
Analyzing Programs for Vulnerability to Bu�er Overrun Attacks�

Anup K. Ghosh and Tom O'Connor
Reliable Software Technologies Corporation

21515 Ridgetop Circle, #250, Sterling, VA 20166
phone: (703) 404-9293, fax: (703) 404-9295
email: faghosh,toconnorg@rstcorp.com

http://www.rstcorp.com

Abstract

This paper presents an approach for analyzing

security-critical software for vulnerability to bu�er

overrun attacks. In practice, bu�er overruns are

a commonly exploited attack against security-critical

software systems. Bu�er overrun attacks are made

possible by aws in designing and implementing soft-

ware. This paper describes a software analysis tool

that dynamically analyzes software source code to de-

termine the potential to successfully overrun program

bu�ers in order to execute arbitrary system com-

mands. The methodology employs software fault in-

jection to insert malicious strings into potentially vul-

nerable bu�ers during execution. If the bu�er overrun

attack is successful, arbitrary code can be executed at

the whim of the attacker on the host system. Pro-

grams that are found to be vulnerable can be forti�ed

to prevent bu�er overrun attacks from being successful

in the �eld. Three new algorithms for bu�er overrun

analysis are presented.

1 Introduction

In practice, most external security violations are
made possible by aws in software. The empirical
evidence of this assertion is stored in the archives of
Bugtraq1 | the on-line mailing list which discusses
awed software packages that have been exploited to
violate security. Nearly everyday, new aws discovered
in software that can be exploited to violate security are
posted to the list.

�This work is sponsored under the Defense Advanced Re-
search Projects Agency (DARPA) Contract F30602-95-C-0282.
the views and conclusions contained in this document

are those of the authors and should not be interpreted

as representing the official policies, either expressed

or implied, of the defense advanced research projects

agency or the u.s. government.
1Bugtraq archives can be viewed on-line at

http://www.netspace.org/lsv-archive/bugtraq.html

Other evidence is demonstrated by CERT advi-
sories and vendor initiated bulletins released by CERT
(www.cert.org). Since 1995, 25 out of 81 CERT ad-
visories mention bu�er overruns as the speci�c cause
of the particular program vulnerability described by
each advisory. Prior to 1995, the reporting in CERT
advisories left out the causes of program vulnerabili-
ties, making analysis an exercise in speculation.

The Bugtraq archive is an overt symptom of a
larger problem in software development today. Cur-
rently, software is developed and released in relatively
short cycles to meet market demands. Little security-
based testing is performed prior to release, and little
assurance is provided for end users as to the quality
(i.e., security) of the software that is purchased | be
it an operating system or a desktop application such
as a Web browser.

Once software is in the �eld, elite anonymous hack-
ers (i.e., experts) begin their informal analysis of the
software, searching for vulnerabilities that can be ex-
ploited. If successful, the exploit is widely distributed
among underground networks for other interested par-
ties to exploit. Note, that it no longer takes an expert
to exploit software, once the exploit is \in the wild".
Once enough systems are exploited in the �eld to gar-
ner notice, on-line discussion groups such as Bugtraq
and incident response groups such as CERT are no-
ti�ed of the vulnerability. In addition to alerting the
group of security-aware end users and system main-
tainers, the incident response teams are responsible
for notifying the software vendor of the problem if
they have not already heard. Generally, the vendor
is noti�ed �rst so that a patch to the software can be
released with the public announcement.

For companies that develop and release the soft-
ware, the expense in adequately responding to se-
curity vulnerabilities is very high, not to mention
the corresponding drop in consumer con�dence which

cannot be measured. Both Netscape and Microsoft
experienced well-publicized security-related aws in
their Internet browsers in 1997. Developers of operat-
ing systems such as Sun Microsystems and Hewlett-
Packard also spend considerable human resources
tracking bugs that have the potential to be security
aws in their commercial operating systems. Because
many commercial operating systems are now used in
enterprise-critical or defense-related applications, the
security of these systems is paramount for the com-
mercial OS vendor's consumers. The costs also trans-
fer to the end users. The time and expense involved for
system administrators to patch, upgrade, and main-
tain the security of computer systems is also very high
and growing with both new software and more sophis-
ticated attacks.

