
SECURITY APPLICATIONS OF DYNAMIC BINARY TRANSLATION

by

DINO DAI ZOVI

THESIS

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Bachelor of Science
Computer Science

The University of New Mexico
Albuquerque, New Mexico

December, 2002

c©2002, Dino Dai Zovi

iii

Dedication

To all the independent, academic, and professional researchers who make computer

security such an exciting field to work in.

iv

Acknowledgments

This would not have been possible without the help and support of my advisor, Darko
Stefanovic. Since this work began as a term project in his Spring 2001 Java Implemen-
tation seminar, he has encouraged me to continue exploring and working on the project.
Professor Stefanovic allowed me to continue work on this project in his research group
while I gained valuable writing and research experience. Finally, I would also like to ac-
knowledge Professor Stefanovic for his detailed readings of my manuscripts that helped
correct my sometimes creative abuses of the English language.

I would like to acknowledge my “partners in crime” Trek Palmer and David Worth. I
would like to thank both Trek and David for the always enlightening brainstorming ses-
sions and discussions which led to many of the ideas in this work.

Finally, I would like to thank family and friends for their support, especially when I
was running around like Lewis Carroll’s White Rabbit working on this project.

This work was supported in part by National Science Foundation ITR grants CCR-
0219587 and CCR-0085792, and by Sandia National Laboratories.

v

SECURITY APPLICATIONS OF DYNAMIC BINARY TRANSLATION

by

DINO DAI ZOVI

ABSTRACT OF THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Bachelor of Science

Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2002

SECURITY APPLICATIONS OF DYNAMIC BINARY TRANSLATION

by

DINO DAI ZOVI

B.S., Computer Science, University of New Mexico, 2002

Abstract

The last 13 years have seen a large number of serious computer security vulnerabilities.

Some of the most pernicious of these vulnerabilities have been buffer overflow and format

string vulnerabilities in widely used software applications. A number of Internet worms

have exploited these vulnerabilities to infect target hosts. The first part of this work intro-

duces a framework for understanding and describing attacks that dynamically inject ma-

chine code into a process and the vulnerabilities that enable these attacks. The techniques

used in these attacks are described in detail. The second part of this work describes the

application ofdynamic binary translation, previously a technique primarily for dynamic

optimization, to stopping and mitigating these sorts of attacks. The implementations of

several known techniques using a dynamic binary translation system are described in de-

tail. Finally, some conclusions about the applicability of dynamic binary translation to

computer security are made.

vii

Contents

List of Figures x

1 Introduction 1

2 Memory Trespass Vulnerabilities 4

2.1 Buffer Overflow Vulnerabilities . 5

2.2 Format String Vulnerabilities . 6

2.2.1 Exploitation of Format String Vulnerabilities 7

3 Code Injection Exploits 12

3.1 Exploit Vectors .13

3.1.1 Stack Smash .13

3.1.2 Overwriting Stored Program Addresses15

3.2 Code Injection Exploit Payloads .15

3.2.1 Unix Payloads .16

3.3 Defenses Against Code Injection Exploits19

viii

Contents

4 Dynamic Binary Translation 22

4.1 SIND . 22

4.2 DynamoRIO .25

4.2.1 DynamoRIO Interface .26

5 Security Approaches Using Dynamic Binary Translation 28

5.1 Out-Of-Band Return Address Verification29

5.1.1 Implementation .30

5.1.2 Conclusion .33

5.2 System Call Sandboxing .33

5.2.1 Implementation .35

5.2.2 Conclusion .36

6 Conclusions 38

6.1 Future Work .40

References 42

ix

List of Figures

2.1 Vulnerable Invocation ofstrcpy . 6

2.2 Potentially dangerous call toprintf 7

2.3 Safe call toprintf . 7

2.4 Declaration of a function taking a variable number of arguments8

2.5 Invocation of a function taking a variable number of arguments8

2.6 Implementation of a function taking a variable number of arguments . .9

2.7 Simulating writing a full 32-bit value10

2.8 Format String to write0xddccbbaa to 0xbfffff10 11

3.1 Buffer Overflow Vulnerability in BSDfingerd 14

3.2 Methods of Obtaining Address at Which Code is Executing17

3.3 SPARC exploit payload to execute/bin/ksh 18

3.4 PowerPC exploit payload to execute/bin/sh 19

4.1 SIND modules .23

4.2 DynamoRIO Hook Functions .26

x

List of Figures

5.1 System Call Before Instrumentation .35

5.2 System Call After Instrumentation .36

xi

Chapter 1

Introduction

On July 19, 2001, in the space of 14 hours 359,000 hosts were infected by the second

incarnation of the “Code Red” Internet worm [18]. The worm spread by exploiting a

vulnerability in Microsoft’s IIS web server software. Almost 13 years earlier, Robert T.

Morris’ Internet worm had infected nearly 6,000 hosts on the early Internet [27]. Both

worms spread by exploiting “stack-smashing” buffer overflow vulnerabilities in remote

Internet hosts.

A security vulnerability is a software weakness that allows the program to enter un-

expected states, possibly allowing malicious control. A general class of these vulnerabil-

ities, which we callmemory trespassvulnerabilities, occur when memory locations may

be accessed outside of the semantics of a given programming language. These mem-

ory locations may contain data stored in other variables or even structures used by the

programming language runtime environment. A knowledgeable and malicious user may

overwrite values in these runtime structures with specially chosen values whereby the at-

tacker may divert program control into dynamically injected machine code and take over

the running process. The “stack-smashing” buffer overflow attack is an example of acode

injection exploit, a class of attack that uses memory trespass vulnerabilities to overwrite

1

Chapter 1. Introduction

and corrupt data in stack activation records in order to cause a running program to execute

attacker-supplied dynamically injected machine code.

There are several approaches to stopping or mitigating code injection exploits. The

most natural approach is to address the memory trespass vulnerabilities by finding and

patching these vulnerabilities through static source code analysis or by using stronger pro-

gramming languages that do not permit unsafe memory accesses. While this approach is

the most reliable, it is also the most labor-intensive. Automated tools may assist in the code

auditing process, but they are not as thorough or accurate as a trained human auditor. Other

approaches dynamically detect when an exercised memory trespass vulnerability may alter

the execution path of the process and halt the execution of the running process. Similar ap-

proaches change the runtime memory layout of a process in order to make it more difficult

to use a memory trespass vulnerability to divert control of the process. These approaches

are typically implemented as compiler extensions requiring application source code access

to build the security instrumentation into the executable. Finally, other approaches attempt

to detect when control has been diverted by monitoring the execution of the process using

operating system kernel extensions. However, many of these approaches are not possible

when either the source code to the application or operating system is not available. An

alternative implementation method for a variety of dynamic security mechanisms that op-

erates without requiring application or operating system source code (on 90% of hosts,

neither is available) is dynamic binary translation.

Current high-performance Java virtual machines such as IBM’s Jikes Research Virtual

Machine [2] and Sun’s HotSpot Virtual Machine [17] make use of dynamic monitoring

and statistic gathering to guide run-time optimizing code transformations. These tech-

niques build upon earlier work on dynamic optimization of running binaries [3]. Similar

systems perform run-time translation to execute foreign-architecture binaries ([6] [10]).

Thesedynamic binary translationsystems share a general approach where machine code

fragments may be interpreted or framed for direct execution and where frequently-used

2

Chapter 1. Introduction

fragments are transformed and saved for later use in a fragment cache where they may be

combined with other fragments. Such a lazy approach minimizes the time spent operating

on the machine code fragments in order to maximize the time executing the transformed

fragments. Currently available dynamic binary translation systems include SIND [23] and

DynamoRIO [4].

