
sin

(
m π ξ′1

)
+

4 ζ

π2

∞∑
m,n=1

1
m2 ζ2 + n2

sin
(
m π ξ1

)
sin

(
m π ξ′1

)
cos

(
n π

ξ3

ζ

)
cos

(
n π

ξ′3
ζ

)
.

(A 1)

This expression can be simplified by summing up the first sum on the right side and one
of the double sums by using the relations,

2 cos
(
n π

ξ3

ζ

)
cos

(
n π

ξ′3
ζ

)
= cos

(
n π

ξ3 + ξ′3
ζ

)
+ cos

(
n π

ξ3 − ξ′3
ζ

)
, (A 2)

2 sin
(
m π ξ1

)
sin

(
m π ξ1

)
= cos

[
m π (ξ1 − ξ′1)

]
− cos

[
m π (ξ1 + ξ′1)

]
, (A 3)

and (Gradshteyn & Ryzhik 1980),

∞∑
n=1

1
n2 + γ2

cos
(
n π

ξ

b

)
=

π

2 γ

cosh
[
γ π

(
1− ξ

b

)]
sinh(γπ)

− 1
2 γ2

, (A 4)

∞∑
m=1

1
m2

cos
(
m π

ξ

a

)
=

π2

6
− π2 |ξ|

2 a
+

π2 ξ2

4 a2
. (A 5)

Applying (A 2) and (A 4) to the second term on the right side of (A 1) and defining
γ ≡ m ζ, we obtain

∞∑
m=1

sin (m π ξ1) sin (m π ξ1)×{
cosh {m π [ζ − (ξ3 + ξ′3)]}+ cosh [m π (ζ − |ξ3 − ξ′3|)]

π m sinh (m π ζ)
− 2

ζ π2 m2

}
. (A 6)

The third term on the right side of (A 6) cancels with the first term on the right side
of (A 1), which yields representation (3.3) of the Green’s function (A 1).

To derive an alternative representation for the Green function G(ξ, ξ′), we consider
the first and second sums on the right side of (A 1) separately. Applying (A 3) and (A 5)
to the first sum on the right side of (A 1) gives

2
ζ π2

∞∑
m=1

1
m2

sin (m π ξ1) sin (m π ξ1) =
(ξ1 + ξ′1)− |ξ1 − ξ′1|

2 ζ
− ξ1 ξ′1

ζ
. (A 7)
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Applying (A 3) and (A 4) to the second expression and defining γ ≡ n/ζ yields
∞∑

n=1

cos
(
n π

ξ3

ζ

)
cos

(
n π

ξ′3
ζ

)
×

1
π n sinh (nπ/ζ)

{
cosh

[
n π

(
1
ζ
− |ξ1 − ξ′1|

ζ

)]
− cosh

[
n π

(
1
ζ
− ξ1 + ξ′1

ζ

)]}
.(A 8)

Combining (A 7) and (A 8) leads to representation (3.4).

A.2. Green’s Function for the Transport Problem
Following Morse & Feshbach (1953), we replace (3.11) with

∇2 ϕ(ξ)− β−1 ∂ϕ(ξ)
∂ξ1

= −ρ(ξ)
β

(A 9)

and set

ϕ(ξ) =
∞∑

m=1

Fm(ξ1) cos
(
m π

ξ3

ζ

)
+

F0(ξ1)
2

, (A 10)

ρ(ξ) =
∞∑

m=1

ρm(ξ1) cos
(
m π

ξ3

ζ

)
+

ρ0(ξ1)
2

, , (A 11)

where the Fm(ξ1) are as yet unknown functions, and

ρm(ξ1) =
2
ζ

ζ∫
0

ρ(ξ) cos
(
m π

ξ3

ζ

)
dξ3. (A 12)

Substituting (A 10) and (A 11) into (A 9) yields

d2Fm

dξ2
1

−
(m π

ζ

)2

Fm − 1
β

dFm

dξ1
= −ρm(ξ1)

β
. (A 13)

A solution of (A 13) is given by

Fm(ξ1) = y1(ξ1)
[
c1 +

∫
ρm(ξ′1) y2(ξ′1)
β ∆(y1, y2)

dξ′1

]
+ y2(ξ1)

[
c2 −

∫
ρm(ξ′1) y1(ξ′1)
β ∆(y1, y2)

dξ′1

]
,

(A 14)
where the constants of integration c1 and c2 are determined from the boundary con-
ditions, and ∆(y1, y2) is the Wronski determinant for two independent solutions of the
homogeneous problem (A 13). Such solutions are

y1(ξ1) = exp
( ξ1

2 β

)
sinh(Bm ξ1) (A 15)

y2(ξ1) = exp
(
− 1− ξ1

2 β

)
sinh(Bm (1− ξ1)) (A 16)

Bm ≡

√
1

4 β2
+

(m π

ζ

)2

. (A 17)

and the corresponding Wronski determinant is

∆(y1, y2) = − exp
( ξ1

2 β

)
exp

(
− (1− ξ1)

2 β

)
Bm sinh(Bm), (A 18)
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Substituting (A 15), (A 16) and (A 18) into (A 14) and adjusting the limits of integration
to satisfy the boundary conditions, we obtain

Fm(ξ1) =

1∫
0

ρm(ξ′1) gm(ξ1, ξ
′
1) dξ′1, (A 19)

where

gm(ξ1, ξ
′
1) =

exp
(ξ1 − ξ′1

2 β

)
β Bm sinh(Bm)

×
{

sinh(Bm ξ1) sinh(Bm (1− ξ′1)) ξ′1 > ξ1

sinh(Bm ξ′1) sinh(Bm (1− ξ1)) ξ1 > ξ′1
. (A 20)

Substituting (A 11), (A 12) and (A 19) into (A 10) leads to

ϕ(ξ) =

1∫
0

dξ′1

ζ∫
0

dξ′3 ρ(ξ′)
2
ζ

∞∑
m=0

cm gm(ξ1, ξ
′
1) cos

(
m π

ξ3

ζ

)
cos

(
m π

ξ′3
ζ

)
(A 21)

=

1∫
0

dξ′1

ζ∫
0

dξ′3 ρ(ξ′) g(ξ, ξ′), (A 22)

where cm = 1/2 for m = 0 and cm = 1 else. Thus we obtain (3.14) for the Green’s
function g(x,x′).
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