Once patched, the cycle starts anew either with
the patched software, the next release of the software,
or new software. The cycle of developing, releasing,
hacking, and patching software has resulted in more
costly software development, losses due to security in-
trusions, and the high cost to maintain computer sys-
tems. The costs of security vulnerabilities can be re-
duced substantially by addressing the problem at its
root: during software development.

This paper presents a technique and tool that ana-
lyzes software in source code form to detect one of the
most signi�cant vulnerabilities in software today: the
bu�er overrun. The tool performs dynamic white-box
analysis for vulnerability to bu�er overrun attacks.
The tool is best suited for developers or analysts of
software to determine whether program bu�ers are
vulnerable to overrun attacks. If vulnerable bu�ers
are found, the program code can be forti�ed using safe
coding practices such as using constrained bu�ers or
using safe input functions such as strncpy in C with
appropriate arguments. Another alternative is to use
stack smashing protection code such as those available
through StackGuard and MemGuard [7]. Bu�er over-
runs that do not smash the stack, but instead over-
write data in the same stack frame, cannot be pro-
tected against by StackGuard or MemGuard [5].

The goal of this research e�ort is to provide a tool
in the hands of developers so that programs can be
assessed for vulnerability to malicious attacks prior to
releasing the software | e�ectively breaking the cycle
of releasing software, then later patching it after the
vulnerable software has been installed in end users'
sites. While no technique can provide 100% assurance
of security, this tool provides another weapon in the
arsenal that software developers can use to develop
high quality software in security-critical applications.

2 How the bu�er overrun

attack works

Bu�er overrun attacks are made possible by pro-
gram code that does not properly check the size of
input data. When input is read into a bu�er and the
length of the input is not limited to the length of the
bu�er allocated in memory, it is possible to run past
the bu�er into critical portions of the stack frame.
Overrunning the bu�er results in writing to memory
that is not reserved exclusively for the bu�er. The
consequences of overrunning a bu�er can range from
no discernible e�ect to an abortion of the program
execution to execution of machine instructions con-
tained in the input. If the unconstrained input can
write over speci�c data in the program stack frame,
then it may be possible to execute arbitrary program
code included in the input.

The stack frame is the part of a process's address
space that is used to keep track of local function data
when a function is called. When calling a function,
a new stack frame is created for the function that
is called. The calling function \pushes" the address
of the next instruction to be executed after return-
ing from the called function on this stack. This ad-
dress is known as the return instruction pointer. Af-
ter the program �nishes executing the called function,
a pointer to the next instruction to be executed is
\popped o�" the stack. The value of the opcode
pointed to be the instruction pointer is loaded and
that instruction is executed.

By overwriting a bu�er allocated on the stack, it is
possible to change the instruction pointer to point to
another address. In the case of many program crashes
caused by bu�er overruns, the instruction pointer is
overwritten with random or garbage data that does
not correspond to a legitimate instruction address.
Upon returning from the called function, the processor
attempts to execute an invalid instruction and an ex-
ception is generated. In this case, the program will
normally abort execution, usually (but not always)
without serious consequence on security.

On the other hand, if the input stream that over-
runs the bu�er is carefully crafted, it is possible that
the instruction pointer can be overwritten in a princi-
pled manner. That is, a speci�c address can be written
into the instruction pointer so that when it is evalu-
ated, the next instruction to be executed is located
at an address in the stack frame. With the address
pointing back into the stack, it is possible to execute
any instructions embedded in the input stream that
have been written into the stack.