The approach taken by dynamic binary translation systems can be used to perform

security-related transformations to mitigate or stop code injection exploits. By using a dy-

namic binary translation system, these security augmentations can be implemented without

source code access or modification to the application or operating system. This advantage

enables dynamic security systems to be quickly deployed to protect a wider scope of ap-

plications. For example, an application security system using dynamic binary translation

would only require restarting the application for it to be protected. In some cases, it will

even be possible to attach the SIND binary translation system to a running process.

This work is presented in several chapters. The first introduces a new classification

of computer security vulnerabilities,memory trespass vulnerabilities, which generalizes

several already well-known classes of vulnerabilities. The second chapter develops a ter-

minology and framework for describing and understanding code injection exploits while

providing detailed descriptions and examples of the components of a code injection ex-

ploit. The fourth chapter discusses the available tools for dynamic binary translation. The

fifth chapter discusses several approaches using dynamic binary translation to protect ap-

plications against code injection exploits.

3

Chapter 2

Memory Trespass Vulnerabilities

Memory trespassvulnerabilities are software weaknesses that allow memory accesses out-

side of the semantics of the programming language in which the software was written.

Memory trespass vulnerabilities pose a serious threat to system survivability and security.

For example, overwriting memory allocated for programming language variables may al-

ter the execution of the process. Even worse, the corruption of programming language

runtime structures may cause the program to crash or even enable a knowledgeable at-

tacker to take complete control over the running process and cause it to execute supplied

machine code.

Common memory trespass vulnerabilities include buffer overflow, format string, out-

of-bounds array access, signed integer cast, integer overflow, and double-free vulnerabili-

ties. The two most common types of memory trespass vulnerabilities, buffer overflow and

format string vulnerabilities are discussed in detail below.

4

Chapter 2. Memory Trespass Vulnerabilities

2.1 Buffer Overflow Vulnerabilities

Generally, a buffer overflow vulnerability occurs when too much data is written to a fixed-

size buffer and values in memory following the space allocated for the buffer are overwrit-

ten. The overwritten data following the buffer may be other program variables or control

structures used by the language runtime environment. By crafting the input sent to a vul-

nerable program, these control structures may be overwritten in such a way as to redirect

execution of the program to a location of the attacker’s choosing.

In the C programming language, character strings are represented as a byte array ter-

minated by theNULL character, the character with integer value zero. The length of the

string is not explicitly stored – it is calculated when needed by counting the elements in the

string before the terminatingNULL. Most of the string operations in the C standard library

do not take an explicit length argument – they implicitly use the length of the source string.

The unbounded string operations in the C standard library are the most common cause of

buffer overflow vulnerabilities. String handling functions such asstrcpy , strcat , and

sprintf do not take into account the size of the destination buffer and instead use the

implicit length of the source string, which may be larger than the destination buffer. When

the source string is larger than the destination buffer, a buffer overflow may occur. If the

source string may be controlled by the user, a malicious user may attempt to perform a

buffer overflow attack.

For example, consider the invocation ofstrcpy in Figure 2.1. The call tostrcpy

copies successive characters fromstr into buff until it encounters aNULLbyte instr ,

indicating the end of the string. Ifstr is more than 256 bytes long, bytes fromstr will

overwrite data stored in the memory locations following the storage allocated forbuff .

In this example,buff is allocated on the stack, but as shall be described below, this sort

of vulnerability may be exploitable regardless of where the overflowed buffer is allocated.

5

Chapter 2. Memory Trespass Vulnerabilities

void foo(char* str)
{

char buff[256];
...
strcpy(buff, str);
...

}

Figure 2.1: Vulnerable Invocation ofstrcpy

2.2 Format String Vulnerabilities

The C Standard Library includes a number of functions performing formatted input and

output conversion. These facilities include the well-knownprintf andscanf family of

functions. These functions take as an argument aformat stringconsisting of literal charac-

ters andformat directivesthat specify what input or output conversions are performed and

a variable number of other arguments of number and type specified by the directives in the

format string. A function using the C variable-length argument facilities (stdarg(3))

cannot determine the number or types of the passed arguments. In the formatted input

and output functions, this information is encoded in the format string. Aformat string

vulnerability ([20]) occurs when untrusted user input is present in the format string argu-

ment, allowing the user to influence the actions taken by the formatted input and output

functions.

The most common instances of format string vulnerabilities are through careless use

of the printf function. Theprintf function prints formatted output to the standard

output stream taking a format string argument and a variable number of other arguments.

Consider the invocation ofprintf in Figure 2.2. If the string variablestr includes any

input from the user, the user may insert format string directives intostr . Whenprintf

evaluates its first argument as a format string, these format string directives will cause

6

Chapter 2. Memory Trespass Vulnerabilities

char* str;
...
printf(str);
...

Figure 2.2: Potentially dangerous call toprintf

char* str;
...
printf("%s", str);
...

Figure 2.3: Safe call toprintf

printf to attempt to retrieve function arguments that were not supplied by the program-

mer. The C variable-length argument facilities are not able to determine that no arguments

have been supplied and will return spurious values from the stack. A knowledgeable at-

tacker may use this condition to output values from arbitrary memory locations or, through

clever use of format directives discussed below, write arbitrary values to arbitrary memory

locations. A corrected invocation ofprintf is listed in Figure 2.3.

2.2.1 Exploitation of Format String Vulnerabilities

The exploitation of format string vulnerabilities relies on the ability of the attacker to

supply the variable arguments to the formatting function and clever use of the%nformat

directive. Upon examining the implementation of the C variable-length argument facility,

it will become clear that an attacker can easily supply arbitrary arguments to the formatting

function.

Under normal C calling conventions, a number of arguments will be passed in registers

7

Chapter 2. Memory Trespass Vulnerabilities

int foo(int a, int b, ...);

Figure 2.4: Declaration of a function taking a variable number of arguments

foo(1, 2, 3, 0);

Figure 2.5: Invocation of a function taking a variable number of arguments

with the rest pushed onto the program stack. On some architectures, notably the IA-32

architecture, all function arguments may be passed on the stack. With a function taking a

variable number of arguments, the compiler will store any of the optional arguments on the

stack. For example, consider a function declared as in Figure 2.4 and invoked as in Figure

2.5. On an architecture where some arguments are passed in registers, the values 1 and 2

might be passed in registers while the values 3 and 0 would be passed on the stack. The

definition of the functionfoo should use the macrosva start , va arg , andva end to

step through the variable argument list. Note that there is no facility for the called function

to retrieve the number or type of arguments supplied.

In our example,foo (Figure 2.6) is unable to determine when it has retrieved all the

arguments supplied by the caller. Typically, the end of the list is determined by an explicit

length argument, a special marker value, or is implicit in the structure or another argument.

In our implementationfoo , the value 0 serves as a special value marking the end of the

argument list. For example, in the formatted input and output functions, the number of

arguments the caller retrieves is determined by interpretation of the format directives in the

format string. If the attacker can insert arbitrary format directives into the format string,

they may direct the formatting function to use other values stored on the stack. Most

format directives take an optional field, the argument selector, consisting of a decimal

digit followed by a $ character that specify which argument to access. The attacker may

8

Chapter 2. Memory Trespass Vulnerabilities

int foo(int a, int b, ...)
{

va_list ap;
int last = -1;

va_start(ap, b);
while (last != 0) {

last = va_arg(va_list, int);
}
va_end(ap);

}

Figure 2.6: Implementation of a function taking a variable number of arguments

calculate an argument number that selects a value stored in other attacker-supplied input

or even the format string itself. For example, the attacker may place a memory address

in the format string and an argument selector pointing to it to output the value stored in

any location in memory. In addition, as shall be shown, an attacker may use a similar

technique to write any value to any location in memory.

