Entrez medline Query

3 citations found

Other Formats: [MEDLINE Format]
Links: [101 medline neighbors] Biochemistry

Order this document

Biochemistry 1998 Oct 27;37(43):15042-9

Counteracting HIV-1 protease drug resistance: structural analysis of mutant proteases complexed with XV638 and SD146, cyclic urea amides with broad specificities.

Ala PJ, Huston EE, Klabe RM, Jadhav PK, Lam PYS, Chang CH

Experimental Station, DuPont Pharmaceuticals, Wilmington, Delaware 19880, USA.

[Medline record in process]

The long-term therapeutic benefit of HIV antiretroviral therapy is still threatened by drug-resistant variants. Mutations in the S1 subsite of the protease are the primary cause for the loss of sensitivity toward many HIV protease inhibitors, including our first-generation cyclic urea-based inhibitors DMP323 and DMP450. We now report the structures of the three active-site mutant proteases V82F, I84V, and V82F/I84V in complex with XV638 and SD146, two P2 analogues of DMP323 that are 8-fold more potent against the wild type and are able to inhibit a broad panel of drug-resistant variants [Jadhav, P. K., et al. (1997) J. Med. Chem. 40, 181-191]. The increased efficacy of XV638 and SD146 is due primarily to an increase in P2-S2 interactions: 30-40% more van der Waals contacts and two to four additional hydrogen bonds. Furthermore, because these new interactions do not perturb other subsites in the protease, it appears that the large complementary surface areas of their P2 substituents compensate for the loss of P1-S1 interactions and reduce the probability of selecting for drug-resistant variants.

PMID: 9790666, UI: 99007120


Other Formats: [MEDLINE Format]
Links: [108 medline neighbors] [JBC Online]

Order this document

J Biol Chem 1998 May 15;273(20):12325-31

Molecular recognition of cyclic urea HIV-1 protease inhibitors.

Ala PJ, DeLoskey RJ, Huston EE, Jadhav PK, Lam PY, Eyermann CJ, Hodge CN, Schadt MC, Lewandowski FA, Weber PC, McCabe DD, Duke JL, Chang CH

DuPont Merck Pharmaceutical Company, Experimental Station, Wilmington, Delaware 19880, USA.

As long as the threat of human immunodeficiency virus (HIV) protease drug resistance still exists, there will be a need for more potent antiretroviral agents. We have therefore determined the crystal structures of HIV-1 protease in complex with six cyclic urea inhibitors: XK216, XK263, DMP323, DMP450, XV638, and SD146, in an attempt to identify 1) the key interactions responsible for their high potency and 2) new interactions that might improve their therapeutic benefit. The structures reveal that the preorganized, C2 symmetric scaffolds of the inhibitors are anchored in the active site of the protease by six hydrogen bonds and that their P1 and P2 substituents participate in extensive van der Waals interactions and hydrogen bonds. Because all of our inhibitors possess benzyl groups at P1 and P1', their relative binding affinities are modulated by the extent of their P2 interactions, e.g. XK216, the least potent inhibitor (Ki (inhibition constant) = 4.70 nM), possesses the smallest P2 and the lowest number of P2-S2 interactions; whereas SD146, the most potent inhibitor (Ki = 0.02 nM), contains a benzimidazolylbenzamide at P2 and participates in fourteen hydrogen bonds and approximately 200 van der Waals interactions. This analysis identifies the strongest interactions between the protease and the inhibitors, suggests ways to improve potency by building into the S2 subsite, and reveals how conformational changes and unique features of the viral protease increase the binding affinity of HIV protease inhibitors.

MeSH Terms:

Substances:

PMID: 9575185, UI: 98241600


Other Formats: [MEDLINE Format]
Links: [4 protein links] [4 structure links] [122 medline neighbors] Biochemistry

Order this document

Biochemistry 1997 Feb 18;36(7):1573-80

Published erratum appears in Biochemistry 1997 May 27;36(21):6556

Molecular basis of HIV-1 protease drug resistance: structural analysis of mutant proteases complexed with cyclic urea inhibitors.

Ala PJ, Huston EE, Klabe RM, McCabe DD, Duke JL, Rizzo CJ, Korant BD, DeLoskey RJ, Lam PY, Hodge CN, Chang CH

Department of Chemical and Physical Sciences, DuPont Merck Pharmaceutical Company, Wilmington, Delaware 19880-0024, USA.

In cell cultures, the key residues associated with HIV-1 resistance to cyclic urea-based HIV-1 protease (PR) inhibitors are Val82 and Ile84 of HIV-1 PR. To gain an understanding of how these two residues modulate inhibitor binding, we have measured the Ki values of three recombinant mutant proteases, I84V, V82F, and V82F/I84V, for DMP323 and DMP450, and determined the three-dimensional structures of their complexes to 2.1-1.9 A resolution with R factors of 18.7-19.6%. The Ki values of these mutants increased by 25-, 0.5-, and 1000-fold compared to the wild-type values of 0.8 and 0.4 nM for DMP323 and DMP450, respectively. The wild-type and mutant complexes overall are very similar (rms deviations of 0.2-0.3 A) except for differences in the patterns of their van der Waals (vdw) interactions, which appear to modulate the Ki values of the mutants. The loss of the CD1 atom of Ile84, in the I84V mutant complexes, creates a hole in the S1 subsite, reducing the number of vdw contacts and increasing the Ki values. The V82F mutant binds DMP323 more tightly than wild type because the side chain of Phe82 forms additional vdw and edge-to-face interactions with the P1 group of DMP323. The Ki values of the single mutants are not additive because the side chain of Phe82 rotates out of the S1 subsite in the double mutant (the chi 1 angles of Phe82 and -182 in the V82F and V82F/I84V mutants differ by 90 and 185 degrees, respectively), further reducing the vdw interactions. Finally, compensatory shifts in the I84V and V82F/ I84V complexes pick up a small number of new contacts, but too few to offset the initial loss of interactions caused by the mutations. Therefore, our data suggest that variants persist in the presence of DMP323 and DMP450 because of a decrease in vdw interactions between the mutant proteases and inhibitors.

MeSH Terms:

Substances:

Secondary source id:

PMID: 9048541, UI: 97200712


the above reports in format
documents on this page through Loansome Doc