The process to implement the bu�er overrun is

void overflow(char *pointer){

 char small[100];

 strcpy(small,pointer);

}

void main(){

 char large[2000];

 int i;

 for (i=0;i<2000;i++)

 large[i] = ’X’;

 overflow(large);

}

Program Stack

*pointer

ret IP

SFP

small

overflow

Figure 1: Smashing the Stack. The bu�er overrun is made possible by copying a larger array over top of a smaller
array. The strcpy function does not check the length of the target array that is being �lled. As a result, the
instruction pointer is overwritten which results in a program crash or possibly even execution of arbitrary code.

known in the hacker community as \smashing the
stack". It is detailed in technical depth in \Smash-
ing the Stack for Fun and Pro�t" [12]. The process
for smashing the stack or overrunning bu�ers is il-
lustrated in Figure 1. In the program's main func-
tion, an array variable large is de�ned to have length
2000. This array is �lled with 2000 \X" characters.
Next, the function overflow is called with a pointer
to large passed as an argument. In overflow, a new
array, small, is de�ned with length 100. The stack
in the right side of Figure 1 shows how the memory
is allocated for the overflow function. The variable
small is allocated 100 characters. After small, mem-
ory is reserved for the stack frame pointer (SFP), the
return instruction pointer (IP), and the pointer that
was pushed on the stack when overflow is called. The
overflow function simply copies the contents of the
large variable array to the small variable array.

Unfortunately, the C function strcpy does not
check the length of the variable it is copying before
copying it to small. As a result, the 2000 characters
are written over the 100 character long array. This
means that after the �rst 100 Xs are copied, the rest

of the 1900 characters will overwrite the SFP, the re-
turn IP, and even the pointer.

After the overflow function �nishes executing, the
processor will pop o� the return IP address and exe-
cute the instruction located at that address. In this
example, the address pointed to by the integer value
of X is probably not an instruction, and as a result,
this program will probably crash. However the large
array could have been intelligently loaded with input
that places a meaningful address at the return IP loca-
tion. After returning from the overflow function, the
next instruction that will execute will be the located at
the address stored in the return IP location. If the at-
tacker wrote this location with an address somewhere
in the bu�er that was overrun, then the attacker will
be able to execute code of his or her own choice.

This technique is as e�ective as being able to ac-
cess and modify the program source code, recompile
it, and execute it without ever having access to the lo-
cal source code. Smashing the stack is one of the pri-
mary attacks launched against SUID root programs,
i.e., programs that run as the super-user. The prob-
lem illustrated by Figure 1 was that a programming

error allowed a large bu�er to overwrite a small bu�er.
In the �gure it may seem fairly obvious that this would
happen, but in many programs, the programmer is as-
suming that the user input is much smaller than what
a malicious user may in fact be entering. The exploit
was made possible in this case because the program-
mer used the strcpy function instead of something
else that would have performed bounds checking.

3 Analyzing programs for

bu�er overrun vulnerability
Now that the mechanism by which bu�er overruns

are employed has been illustrated, the mechanism by
which the vulnerability to bu�er overruns is detected
will be described. Given knowledge of how bu�er
overruns are accomplished in programs and heuristics
about the types of programmer errors that lead to this
kind of vulnerability, a su�ciently skilled programmer
can manually inspect source code for potential vulner-
abilities to bu�er overruns. The tool described here is
designed to assist the analyst in determining whether
bu�ers are in fact vulnerable once identi�ed.

Other software engineering analysis techniques have
been applied to the problems of computer security. Pi-
oneering work in analyzing bu�er overruns has been
performed by researchers at the COAST Laboratory
at Purdue University [13]. In addition, research out of
the University of Wisconsin has analyzed Unix utili-
ties for reliability and robustness, with corresponding
implications on security [10, 11]. A static software
analysis technique employed by UC Davis researchers
can analyze software for vulnerability to a class of
race condition aws called time-of-check-to-time-of-
use (TOCTTOU) aws [6]. Another UC Davis group
is using property-based assertions and software testing
techniques to verify security properties of software [8].
These di�erent research projects are employing tech-
niques developed in other areas of software assurance
(reliability, safety, testing) to the di�cult problems
in assuring security in computer systems. This paper
presents the use of fault injection analysis for ana-
lyzing vulnerability to bu�er overrun attacks. Fault
injection analysis has been used in other areas of soft-
ware assurance for analyzing the behavior of programs
under anomalous circumstances such as unexpected
input from users or other software components [14].