The %ndirective instructs the formatting function to store the number of characters

written so far into the address pointed to by the next argument. The attacker can control

this number by specifying minimum field widths in the format directives. For example,

consider the format string%478d%n. The format directive%478dwill convert an integer

to a string 478 characters long containing a decimal number padded on the left with zeros.

The following %ndirective, will write the integer 478 to the address pointed to by the

next argument. As discussed above, the attacker may use the optional argument selector

to control the value used by the format directive. Using these two tricks, the attacker may

write a small integer to an arbitrary memory location. However, on architectures permit-

ting byte-aligned word writes, four overlaid writes may be used to simulate writing an

arbitrary word value to an arbitrary location. For example, consider Figure 2.7, depicting

9

Chapter 2. Memory Trespass Vulnerabilities

A A+1 A+2 A+3A-1A-2A-3

00 00 00 AA
00 00 00 BB

00 00 00 CC
00 00 00 DD

00 00 00 DD CC BB AA

First Write:
Second Write:
Third Write:

Fourth Write:

Memory:

Memory Location:

Figure 2.7: Simulating writing a full 32-bit value

how the hexadecimal value0xddccbbaa may be written using four overlaid writes of the

values0xaa , 0xbb , 0xcc , and0xdd . In our running example, we assume a big-endian

architecture that allows unaligned writes.

We will now consider how a format string may be used to write an arbitrary value to

an arbitrary memory location in more detail. Consider the format string in Figure 2.8.

This format string will write the hexadecimal value0xddccbbaa to memory location

0xbfffff10 , assuming the format string itself may be considered the 12th argument

when the argument selector is used (if it is not, this value may be changed appropriately).

The first 16 bytes are the memory addresses where the byte-sized values will be written

to simulate the full word value. The following format directive prints a decimal number

zero-padded to 154 bytes. This raises the number of characters output so far to 170 bytes

(0xaa in hexadecimal). The next format directive uses the argument selector to select

the first memory address in the format string and writes this value to that location. The

following format directives do the same for the remaining bytes. As depicted in Figure

2.7, this simulates a write of the full 32-bit value to our chosen memory location. Careful

construction of format strings using this technique allows an attacker to write an arbitrary

value to an arbitrary location.

10

Chapter 2. Memory Trespass Vulnerabilities

\xbf\xff\xff\x10\xbf\xff\xff\x11
\xbf\xff\xff\x12\xbf\xff\xff\x13
%154d%$12n%17d%$13n%17d%$14n%17d%$15n

Figure 2.8: Format String to write0xddccbbaa to 0xbfffff10

11

Chapter 3

Code Injection Exploits

A code injection exploit consists of several components: vulnerability, vector, payload,

string, and delivery.

• For exploitation to be possible, there must be avulnerabilitypresent in the program

allowing a malicious user to corrupt program memory.

• The exploitvectoris the mechanism by which the exploit diverts control of the vul-

nerable program into the payload, executing the attacker’s code with the capabilities

and privileges of the vulnerable program1. Several of the more common types of

code injection vulnerabilities and exploitation methods are described below.

• The exploitpayloadis the machine code to be injected into the process address space

for execution.

• The payload and vector are encoded together into the exploitstring, the sum of the

input sent to exploit the vulnerability. The exploit string satisfies the constraints

1Note that a code injection exploit is different from a computervirus. A virus infects and alters
the stored executable file of the program, whereas code injection exploits infect a program while it
is running.

12

Chapter 3. Code Injection Exploits

of communication with the vulnerable program required to reach the vulnerable

portions of the code. For example, the exploit string may encode the payload and

vector in the headers and filename, respectively, of a well-formed HTTP request.

• This entire sequence of input is sent to the vulnerable program by means of the

exploitdelivery. The exploit delivery may be through a remote network connection,

local command-line argument, or local environment variable.

3.1 Exploit Vectors

A code injection exploit uses anexploit vectorto direct execution of the process to a

location of the attacker’s choosing. The most common exploit vector is thestack smash,

where the return address in a stack frame is overwritten through exploitation of a buffer

overflow. In general, memory trespass vulnerabilities that allow arbitrary memory writes

may be used to overwrite any of a multitude of stored program addresses in the process’

address space including return addresses or other addresses. Both the stack smash and

some commonly targeted stored program addresses are discussed below.

3.1.1 Stack Smash

In compiled C code, whenever a procedure is called, an activation frame is allocated on

the stack segment. The called procedure uses the activation frame to store the old values

of used registers and to reserve space for data local to the execution of the procedure. The

activation frame also stores thereturn address, the memory address at which execution will

resume when the procedure has finished executing. When the called procedure completes

execution, the saved registers are restored and control resumes at thereturn address.

A stack smashing[22] attack is a buffer overflow that overflows a buffer allocated

13

Chapter 3. Code Injection Exploits

char line[512];
...
gets(line);
...

Figure 3.1: Buffer Overflow Vulnerability in BSDfingerd

on the vulnerable program’s stack segment, causing data in the activation record to be

overwritten. A knowledgeable attacker may overwrite the saved return address with an

address within user input, causing the program to “return” into attacker-supplied machine

code.

This form of attack was first publicly identified in the 1988 Morris Worm. The Morris

Worm exploited a stack overflow in the BSDfingerd daemon on the VAX architecture.

The BSD fingerd , running from the Internet “Super Server”inetd , accepted user

input via a call to the C standard library functiongets , storing the input in a fixed-length

buffer on the stack. The library functiongets reads a line of input from standard input

into the passed buffer until a terminating newline orend-of-filecharacter is encountered in

the input. The vulnerable code resembled the fragment in Figure 3.1.1.

The call togets reads a line of input and stores it in the variableline , which is

declared as an automatic variable allocated in the current stack frame. If the input is longer

than 512 characters, other information on the stack will be overwritten by the call togets .

The Morris Worm sent an exploit string 536 bytes long containing VAX machine code and

replacement values for the activation record [19]. This overwrote the return address with

the address of the exploit payload on thefingerd process’ stack, causing execution

to divert into the supplied machine code which spawned aroot (the Unix Super User)

privileged shell.

Stack smashing buffer overflow attacks and their causes are well understood. However,

14

Chapter 3. Code Injection Exploits

they are still one of the most common form of security vulnerabilities.

3.1.2 Overwriting Stored Program Addresses

Several types of memory trespass vulnerabilities allow the attacker to write a chosen value

to a chosen location. Vulnerabilities that allow this include the previously discussed format

string vulnerabilities as well as heap corruption and double-free vulnerabilities. The typi-

cal target of these arbitrary writes are stored program addresses used by the programming

language runtime environment.

Stored program addresses are used in many different contexts in compiled C programs.

As mentioned above, when a stack activation record is created, thereturn addressof the

caller is stored in it. Return addresses on the stack are frequent targets of arbitrary writes,

but in some cases they may be too dynamic and their exact location may be difficult to

predict. Shared library function addresses used by the runtime linker are a frequent target

with a predictable location. For example, on Unix systems that use the Executable and

Linking Format (ELF) [7], the addresses of imported shared library functions are stored in

the Global Offset Table. By overwriting an entry in the Global Offset Table, an attacker

may cause the next call to a commonly used function to instead jump into the attacker’s

exploit payload. Finally, if the program makes use of them, stored function pointers or

setjmp(3) /longjmp(3) jmpbufs may also be overwritten.

