14. Demersals (benthivores, omnivores, piscivores) and Medium Pelagics

Jon K.T. Brodziak, Christopher M. Legault, and Laurel A. Col (nodes #22-24, 21)

Background

Three groups of demersal species were formed based on feeding preferences described in Collette and Klein-MacPhee (2002). These are: benthivores, piscivores, and omnivores (includes all others). The demersal benthivore group was composed of species that primarily feed on benthic prey. This group included gadiformes, elasmobranchs, pleuronectiformes, perciformes, scorpaeniformes, and other benthivores (Table 14.1). The demersal piscivore group included species that feed primarily on fishes. This group included gadiformes, elasmobranchs, and other piscivores (Table 14.2). The unclassified demersals was a large group composed of either omnivorous species that fed opportunistically on both benthos and fish (Table 14.3), or unclassified southern demersal species whose food habits were not reported in Collette and Klein-MacPhee (2002; Table 14.4).

Data Sources

Annual research survey data were collected from 1968-2003 to estimate demersal and pelagic biomasses using a stratified random sampling design (Azarovitz 1981).

Quantitative Approach for Biomass Estimates

Survey Catchability

Research survey catchability varies among species and groups of species. If it were known for a given species or group, survey catchability (Q) would provide a direct estimate of absolute biomass (B) based on the survey index value (I):

(EQ. 14.1)
$$B = \frac{I}{Q}$$

We assumed that the average survey catchability for each demersal or pelagic species group was constant and estimable. Seasonal estimates of average survey catchability were made for each species group during spring and autumn using the Bayesian estimation approach described below. The seasonal estimates of Q were then applied to spring and autumn survey swept-area biomass indices during 1968-2003 to produce an estimate of absolute biomass for each species group and season using Equation 14.1. The seasonal estimates of absolute biomass were then averaged to produce an estimate of average annual biomass for each species group during 1968-2003.

Bayesian Estimation Approach

A priori, it was recognized that there were few direct observations to estimate the average catchability of many species groups. Given this lack of information, we chose to use a Bayesian estimation approach to incorporate information on catchability from previous studies. This

enabled us to use both prior information and observed data to estimate seasonal catchabilities for species groups. A probability model (likelihood) was developed for observed catchability data where both model parameters and observed data were assumed to be random variables. The joint probability distribution for model-based catchability estimate (Q) and catchability data (D), denoted by p(Q, D), depended on the prior distribution of model parameters (see Informative Priors below), denoted by p(Q), and the likelihood of observing the data (see Likelihood of Catchability Observations below), denoted by p(D | Q) = L(D | Q).

(EQ. 14.2)
$$p(Q \mid D) = p(Q)p(D \mid Q)$$

Applying Bayes' rule for the conditional probability of model parameters given the data, the posterior distribution of model parameters was $p(Q \mid D)$

(EQ. 14.3)
$$p(Q|D) = \frac{p(Q,D)}{p(D)} = \frac{p(Q)p(D|Q)}{p(D)}$$

where the integrated likelihood p(D) was the constant

(EQ. 14.4)
$$p(D) = \int p(Q)p(D|Q)dQ$$

Since p(D) was constant with respect to the model parameters (which have been integrated out of the expression), the posterior distribution of model parameters is proportional to the product of the (informative) prior and the likelihood

(EQ. 14.5)
$$p(Q|D) \propto p(Q)p(D|Q)$$

Markov Chain Monte Carlo (MCMC) simulation (Gilks *et al.* 1996) was applied to numerically generate posterior samples from Equation. 14.5. MCMC simulates a random walk through the set of possible catchability values that converges to a stationary distribution that is exactly the posterior distribution of Q. This simulation was equivalent to numerically integrating Equation 14.3. We used the WINBUGS 1.4 software for performing the MCMC calculations (Spiegelhalter *et al.* 2003). For each species group, two simulated chains of length 110,000 posterior samples of Q were generated. In the first chain the coefficient of variation (CV) for Q was 50% while CV[Q] = 75% in the second chain. The first 10,000 samples of both chains were discarded to burn them in (i.e., to eliminate dependence on the initial value of Q). Of the remaining 100,000 samples in each chain, every other sample was discarded to eliminate the possibility of autocorrelation. This left 100,000 posterior samples of Q for inference (50,000 from each chain). Inferences about the estimated absolute biomasses of species groups were based on this numerical integration of p(Q | D). For example, the expected value of biomass of the jth species group (B_j) in a given year was calculated from N=100,000 posterior samples of the survey catchability of the jth species group (Q¹, Q², Q³,...) as