The Fault Injection Security Tool (FIST) uses fault
injection analysis to observe the e�ect on system se-
curity of faults injected during the execution of a pro-
gram under analysis [9]. FIST employs several di�er-
ent fault injection functions that simulate the e�ects of
programmer errors and malicious threats against pro-
grams. One such function allows the instrumentation

of a bu�er overrun function on bu�ers identi�ed by the
analyst. If the bu�er overrun function is successful, it
will modify a �le that exists on the �le system. If the
bu�er overrun is unsuccessful, then the �le system will
remain unmodi�ed.

Any number of bu�ers may be instrumented with
the bu�er overrun function, although only one fault
injection is executed per experiment run in order to
assess the e�ect of the bu�er overrun at a given loca-
tion.

FIST is able to automatically determine where in
the stack a given bu�er lives by reading the value of
the frame pointer and then following it up the stack.
Once it �nds the proper stack frame, it locates the
return address of that stack frame. It then overwrites
just that value with the location of the bu�er that is
being \overrun."

The opcodes for machine instructions are written
into the bu�er that is perturbed through fault injec-
tion. Eventually, the modi�ed return address will be
popped o� the program stack and the program will
jump to the machine instructions embedded by the
fault injection function. These instructions will be ex-
ecuted as if they were a part of the normal operation of
the program. Because di�erent platforms have di�er-
ent opcode values and use their stacks di�erently, the
bu�er overrun fault injection functions are platform-
dependent. Intel x86 and Sparc are the two platforms
currently supported by FIST.

The machine instructions in a bu�er overrun ex-
ploit normally attempt to create an interactive shell
process with which to compromise the security of the
system. With the correct amount of assembly level
programming skills for the target machine, the exploit
instructions can be crafted to execute any command

at the privilege level of the process being attacked.
The FIST exploit instructions attempt to run a pro-
gram called mycmd, which includes side e�ects that are
detectable by an external monitor.

4 Case study:

analyzing wu-ftpd 2.4
The Washington University ftpd, or wu-ftpd, is

meant to be a replacement for the standard ftp dae-
mon that comes with most operating systems. It pro-
vides extra con�guration options and �lters to con-
trol access to shared �les. The wu-ftpd version 2.4
is a fairly mature network daemon available for most
platforms. Network daemons are interesting from a
security standpoint because they provide services to
untrusted users. Most network daemons allow con-
nections from anywhere on the Internet, unless specif-
ically con�gured to reject certain sites. This opens

them up to attack from anywhere. Network daemons
usually run with a higher privilege level than normal
users to run on privileged ports; so successfully ex-
ploiting a weakness in a running daemon could allow
the attacker complete access to the server.

Due to its high visibility, wu-ftpd has come under a
good deal of scrutiny in the past which has exposed a
number of security violations [1, 3, 2, 4]. Subsequent
releases have patched known aws. Prior problems
have dealt with gaining root shell access. Some dealt
with how to exploit a poorly con�gured server, allow-
ing unauthorized access through anonymous ftp usage.
Most security breaches now have con�guration options
as a patch. The case study here describes an analysis
of potential bu�er overrun vulnerabilities.

The analysis instrumented 6 out of 18 modules with
bu�er overrun instrumentation functions in forty-four
(44) di�erent locations. These locations were identi-
�ed by manual inspection. Out of the 44 locations
that were instrumented three (3) overrun violations
were found by FIST. That is, FIST was able to ex-
ecute arbitrary code in three of the instrumented lo-
cations. The nature of these potential vulnerabilities
are described next.