3.2 Code Injection Exploit Payloads

Code injection exploit payload is most commonly referred to asshellcode, as the most

common task is to execute an interactive shell. However, many other more specialized

functions are both possible and common, so we will discuss the exploit payload in the

general sense. Generally, the exploit payload is the machine code fragment injected into

15

Chapter 3. Code Injection Exploits

the vulnerable program for execution.

Although the payloads are typically reusable and interchangeable, there are several

constraints on their construction and execution that make the task of writing exploit pay-

loads non-trivial. The code fragments must be completely position independent, making

little or no assumptions about their execution environment. In addition, because the code

fragments are encoded withinNULL-terminated strings, they must avoid havingNULL-

bytes in their instruction encodings or else the exploit string may be truncated. This makes

it impossible to encode certain instructions. For example, this often presents difficulties in

the encoding of forward branches and instructions to clear registers. The code fragments

must be written in hand-coded assembly language specific to the target platform and clever

tricks must often be employed to avoidNULL-bytes.

There are several tricks commonly employed to facilitate construction of complex pay-

loads within the previously mentioned constraints. The payload may use the inherited

value of the stack pointer for temporary storage as long as its use does not overwrite the

executing payload. An ad-hoc data section may be included in the exploit string if the

executing payload can determine the memory address at which it is executing. This can

be done in a variety of clever ways, some of which are demonstrated in Figure 3.2 [21].

With a pointer to the executing code, the payload can load values from the ad-hoc data

section at the end of the payload. Many payloads store strings or other data structures in

this manner. For example, the path to an executable or a shell command to execute may be

stored there. To avoid the difficulty ofNULL-byte free encoding, the bulk of the payload

may beexclusive-ored with a constant and stored in the payload data section.

3.2.1 Unix Payloads

The assembly language interface for performing system calls under Unix-like operating

systems makes construction of exploit payloads for these systems relatively straightfor-

16

Chapter 3. Code Injection Exploits

Moving value of program counter to registeri7 on SPARC:

a: nop
b: bn,a a
c: bn,a b

call c

Moving value of program counter to registerr31 on PowerPC:

a: xor. r5, r5, r5
bnel a
mflr r31

Moving value of instruction pointer to registereax on IA-32:

call next
next: pop %eax

Figure 3.2: Methods of Obtaining Address at Which Code is Executing

ward. Under Unix-derivative operating systems, a system call is performed by initiating a

software interrupt or system trap. The specific system call is selected by placing the system

call number, usually an unsigned integer, in a register. Under most operating systems, the

system call numbers remain constant under every release, as this is what permits statically

linked executables to run under more than one release of the operating system. However,

some operating systems such as AIX change system numbers with each operating system

release to discourage the use of statically linked executables. System call parameters are

pushed onto the stack or stored in registers. Upon completion, the result of the system call

is typically returned in a register.

For local Unix exploits, the typical exploit payload simply performs theexec system

call to execute/bin/sh , giving the attacker a shell with the privileges of the vulnerable

program. For remote exploits, the typical payload listens on a TCP port for a connection

17

Chapter 3. Code Injection Exploits

set 0x2f62696e, %l0 ! (void*)sh = "/bin";
set 0x2f6b7368, %l1 ! (void*)sh + 4 = "/ksh";
std %l0, [%sp - 24]
st %g0, [%sp - 16]
sub %sp, 24, %o0 ! %o0 = "/bin/ksh";

xor %sp, %sp, %o1
std %o0, [%sp - 8]
sub %sp, 8, %o1 ! %o1 = {NULL};

xor %sp, %sp, %o2 ! %o2 = NULL;

mov 59, %g1
ta 8 ! execve(sh, argv, NULL);

Figure 3.3: SPARC exploit payload to execute/bin/ksh

upon which it executes/bin/sh , allowing the attacker to connect to an interactive shell

running on the remote machine. A close variant makes an outbound TCP connection on

which it runs/bin/sh . In this scenario, the attacker starts a process listening on a TCP

port and when the payload is executed a connection is made to the attacker’s listening

process and the attacker is presented with an interactive shell on the remote machine.

Two example Unix payloads are listed in Figures 3.3 and 3.4. The payloads execute

an interactive shell under the Solaris operating system on the SPARC architecture and

under the Mac OS X operating system on the PowerPC architecture, respectively. These

payloads were written to ensure aNULL-byte-free encoding and have been tested in simple

dynamic machine code injection exploits.

18

Chapter 3. Code Injection Exploits

execsh:
;; Don’t branch, but do link. This gives us the
;; location of our code. Move the address into
;; GPR 31.
xor. r5, r5, r5 ; r5 = NULL
bnel execsh
mflr r31

;; Use the magic offset constant 268 because it
;; makes the instruction encodings null-byte free.
addi r31, r31, 268+36
addi r3, r31, -268 ; r3 = path

;; Create argv[] = {path, 0} on the stack.
stw r3, -8(r1) ; argv[0] = path
stw r5, -4(r1) ; argv[1] = NULL
subi r4, r1, 8 ; r4 = {path, 0}

;; 59 = 30209 >> 9 (trick to avoid null-bytes)
li r30, 30209
srawi r0, r30, 9 ; r0 = 59
sc ; execve(path, argv, NULL)

path: .asciz "/bin/sh"

Figure 3.4: PowerPC exploit payload to execute/bin/sh

3.3 Defenses Against Code Injection Exploits

A successful code injection attack requires the existence of an exploitable memory tres-

pass vulnerability, successful exploitation of the memory trespass vulnerability in order

to create an exploit vector, sufficient knowledge of the runtime memory image to create

the exploit vector, the ability to execute the payload, and the capability of the payload to

perform actions of use to the attacker. Defenses against code injection exploits stop or

restrict one or more of these phases.

19

Chapter 3. Code Injection Exploits

Static defenses against code injection exploits ([14] [30] [25]) target the first phase

of the attack, the existence of the vulnerability. Static source code analysis tools may

use supplemental code annotations or declarations to aid in the operation of automated

tools. Such automated tools have been successful in detecting many classes of buffer

overflow and format string vulnerabilities. However, the adoption of such tools has not

been widespread.

Dynamic defenses such as StackGuard [8] and Stack Shield [29] detect and prevent the

operation of the exploit vector. StackGuard places acanaryvalue before the return address

in the stack activation record which is verified before the subroutine returns. If the canary

value was overwritten by an attempted stack smashing attack, an executable compiled with

the StackGuard compiler extensions will halt execution and log the exploitation attempt.

Stack Shield takes a different approach by storing the return addresses out-of-band so

that they may not be overwritten by an overflowed stack buffer. Both systems require

application source code for recompilation using static compiler extensions.

As an alternative approach to detecting and preventing exploit vectors, the runtime

memory image of the executable may be altered in such a way as to make construction

of a correct exploit vector infeasible. Forrest, Somayaji, and Ackley [12] describe sev-

eral techniques for introducing diversity into computer programs at both compile-time

and load-time. The techniques described involve adding or deleting nonfunctional code,

reordering code, or changing memory layout. As a sample implementation, they modi-

fied the GNU C Compiler (gcc) to add a random amount of stack padding to any stack

allocations larger than a chosen threshold.

The ability to execute payload may be hampered by making writable segments of the

process address space non-executable. The Sun Solaris Operating Environment on SPARC

hardware is able to make the stack segment non-executable. With the option turned on,

any process attempting to execute code on the stack is terminated (and optionally logged

to syslog). In programs conforming to the 64-bit SPARC ABI, a non-executable stack

20

Chapter 3. Code Injection Exploits

is the default. Future pure 64-bit releases of the operating system will implement this for

all system binaries. The PaX [28] project is an attempt to bring hardware-enforced non-

executable pages to the IA-32 platform. Intel Pentium and newer IA-32 processors contain

separate Translation Lookaside Buffers for both instructions and data. These two buffers

are usually kept consistent as they are both loaded from the same page table, but they may

be manipulated such that they contain different entries and page protections. PaX uses

this architecture feature to implement non-executable pages on IA-32 Linux and Windows

systems.

Finally, some novel approaches involve detecting and hampering the execution of for-

eign code. Process Homeostasis [26] is a Linux kernel extension that detects anomalous

behavior in running processes and creates exponential delays in system calls when se-

quences of system calls do not match the normal execution profile of the process. Such an

approach globally makes it difficult for an attacker to use even a successful exploit to her

advantage.

21

Chapter 4

Dynamic Binary Translation

A Dynamic Binary Translationsystem dynamically decomposes an executable into ma-

chine code fragments that may be executed directly or in a software interpreter. While

executing in an interpreter, statistics may be gathered on how often the fragment is ex-

ecuted and how often specific branches in the fragment are taken. The most frequently

used fragments are transformed and cached for later execution. Once fragments are in

the cache, they may be merged with other fragments when they are found to be separated

by a direct unconditional branch. This general architecture is used for dynamic program

optimization, introspection, instrumentation, and architecture translation.

Several notable projects using dynamic binary translation are SIND, DynamoRIO [4],

FX!32 [6], and DAISY [10]. SIND and DynamoRIO are described in more detail below.

4.1 SIND

SIND is an multi-platform open-source framework for binary translation currently in de-

velopment. SIND uses the general dynamic binary translation system architecture de-

22

Chapter 4. Dynamic Binary Translation

DispatchInterp

Bootstrap

Transformer
Fragment Cache

Transformer

Memory
Manager

Running
Binary

Figure 4.1: SIND modules

scribed above, but applies modular and object-oriented design to provide an easily exten-

sible and flexible framework for the research and development of applications and tech-

niques for dynamic binary translation. The current target platforms are Solaris on SPARC

and Mac OS X on PowerPC.

The SIND system consists of several modules, depicted in Figure 4.1. The primary

modules of interest are the bootstrapper, dispatcher, interpreter, memory manager, code

transformers, and fragment cache. One of the goals in the development of SIND is the

evaluation of techniques for dynamic binary translation. Therefore, many of the modules

are implemented using several approaches of varying complexity and efficiency. This will

allow systems built using SIND to use the fastest implementations except where a more

complicated implementation is needed for functionality required by the dynamic binary

translation system. This approach also allows optimized module implementations using

platform-specific features to be used instead of the more portable but slower implementa-

tions where available.

The bootstrapper is the mechanism by which application control is assumed by the

SIND system. Currently, three techniques are implemented using theptrace [16] pro-

cess debugging facility, theprocfs [15] process filesystem, and the dynamic linking

23

Chapter 4. Dynamic Binary Translation

facilities of the Solaris operating system. Theptrace andprocfs implementations set

a breakpoint trap at the initial execution point of the executable. When the breakpoint trap

is triggered, the application context is saved and restored in the software interpreter where

execution is resumed. The third technique uses a shared library which upon initialization

instruments the executable to hand over control to SIND when execution starts at the entry

point start . Currently, this is done by mapping the page containing thestart sym-

bol non-executable and registering a signal handler to catch when execution in that page

is attempted.

The dispatcher controls context switches between the application code executing di-

rectly on the processor and in the software interpreter. The dispatcher also is responsible

for implementing trace identification to create fragments, determining which fragments

are to be placed in the fragment cache, and when frequently-executed fragments are to be

linked into a super-fragment. The dispatcher is also responsible for choosing the appropri-

ate module implementations based on the features in the host platform.

The SIND interpreter is a software-based instruction set architecture interpreter. Un-

like architecture emulators, the interpreter simply interprets the instruction stream as cor-

rectly and efficiently as possible without simulating the low-level details of the emulated

architecture. This is simplified by only interpreting user-mode instructions. During in-

terpretation, the interpreter collects statistics and profiling data on the code fragment for

potential use by the code transformers.

The memory manager abstraction controls memory reads and writes in the address

space of the application when it is running in the interpreter. This abstraction allows

SIND to operate in a different address space from the application if desired where mutual

access to data could be provided through shared memory. Doing so would protect SIND

structures and the fragment cache from a potentially malicious application. Alternatively,

the memory manager could transparently allow SIND and the application to share the same

address space.

24

Chapter 4. Dynamic Binary Translation

Using data gathered during code trace interpretation, the SIND code transformers

rewrite the instruction stream for increased performance, monitoring, or application se-

curity. Multiple transformers may be chained together to perform several operations on

the code fragments. An abstracted instruction set interface may be used by the transform-

ers to implement instruction-set independent transformations where possible.

The fragment cache manages and stores the most frequently executed application code

fragments. In addition, the fragment cache is responsible for inserting prologue and epi-

logue code to manage the SIND context switch when control enters and leaves the frag-

ment. The fragment cache will also support fragment linking whereby fragments that

branch to each other will be linked together into a super-fragment, eliminating unneces-

sary SIND context switching.

The design of SIND is described in further detail in [23].

4.2 DynamoRIO

DynamoRIO [4] is an extension of the earlier Dynamo [3] system. Dynamo was a dy-

namic binary optimization system for HP-PA binaries on the HP-UX operating system.

DynamoRIO incorporates an updated version of Dynamo that operates on IA-32 binaries

under both Windows and Linux. Although still in development, the RIO runtime introspec-

tion and optimization architecture has been used to implement a secure program execution

method calledprogram shepherding[13].

RIO takes a slightly different approach to dynamic binary translation from SIND and

the earlier Dynamo. Instead of interpreting the binary before gathering fragments, all ap-

plication code is executed out of code caches. The application code is broken up intobasic

blocks, instruction sequences ending with a single control transfer instruction, which are

executed directly out of the basic block cache. At the end of a basic block, RIO resumes

25

Chapter 4. Dynamic Binary Translation

void dynamorio_init();
void dynamorio_exit();
void dynamorio_basic_block(void*, app_pc, InstrList*);
void dynamorio_trace(void*, app_pc, InstrList*);
void dynamorio_fragment_deleted(void*, app_pc);

Figure 4.2: DynamoRIO Hook Functions

control and examines the target of the control transfer instruction. If the target is not in

the basic block cache, RIO will place it in the cache and resume execution in the new

basic block. If the target is already in the cache, the two basic blocks will be linked to-

gether with a direct jump. During execution, DynamoRIO identifies potentialtrace heads.

These are targets of backward branches or exits from existing traces. Execution counts

are maintained for each of these trace heads. When a predefined execution threshold is

reached, thehot traceis placed in the trace cache. These collected hot traces are the most

frequently executed code fragments in the executable and should be the targets of dynamic

optimizations.

4.2.1 DynamoRIO Interface

DynamoRIO exports an Application Programming Interface (API) to enable construction

of custom optimization and instrumentation utilities, calledDynamoRIO clients. The API

includes well-structured abstractions for creating and manipulating IA-32 instructions as

well as DynamoRIO-specific data structures. This allows the DynamoRIO client program-

mer to operate on instruction streams without detailed knowledge of IA-32 instruction

encoding, only an understanding of the IA-32 instruction set is necessary. The API also

defines several hook functions that will be called by DynamoRIO if they are defined by

the user in a shared library. The declarations of these functions are listed in Figure 4.2.1.