Violations were detected in a re-implementation of
the C library function realpath. This routine takes
a pathname and resolves any symbolic links to return
the full pathname. The C library implementation of
realpath can be leveraged in bu�er overrun attacks
which may be why the authors chose to implement
their own version. Unfortunately, the wu-ftpd imple-
mentation is also prone to bu�er overruns according
to the analysis. In short, the version of realpath uses
string library routines that are prone to bu�er over-
runs. The two bu�er overruns occur at line 122 and
line 159:

44 char *

45 realpath(char *pathname, char *result)

46 {

.

.

.

122 strcat(namebuf, where);

and

159 strcpy(result, workpath);

160 return (result);

Both of these locations in the code are reached when
the input to realpath is properly formatted, i.e. a
valid pathname string. For an exploit to succeed, the
input needs to be a string containing the character

representation of machine opcodes. The input to this
function speci�ed by the input parameter pathname

is parsed for characters like forward slash, and combi-
nations of characters such as two periods followed by
a forward slash. If the machine instructions resolve
the ASCII sequences previously listed, the instructions
string could be modi�ed or truncated, ruining the ex-
ploit.

The violation on line 159 does not appear to be
exploitable because it is reached only when realpath

is able to evaluate a valid pathname. An exploit string
would most likely be caught by an escape condition
early in the loop because it would not evaluate to a
valid pathname. However, the escape condition, the
one that checks to see if the incoming string is actually
a valid pathname, is vulnerable to a bu�er overrun as
well.

125 if (lstat(namebuf, &sbuf) == -1) {

126 strcpy(result, namebuf);

127 return (NULL);

128 }

The if conditional checks if the string in namebuf

is a valid pathname. If the string in namebuf is an
exploit string, this branch will be entered because the
call to lstat will return -1, meaning that namebuf

does not represent a legal or valid pathname. At this
point, a copy is performed without any bounds check-
ing from namebuf to result, where namebuf contains
the exploit string.

Checking to see if this vulnerable point can be ex-
ploited by a user can currently only be done by hand.
The realpath function is invoked as part of the pro-
cessing done for the server commands MKD (make di-
rectory), RMD (remove directory), DELE (delete), and
a few others. If the user arguments to these com-
mands can ow untouched and unmodi�ed from these
commands to the realpath function, this violation is
exploitable. Someone could craft a very simple and
specialized client program to take advantage of this
hole in the commands listed above.

Investigation of the latter vulnerability found that
the bu�er overrun cannot be exploited because of
string truncation and manipulation done in the lexer.
Among other reasons, the lexer has an internal bu�er
shorter than what is needed to overrun the bu�er
in realpath. Any input line longer than the lexer's
bu�er is split and treated as two di�erent commands.

In summary, this case study showed that out of 44
candidate locations instrumented with bu�er overrun
functions, 3 locations could in fact be exploited by
FIST. However, upon further examination of these lo-
cations, it was determined that the likelihood of user

input successfully reaching vulnerable bu�ers unman-
gled is very low. The tool in this case served to provide
additional assurance that for the sections of wu-ftpd
analyzed with FIST, the likelihood of a bu�er overrun
attack succeeding is fairly small.

5 Improving bu�er

overrun analysis

Two signi�cant improvements to the bu�er over-
run analysis are planned and described here. The �rst
improvement will be automating to some extent the
selection of bu�ers for instrumentation. Currently, in
order to analyze programs for vulnerability to bu�er
overrun attacks, the analyst must manually inspect
the source code for viable candidates to instrument.
Once found, the analyst instruments these locations
with the bu�er overrun function provided by FIST.
If the bu�er overrun is successful, FIST will be able
to execute arbitrary system commands at the privi-
lege level of the program being analyzed. Performing
manual inspection requires a degree of knowledge of
how bu�er overrun exploits work and experience in
using bu�er overrun attacks. An algorithm is devel-
oped in the next subsection that provides heuristics
for parsing program source code for viable locations
to instrument. The rules may be adapted as more
experimental results dictate new rules.