26

Chapter 4. Dynamic Binary Translation

Thedynamorio init anddynamorio exit hook functions are called when Dy-

namoRIO is initialized and about to terminate, respectively. When a basic block is created,

the hook functiondynamorio basic block is called to allow it to transform the code

fragment before it is placed in the basic block cache. Similarly, thedynamorio trace

function is called when a trace is created to allow the trace to be transformed before it

is placed in the trace cache. Whenever a fragment is deleted from either cache, the Dy-

namoRIO client is notified through invocation ofdynamorio fragment deleted .

27

Chapter 5

Security Approaches Using Dynamic

Binary Translation

Many defenses against code injection exploits are implemented as compiler extensions.

For example, StackGuard and Stack Shield are implemented as extensions to the GNU C

Compiler. However, for a number of reasons, re-compilation of security-critical applica-

tions may not be feasible. This may be due to a lack of available source code, time, or

expertise. Fortunately, many of the techniques used by these protection mechanisms may

be performed using dynamic binary translation.

The following sections discuss the use of dynamic binary translation to implement

several techniques to defend against code injection exploits.Out-of-Band Return Address

Verification is a code rewriting technique that is able to stop all stack smashing attacks.

System Call Sandboxingis a technique to limit the effects of untrusted and potentially

malicious code.

28

Chapter 5. Security Approaches Using Dynamic Binary Translation

5.1 Out-Of-Band Return Address Verification

Stack Shield [29] is a tool to protect applications against stack smashing attacks. It re-

quires no source code modifications. One of the techniques implemented by Stack Shield

modifies the subroutine calling sequence to store return addresses in a dedicated stack

rather than in the activation records on the program stack segment. The implementation

adds a fixed-size array to the data segment of the program for storage of the global return

address stack. The subroutine epilogues are modified to push their return address onto this

stack. Before returning, the subroutines compare the return address from the activation

record with the return address popped off the global return address stack. If they match,

the subroutine returns normally. However, if they do not match, the program can (depend-

ing on a compile-time option) either halt or continue execution using the return address

from the global return address stack.

We implemented a generalization of the technique used by Stack Shield, which we call

Out-Of-Band Return Address Verificationas a DynamoRIO client. We instrumented each

call instruction to push the expected return address onto an out-of-band return address

stack and instrumented each return instruction to compare the target location with the

address on the top of the out-of-band stack. If the return address from the activation

record on the program stack does not match the address on the out-of-band return address

stack, this indicates that the return address has been overwritten and several actions will

be taken: the intrusion attempt will be logged and execution can be halted or allowed to

continue using the out-of-band return address.

This technique is effective against allstack smashingbuffer overflow exploits and other

exploitation methods that target return addresses on the stack. In a stack smashing attack,

only data following the overflowed buffer can be overwritten, so the out-of-band stack

stored in heap memory cannot be overwritten and the overwritten return address will be

detected. Format string or heap corruption attacks that target the return address on the

29

Chapter 5. Security Approaches Using Dynamic Binary Translation

program stack will similarly be detected and prevented.

5.1.1 Implementation

We implemented Out-Of-Band Return Address Verification as a DynamoRIO client using

the DynamoRIO interface. The implementation is able to execute any binaries that Dy-

namoRIO executes and successfully detects attempted modifications of the return address

without noticeable performance degradation.

To ensure that all code is captured before execution, instrumentation is applied at the

basic block level usingdynamorio basic block . Before being placed into the code

cache, each block of code is instrumented to call a monitoring function just before execut-

ing each direct call, indirect call, or return instructions. These monitoring functions store

the correct return address out-of-band on function calls and verify that the return address

agrees with the out-of-band value on function returns.

The current implementation uses a fixed-size array treated as a stack for return address

storage. On a function call, the address of the instruction following the call instruction is

pushed onto the stack. On a function return, the target address of the return is compared to

the address stored on the out-of-band return address stack. If the addresses do not match,

the event is logged as a possible intrusion attempt. At this point, several actions may occur

(depending on system administrator preference). The process may be halted either by a

call to exit to terminate orabort to terminate and dump core for later examination.

Alternatively, the out-of-band return address may be used to attempt to continue execution.

Although program execution will continue, the stack smash attempt may have overwritten

other data structures on the stack, which may cause the program to crash.

30

Chapter 5. Security Approaches Using Dynamic Binary Translation

Challenges

The implementation posed some engineering challenges. In particular, there was some

difficulty ensuring that each subroutine call had a corresponding subroutine return and

vice-versa. Some special cases were needed to identify spurious calls or returns that should

be ignored as described below.

Due to some aspects of run-time linking, not every call results in a recorded return

address. For example, position-independent code often needs to determine the memory

location at which it is executing. User-mode code cannot directly access the instruction

pointer registerEIP (the program counter register on the IA-32 architecture) so position-

independent code often uses a trick to retrieve the value of the instruction pointer using

one of the methods show in Figure 3.2.

In code that uses this method, there is no correspondingret instruction, so such

“calls” are not recorded in the out-of-band return address stack.

All call instructions with both source and target addresses in the memory region

of the runtime linker executable code are ignored because they are frequently the results

of other spurious calls or returns and may be safely ignored, as described below. For

similar reasons, returns with both source and target addresses in the runtime linker code

are also ignored. Returns from the runtime linker into a shared library are the result of

imported symbol resolution. When the imported shared library function is called for the

first time, a runtime linker function is called to look up the address of the desired function.

This function writes the resolved function address into the ELF Global Offset Table and

“returns” into the resolved function. These return instructions have no corresponding call

instruction, so they are also ignored.

Similar special cases are also needed for calls and returns involving the DynamoRIO

shared libraries. When a program is linked with the DynamoRIO libraries, DynamoRIO

takes over execution of the program during shared library initialization. The first basic

31

Chapter 5. Security Approaches Using Dynamic Binary Translation

block placed into the cache and executed contains the return from the DynamoRIO initial-

ization and must be ignored. Similarly, there are returns into DynamoRIO at the end of

program fragments for which no matching calls exist. For these reasons, calls or returns

with a source or target address in the text segment of a DynamoRIO library are ignored.

Identification of calls and returns to or from the runtime linker involves correlating

the source and target addresses to mapped memory regions in the process. The current

implementation reads/proc/self/maps 1 at initialization time and stores the address

range and pathname of the object mapped into that range in a linked list. For each control

transfer instruction source or target address, the address is correlated to the object mapped

at that address by traversing the list. This is then used to identify whether the call or return

should be ignored as previously described.

Ignoring these call and return instructions is safe because the return addresses are over-

written by either application or shared library code. The runtime linker does not deal with

user input2 so an overflow may not be induced within it. Additionally, even though pro-

gram control may have gone through the runtime linker in resolving a shared library rou-

tine, no addresses within the runtime linker will be in the call chain; the shared library

function returns directly to where it was called in the application code. Therefore, when

an unbounded string operation occurs, only the return addresses of functions in the appli-

cation or shared library may be overwritten, and these returns are all validated. Also for

this reason, all the return addresses in the call chain that can be specifically targeted by

exploitation of a format string vulnerability will be validated.

1/proc/self/maps is a pseudo-file on theprocfs filesystem that contains a textual listing
of the mapped memory segments of the current process.

2The linker’s primary interaction with the user is through environment variables such as
LD PRELOADwhich are ignored when runningsetuid root executables.

32

Chapter 5. Security Approaches Using Dynamic Binary Translation

5.1.2 Conclusion

After identifying the special cases and spurious calls that should be ignored, implemen-

tation of the technique proved very straightforward. The technique and implementation

successfully detect and prevent several exploitation techniques without noticeable perfor-

mance degradation.