The second improvement will be to modify the
bu�er overrun function to more accurately mimic a
bu�er overrun exploit as sent by a malicious user. The
goal is to provide fewer false positives in the analysis,
but still provide identi�cation of vulnerable bu�ers.
The algorithm for dynamically creating bu�er over-
run exploits is presented in Section 5.2.

Before describing each of the two improvements, it
is useful to present the overall algorithm for analyzing
programs for vulnerability to bu�er overrun attacks.
The algorithm presented next employs the algorithms
presented in the following two subsections.

For notational purposes, the program being ana-
lyzed is called P , an input to P is called x, each lo-
cation l corresponds to a statement in the program
that can be instrumented with a bu�er overrun func-
tion, the set I is the set of all candidate locations
for instrumenting with bu�er overrun functions, and
PRED is an assertion that the bu�er overrun attack
has succeeded. Currently PRED is implemented as a
system monitor that determines if a �le has been mod-
i�ed on the �le system which will occur if the bu�er
overrun succeeds.

Algorithm 1: Analysis of Vulnerability to
Bu�er Overruns

1. Parse the source code for P to identify
the set of candidate locations I using
Algorithm 2.

2. Instrument locations I with bu�er over-
run functions.

3. Set count to 0.

4. Select an input x that executes at least
one l in I.

5. Run x on P . If P halts on x in a �xed
period of time, �nd the corresponding
set of data states created by x immedi-
ately before the execution of l. Call this
set Z .

6. Alter Z according to Algorithm 3 and
call the resulting set of data states �Z .

7. Execute the succeeding code in P on �Z .

8. If P satis�es PRED, increment count
and add the l to �I where �Z resulted
PRED being satis�ed.

9. Repeat steps 4 - 8 until all l in I have
been exercised.

10. count is the number of times the the
bu�er overrun succeeded and �I is the
set of locations that are vulnerable to
bu�er overrun attacks.

Algorithm 1 is the methodology for analyzing pro-
grams for vulnerability to bu�er overrun attacks. This
algorithm will determine how many bu�ers are vul-
nerable to bu�er overrun attacks and the locations of
these bu�ers. Next, the algorithms for automatically
instrumenting programs with bu�er overrun functions
and for dynamically creating the bu�er overrun string
are described.

5.1 Automatic instrumentation of
bu�ers

Currently, the only recourse an analyst has to deter-
mine bu�er overrun vulnerability is to perform manual
inspection of source code to identify potential can-
didates. Using FIST, these locations can be instru-
mented with the bu�er overrun functions to determine
potential vulnerability. In order to automate the in-
spection process, an algorithm that employs inspec-
tion heuristics to source code is presented next.

Algorithm 2: Identifying Candidate Lo-
cations

Parse the program source code and identify
all bu�ers that are allocated on the stack,
i.e. have function scope. Apply the follow-
ing heuristics:

1. Add location l in P to the set I if l ref-
erences one of the bu�ers identi�ed at
parse time using one of the following C
functions that does not perform bounds
checking: strcpy, strcat, sprintf,

gets, fscanf, scanf, sscanf,

realpath.

2. Add location l in P to the set I if l
references one of the bu�ers identi�ed
at parse time using one of the following
C functions that does perform bounds
checking, but could be improperly used
in the context of the program: memcpy,
memmove, bcopy, strncpy, strncat.

3. Add location l in P to the set I if l it
operates on a bu�er identi�ed at parse
time using a user-de�ned function that
reads or copies input.

4. Remove any l in I that has a string lit-
eral as the source argument. This us-
age of vulnerable functions cannot be
exploited.

The algorithm simply employs heuristics for adding
or removing locations in P to the set of candidate lo-
cations to be instrumented for bu�er overrun analysis.
These rules may be augmented or re�ned with more
experimentation.