However, there are several limitations. The current implementation uses a fixed-size

array for storing return addresses. This unnaturally limits the maximum call depth. A

dynamically resized array could provide constant amortized accesses while allowing the

maximum call depth permitted by available memory. In addition, while the technique

described successfully stops all “off-the-shelf” attacks against stack return addresses, it is

vulnerable to a targeted attack using vulnerabilities that allow multiple arbitrary addresses

to be overwritten (these include format string and heap corruption vulnerabilities). If the

out-of-band return address stack is stored in a known or predictable location, the attacker

may overwrite both the return address in the stack segment and in the out-of-band stack.

However, by using a dynamically resized array, the return address stack would not remain

at a fixed location and would make this targeted attack infeasible.

Several approaches could be taken to improve performance. The current use of a linked

list to store memory region mappings could be improved to minimize the lookup time by a

variety of techniques. A simple hash table indexed by the first 22 bits of the address would

speed up lookup times considerably.

5.2 System Call Sandboxing

A sandboxis a restricted execution environment for running potentially untrusted code.

Programming language environments typically use sandboxes to ensure secure execution

of mobile code. For example, the Java programming environment uses a sandbox when

33

Chapter 5. Security Approaches Using Dynamic Binary Translation

executing untrusted Java Applets. The Java sandbox limits the access of untrusted code

to potentially harmful class methods. A similar approach may be used to control the

execution of any system process by restricting the use of specific UNIX system calls.

A system call is a request for service from the user to the operating system. The

operating system kernel acts as a monitor between the user and system resources. In this

way, user-mode code does not directly interact with resources such as files or devices, but

instead makes system calls to request that the operating system kernel perform the desired

operations. Typically, system calls provide the functionality to interact with files, devices,

other processes, or the network. The system calls enforce the UNIX security model by

only permitting authorized actions as determined by file and resource permissions. The

actions of a process are effectively constrained by restricting which system calls may be

performed, and how the allowed system calls may be used. For example, by limiting

certain system calls, an untrusted process may be restricted from using the network or

performing any changes to the file system even though file access permissions alone may

allow it to.

On Linux/IA-32, the system call convention is the following. The system call number

is placed in registerEAXand up to six arguments are placed in registersEBX, ECX, EDX,

ESI , EDI , andEBP, in that order. If there are more than six arguments to the system

call, they are stored in a structure in memory and the address of that structure is passed

as the first and only argument inEBX. The system call is finally initiated by performing a

software interrupt instruction,int $0x80 . After this instruction, the return value of the

system call is contained in registerEAX. If there was an error executing the system call,

the return value is-1 and the global variableerrno is set to an error code representing

the error that occurred.

34

Chapter 5. Security Approaches Using Dynamic Binary Translation

...
mov %edx, 0x10(%esp)
mov %ecx, 0xc(%esp)
mov %ebx, 0x8(%esp)
mov %eax, $0x00000005
int $0x80
...

Figure 5.1: System Call Before Instrumentation

5.2.1 Implementation

The approach we take is to replace system call interrupts with calls to a monitor function

that performs the system calls on behalf of the application. This monitor function traces

system calls (similar to the common Unix utilitiesstrace(1) andtruss(1)) and se-

lectively executes system calls based on examination of the specific system call requested

or the arguments to the call. This mechanism is used to implement a sandboxing scheme

based on restricting use of system calls.

The implementation, a DynamoRIO client, examines each basic block before execu-

tion and replaces system calls, the IA-32 instructionint $0x80 , (Figure 5.2.1) with

a sequence of instructions that save the application’s execution state, call the monitoring

function chk syscall , restore application state, and resume execution (Figure 5.2.1).

The system call monitoring functionchk syscall takes as arguments the requested sys-

tem call number and parameters. The return value ofchk syscall will be interpreted

as the return value of the system call by the application. For example, if the system call is

denied,chk syscall may seterrno to EPERM(signaling that the operation was not

permitted or permission was denied) and return-1 .

An arbitrary static or dynamic sandbox policy may be implemented inchk syscall .

The prototype currently implements a static policy denying all use of network sockets.

35

Chapter 5. Security Approaches Using Dynamic Binary Translation

...
mov 0x4002079c, %esp
mov %esp, 0x400207d4
pushf
pusha
push %ebp
push %edi
push %esi
push %edx
push %ecx
push %ebx
push %eax
call $0x40023f98
mov 0x40020780, %eax
add %esp, $0x1c
popa
popf
mov %esp, 0x4002079c
mov %eax, 0x40020780
...

Figure 5.2: System Call After Instrumentation

However, simple extensions may yield policies restricting file accesses to a specified area

of the file system (simulating thechroot system call) or network communication to a

trusted subset of hosts.

5.2.2 Conclusion

The small number of system calls in Unix operating systems make them an ideal interface

to restrict for the implementation of advanced security models or policies. Using dynamic

binary translation to rewrite system calls allows these policies to be safely enforced in user

code. In addition, because the policy may be selected when the application is launched,

different applications may be restrained by different security policies or models. Another

36

Chapter 5. Security Approaches Using Dynamic Binary Translation

benefit of implementing the security policies in user-mode code is simplified development.

Security policy mechanisms may be written and debugged without the added complexity

of kernel-level development.

The performance overhead of system call sandboxing is primarily dependent on the

complexity of the enforcement of the security policy. In the prototype implementation,

the system call policy check is a simple integer comparison. Therefore, the performance

penalty is minimal. More complex security policies may add more performance overhead.

However, efficient implementation strategies may minimize this overhead.

Due to the design of the DynamoRIO dynamic binary translation system, this form

of sandboxing is inescapable. For example, a malicious user may attempt to bypass the

system call instrumentation by jumping to code that executes the interrupt instruction. In

this case, the target of the jump would be treated as a new basic block and the system

call instrumentation code would be inserted. However, malicious user code may attempt

to modify the code in the DynamoRIO basic block and trace caches. An attack of this

style is acknowledged by the DynamoRIO authors and they contend that the attack may be

stopped by write-protecting the code caches and other DynamoRIO data while application

code is being executed.

37

Chapter 6

Conclusions

We introduced a new classification of computer security vulnerabilities,memory trespass

vulnerabilities. Memory trespass vulnerabilities are software weaknesses that allow mem-

ory accesses outside of the semantics of the programming language in which the software

was written. Common memory trespass vulnerabilities include buffer overflow, format

string, signed integer cast, integer overflow, out-of-bounds array access, and double-free

vulnerabilities. Memory trespass vulnerabilities may be used to perform acode injection

exploit whereby an attacker may divert program control into dynamically injected machine

code.

We also introduced a decomposition of code injection exploits. A code injection ex-

ploit consists of the vulnerability, vector, payload, string, and delivery. The vulnerability,

a memory trespass vulnerability, makes exploitation possible. The exploit vector is the

mechanism by which control of the program is diverted to a location of the attacker’s

choosing. The exploit payload is the crafted machine code injected into the process. The

sum of the input to the vulnerable program, including the encoded exploit vector and pay-

load is the exploit string. Finally, the exploit delivery is the method by which the input

is sent to the program. The exploit delivery may be through a network connection, local

38

Chapter 6. Conclusions

environment variable or command-line argument. The decomposition of code injection

exploits into these components facilitates the classification of defenses against these at-

tacks.

Computer security, especially application security, is an arms race between attackers

and defenders. Since the first publicly identified buffer overflow vulnerability, both attacks

and the vulnerabilities they exploit have grown in sophistication. For example, the differ-

ence in sophistication between the exploitation method used by the Morris worm and the

creative exploitation of the recent Apache Chunked Encoding vulnerability [9] is dramatic.