5.2 Creating the exploit

The bu�er overrun analysis method described in
Section 3 used knowledge of the frame pointer value
to determine where the bu�er resides in memory. The
bu�er itself is written with simply the opcodes for the
exploit code rather than the entire string that would
normally be overwritten in a standard bu�er overrun
attack. Finally, in order for the code in the bu�er to
be executed, FIST overwrites the return address with
the value of the location where the bu�er resides.

While this process is fairly sophisticated and com-
pletely automated for speci�c processor architectures,
it does not faithfully mimic the kinds of bu�er over-
run attacks that occur in practice. Generally, in order
to exploit a bu�er vulnerability, the attacker must be
able to send a very large string that can e�ectively

overrun the bu�er and overwrite the stack. The re-
turn instruction pointer is replaced with an address
that points to a location of the �rst instruction in the
exploit code in the stack.

Because FIST has complete access to the program
state, it can use fault injection functions to change any
value in the program state during execution that may
not be otherwise possible from user input. As a result,
FIST can successfully exploit bu�ers that in practice
would not be otherwise possible. The case study in
Section 4 is an example where FIST successfully ex-
ploited a potential vulnerability that in practice ap-
pears to be di�cult to exploit from user input.

In order to reduce the number of false positives
in analyzing bu�er overrun vulnerability, a new tech-
nique for injecting bu�er overruns that employs large
strings similar to bu�er overrun attacks is developed.
Next, an algorithm for dynamically creating a bu�er
overrun for an instrumented location is presented.

Algorithm 3: Creating the Bu�er Over-
run

For each l in I executed in Algorithm
1:

1. Record address of target bu�er to be
overrun: BA.

2. Using the stack frame pointer (SFP)
as a reference point, calculate the dis-
tance from BA to the return instruc-
tion pointer (IP) for the stack frame in
which the bu�er lives. The length of
exploit string (jESj) is equal to BA -
IP .

3. Create an exploit string that contains
the opcodes for system exploit com-
mands padded by copies of the return
address of the target bu�er (BA). Be-
cause the opcodes are �xed and their
length is static for each processor archi-
tecture, the amount of padding neces-
sary is equal to jESj - length of opcodes.

4. Write exploit string in source bu�er be-
fore l executes. (Step 6 in Algorithm
1)

5. Execute l to overrun target bu�er in lo-
cation l. (Step 7 in Algorithm 1)

The algorithm �rst captures the address of the tar-
get bu�er that is to be overrun. Then it follows the

SFP up the stack to the stack frame in which the bu�er
resides. The distance from the target bu�er address
(BA) to the return instruction pointer (IP) for that
stack frame is computed. This distance is equal to the
length of the exploit string that will be loaded in the
source bu�er by the bu�er overrun function. First, the
opcodes are written into the string, then the remaining
bytes of the string are padded with copies of the target
bu�er address (BA). When the source bu�er is copied
onto the target bu�er, the portion of the string that
overruns the stack will be the target bu�er address. If
the fault injection is successful, the return IP will be
overwritten with the BA so that the next instruction
popped o� the stack when the function returns will be
the �rst instruction in the exploit string.

If this exploit string executes, the system com-
mands will modify a �le in the local �le system.
A monitor will detect this event and increment the
counter as described in Algorithm 1.

6 Conclusions
This paper presents an approach for analyzing pro-

grams for vulnerability to one of the most pervasive
security problems today: bu�er overrun attacks. A
white-box fault injection analysis tool, FIST, has been
implemented that implements a bu�er overrun func-
tion for user-selected bu�ers in program source code.
The tool replaces the value in the return Instruction
Pointer in the appropriate stack frame with the ad-
dress of the target bu�er. The opcodes for system
exploit commands are written to the target bu�er. In
cases where the bu�er overrun is able to successfully
write a return address in the return instruction pointer
on the stack, the fault injection analysis will be suc-
cessful in executing arbitrary commands on the sys-
tem.

Results from applying this analysis method to the
wu-ftpd version 2.4 are presented. The results demon-
strated that out of 44 bu�ers instrumented (by in-
spection), 3 of the bu�ers showed the potential to be
vulnerable to bu�er overrun attacks. Further analysis
showed that reaching these bu�ers with an unmangled
exploit string from input was di�cult and unlikely.