The use of non-reentrant functions in signal handlers has even proved to be exploitable

remotely in some cases [32]. In addition, the capability to discover vulnerabilities in ap-

plications has grown significantly through the use of advanced reverse engineering [11]

and automated black-box testing [1]. Although the number of trivially exploitable mem-

ory trespass vulnerabilities in major applications is going down, the vulnerabilities that

do remain are increasingly difficult to spot for both attackers and defenders. For exam-

ple, the Apache Chunked Encoding vulnerability existed in the extremely popular open-

source web server for over 4 years before it was disclosed. Subtle vulnerabilities even

have been found in the OpenBSD operating system, whose code base undergoes regular

manual source code audits for potential security vulnerabilities.

In the same span of time, much work has been done in creating defenses against code

injection exploits. These defenses may target one or more of the phases of a successful

code injection exploit attempt. In this work, there has been a wealth of creative solutions,

many of them described in Section 3.3. However, none of these systems is perfect, and

there have been many successful attacks against them ([24] [5] [31]). In order to keep

up with attack technology, defense systems must be more dynamic in both their design

and implementation. Systems using a variety of techniques and using diversity in their

implementation may fare much better than specialized static solutions. Dynamic binary

translation has proven itself to be a very viable solution for implementing dynamic defense

39

Chapter 6. Conclusions

systems.

As shown by the two implemented approaches, dynamic binary translation can be used

to implement approaches that would typically be implemented as a static compiler or op-

erating system extension. Using dynamic binary translation to rewrite application code

at run-time obviates the need for application source code or permanent changes to the

application. This enables the application changes to be performed randomly at run-time,

making the application a moving target. The System Call Sandboxing implementation

showed how dynamic binary translation may be used to implement a system that would

typically be implemented in the operating system kernel. This enables specialized sys-

tems to be built to protect applications without requiring global changes to the operating

system (which may not be possible without operating system source code access). How-

ever, dynamic binary translation is not just a tool for re-implementing existing systems; its

use also enables a new generation of dynamic defense systems. The investigation of the

systems made possible by dynamic binary translation remains an area of promising future

research.

6.1 Future Work

Dynamic binary translation is a useful tool for several areas of future research. One area of

potential research is techniques of introducing dynamic diversity into executables. Build-

ing upon earlier work describing diversified compilation [12], dynamic binary translation

can enable diversification to be performed at run-time. Using static diversification success-

fully stops mass exploitation of vulnerabilities, but a targeted attack by a knowledgeable

attacker may succeed. Diversifying a program at run-time would make it difficult for a de-

termined attacker to tune their attack when the parameters needed to successfully exploit

the vulnerability will differ with every execution of the program. Dynamic diversification

will also have the same benefits of static diversification.

40

Chapter 6. Conclusions

Another interesting area of future research is in adaptive and self-regenerative systems.

A long-running server application under dynamic binary translation may initially run with

code transformations intended to detect attempted attacks. When the system determines

that it is under attack, the system may enable more secure, albeit expensive, code transfor-

mations until the attack subsides.

41

References

[1] Dave Aitel. Spike. http://www.immunitysec.com/spike.html.

[2] Bowen Alpern, Anthony Cocchi, Derek Lieber, Mark Mergen, and Vivek Sarkar.
Jalapẽno - a compiler-supported java virtual machine for servers.

[3] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: a transparent
dynamic optimization system. InSIGPLAN Conference on Programming Language
Design and Impleme ntation, pages 1–12, 2000.

[4] D. Bruening, E. Duesterwald, and S. Amarasinghe. Design and implementation of a
dynamic optimization framework for windows. In4th ACM Workshop on Feedback-
Directed and Dynamic Optimization (FDDO-4), December 2000.

[5] Bulba and Kil3r. Bypassing stackguard and stackshield.Phrack, 10(56), May 2000.

[6] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin a nd T. Tye, S. Yadavalli,
and J. Yates. Fx!32 a profile-directed binary translator, 1998.

[7] Tool Interface Standards Committee. Executable and linking format.
http://x86.ddj.com/ftp/manuals/tools/elf.pdf, 1995.

[8] Crispin Cowan, Calton Pu, David Maier, Heather Hinton, Peat Bakke, Steve Beattie,
Aaron Grier, Perry Wagle, and Qian Zang. Automatic detection and prevention of
buffer-overflow attacks.7th USENIX Security Symposium, 1998.

[9] Mark J. Cox. Apache httpd: vulnerability with chunked encoding.
http://online.securityfocus.com/archive/1/277268.

[10] Kemal Ebciŏglu and Erik R. Altman. DAISY: Dynamic compilation for 100% archi-
tectural compatibility. InISCA, pages 26–37, 1997.

[11] Halvar Flake. Graph-based binary analysis. InBlackhat Briefings 2002.

42

References

[12] Stephanie Forrest, Anil Somayaji, and David. H. Ackley. Building diverse computer
systems. InWorkshop on Hot Topics in Operating Systems, pages 67–72, 1997.

[13] Vladimir Kiriansky, Derek Bruening, and Saman Amarasinghe. Secure execution via
program shepherding. In11th USENIX Security Symposium, 2002.

[14] David Larochelle and David Evans. Statically detecting likely buffer overflow vul-
nerabilities. In10th USENIX Security Symposium, pages 177–190, 2001.

[15] Sun Microsystems. proc - /proc, the process file system. InSunOS 5.8 Manual,
chapter 4.

[16] Sun Microsystems. ptrace - allows a parent process to control the execution of a child
process. InSunOS 5.8 Manual, chapter 2.

[17] Sun Microsystems. The Java Hotspot performance engine architecture, 1999.

[18] David Moore. The spread of the code-red worm.
http://www.caida.org/analysis/security/code-red/coderedv2ana lysis.xml.

[19] Robert Morris. Morris worm source code.
http://sunsite.bilkent.edu.tr/pub/security/cerias/doc/morrisworm/worm-src.tar.gz.

[20] Tim Newsham. Format string attacks. Technical report, Guardent, Inc., September
2000.

[21] Last Stage of Delirium Research Group. Unix assembly codes development
for vulnerability illustration purposes. http://www.lsd-pl.net/documents/asmcodes-
1.0.2.pdf.

[22] Aleph One. Smashing the stack for fun and profit.Phrack, 7(49), 1996.

[23] Trek Palmer, Dino Dai Zovi, and Darko Stefanovic. SIND: A framework for binary
translation. Technical Report TR-CS-2001-38, University of New Mexico, 2001.

[24] Gerardo Richarte. Four different tricks to bypass stackshield and stackguard protec-
tion. http://www.corest.com/files/files/11/StackguardPaper.pdf, June 2002.

[25] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detecting for-
mat string vulnerabilities with type qualifiers. InProceedings of the 10th USENIX
Security Symposium, pages 201–220.

[26] Anil Somayaji and Stephanie Forrest. Automated response using System-Call delays.
pages 185–198.

[27] E. Spafford. The internet worm: Crisis and aftermath, 1989.

43

References

[28] PaX Team. Nonexecutable data pages. http://pageexec.virtualave.net/pageexec.txt.

[29] Vendicator. Stack shield. http://www.angelfire.com/˜ sk/stackshield/info.html.

[30] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken. A first step
towards automated detection of buffer overrun vulnerabilities. InNetwork and Dis-
tributed System Security Symposium, pages 3–17, San Diego, CA, February 2000.

[31] David Wagner and Paolo Soto. Mimicry attacks on host-based intrusion detection
systems. In9th ACM Conference on Computer and Communications Security, pages
255–264, 2002.

[32] Michal Zalewski. Delivering signals for fun and profit.
http://razor.bindview.com/publish/papers/signals.txt, 2001.

44