To further improve the analysis technique, three
algorithms are presented that describe an approach
for automatically instrumenting candidate bu�ers, ex-
ecuting a bu�er overrun function that more closely
mimics bu�er overrun attacks in practice, and record-
ing the success or failure for each candidate location
that was instrumented.

Future research involves implementation of the im-
proved algorithms presented here, further experimen-
tal analysis for security-critical programs, and the de-

velopment of new algorithms for tracing vulnerabilities
back to program input.

References
[1] CERT

Advisory. wuarchive ftpd vulnerability, April 9
1993. CERT Advisory CA-93:06. Available on-
line: ftp://ftp.cert.org/pub/cert advisories/.

[2] CERT Advisory. ftpd vulnerabilities, April 14
1994. CERT Advisory CA-94:08. Available on-
line: ftp://ftp.cert.org/pub/cert advisories/.

[3] CERT
Advisory. wuarchive ftpd trojan horse, April 6
1994. CERT Advisory CA-94:07. Available on-
line: ftp://ftp.cert.org/pub/cert advisories/.

[4] CERT Advisory. wu-ftpd miscon�guration vul-
nerability, November 30
1995. CERT Advisory CA-95:16. Available on-
line: ftp://ftp.cert.org/pub/cert advisories/.

[5] S. Bellovin. Re: Stackguard: Automatic
protection from stack-smashing attack. On-
line. Bugtraq archives. See http://www.geek-
girl.com/bugtraq/1997 4/0514.html, December
19 1997.

[6] M. Bishop and M. Dilger. Checking for race con-
ditions in �le accesses. In The USENIX Associa-

tion, Computing Systems, pages 131{152, Spring
1996.

[7] C. Cowan, C. Pu, D. Maier, H. Hinton,
J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wa-
gle, and Q. Zhang. Stackguard: Automatic adap-
tive detection and prevention of bu�er-overow
attacks. In Proceedings of the 7th USENIX Secu-

rity Symposium, pages 63{78, San Antonio, TX,
January 1998.

[8] G. Fink and M. Bishop. Property-based testing:
A new approach to testing for assurance. ACM

SIGSOFT Software Engineering Notes, 22(4),
July 1997.

[9] A.K. Ghosh, T. O'Connor, and G. McGraw. An
automated approach for identifying potential vul-
nerabilities in software. In Proceedings of the 1998
IEEE Symposium on Security and Privacy, Oak-
land, CA, May 3-6 1998.

[10] B.P. Miller, L. Fredrikson, and B. So. An em-
pirical study of the reliability of unix utilities.
Communications of the ACM, 33(12):32{44, De-
cember 1990.

[11] B.P. Miller, D. Koski, C.P. Lee, V. Maganty,
R. Murthy, A. Natarajan, and J. Steidl. Fuzz re-
visted: A re-examination of the reliability of unix
utilities and services. Technical report, University
of Wisconsin, Computer Sciences Dept, Novem-
ber 1995.

[12] Aleph One. Smashing the stack for fun and pro�t.
Online. Phrack Online. Volume 7, Issue 49, File
14 of 16. Available: www.fc.net/phrack/, Novem-
ber 9 1996.

[13] E.H. Spa�ord. The Internet worm program:
An analysis. Computer Communications Review,
19(1):17{57, January 1989.

[14] J.M. Voas and G. McGraw. Software Fault Injec-
tion: Inoculating Programs Against Errors. John
Wiley and Sons, New York, 1998.

	Analyzing Programs for Vulnerability to Bu er Overrun Attacks
	1 Introduction
	2 How the bu er overrun attack works
	3 Analyzing programs for bu er overrun vulnerability
	4 Case study:analyzing wu-ftpd 2.4
	5 Improving bufferoverrun analysis
	6 Conclusions
	References

	Table of Contents