(EQ. 14.6)
$$E\left[B_j \mid D\right] \approx \frac{1}{N} \sum_{T=1}^{N} B_j(Q^T)$$

Informative Priors

Prior information on NEFSC research survey catchabilities was available from two sources: Edwards (1968) and Clark and Brown (1977). In the former study, Edwards developed estimates of NEFSC survey catchability for 27 species based on their seasonal availability within the survey region and their vulnerability to the survey trawl gear. These survey catchability estimates were scaled to adjust survey swept-area biomass indices to absolute biomasses. In Clark and Brown's study, estimates of NEFSC autumn survey catchability were developed for several species using estimates of fishing mortality, total catch and stock size, and relative survey abundance indices. These catchability estimates were appropriate for scaling survey mean catch biomass per tow and were rescaled to swept-area values for comparison with Edwards' results.

The informative prior for catchabilities of demersal species groups was assumed to be a gamma distribution with shape (r) and scale (μ) parameters.

(EQ. 14.7)
$$p(Q|r,\mu) \sim Gamma(r,\mu) = \mu^r Q^{r-1} \frac{e^{-\mu Q}}{\Gamma(r)} \quad for \, Q > 0$$

This choice provided a flexible positive distribution with mean equal to $E[Q] = r/\mu$ and coefficient of variation equal to $CV[Q] = r^{-0.5}$.

For the demersal species groups, the expected value of the informative catchability prior was determined from Edwards' (1968) catchability estimate for the "all others" species group (Q = 0.16) and Clark and Brown's (1977) untransformed catchability estimate for "other finfish" (Q = 0.13, CV = 31%). These two values were chosen because they represented general groups of species that were not actively targeted by commercial fisheries at that time. We set the expected value of the catchability prior to equal the average of the two catchability estimates so that E[Q] = 0.145. Given the expected value of Q, the CV[Q] was assumed to be 50%. This implied that the informative prior was more variable than Clark and Brown's estimate of survey Q.

The shape and scale parameters of the informative prior for demersal species groups were also parameters in the estimation model. Both were assumed to be distributed as a gamma random variable with parameters chosen to match the values of E[Q] and CV[Q]. In particular, the hyperprior for the shape parameter r was distributed as Gamma(16, 4). This implied that the expected value of r was E[r] = 4, with CV[r] = 25%. The hyperprior for the scale parameter μ was distributed as Gamma(16, 0.58). This implied that the expected value of μ was E[μ] = 27.6 with CV[μ] = 25%. These choices led to E[r]/E[μ] = E[Q] = 0.145 and CV[Q] = 50%.

Observed Catchability Data

There were two sources of survey catchability observations (Q^{OBS}) for the demersal species groups: Edwards (1968); and catchability observations derived from stock assessment data. Edwards (1968) provided survey catchability data for a total of 23 species (Table 14.2). Of these, the same catchability data was used for benthivore and omnivore elasmobranchs given the

similarity in their benthic habitats and body shapes. These catchabilities were used as average values for autumn and spring since Edwards included seasonal availability as a calculation factor. There were a total of 12 catchability observations derived from assessment data (Table 14.2). All of these were derived from age-structured assessment information (NEFSC 2002, NEFSC 2003a, NEFSC 2003b, Terceiro 2003), with the exception of spiny dogfish (*Squalus acanthias*, NEFSC 2003b). Separate catchability values for autumn and spring were derived by regressing survey swept-area biomass (thousand mt) on stock biomass (thousand mt) over the assessment time period. The slopes of these regressions were the observed survey catchabilities. This approach was used for 11 stocks. Seasonal differences in catchability were apparent for some stocks (e.g., American plaice, *Hippoglossoides platessoides*), but not for others. For spiny dogfish, the assessment-based catchability was derived as the ratio of total spring survey swept-area biomass during 1990-2002 to total biomass estimated using the minimum trawl herding assumption (NEFSC 2003b, Tables B6.2 and B7.3) during the same period.

Likelihood of Catchability Observations

The likelihood of a single catchability observation was a gamma distribution (Equation 14.3) with shape and scale parameters set by the informative priors. Seven demersal subgroups did not have any catchability observations (Table 14.2). These were: other benthivores, other omnivores, and the five unclassified southern demersal species subgroups. For the pelagic groups, only the pelagic commercial finfish group had catchability observations (Table 14.2). Catchabilities of the remaining groups that had no catchability observations were determined by their informative priors. The joint likelihood of a total of n catchability observations (Q_i) was

$$L(D|\theta) = \left(\frac{\mu^r}{\Gamma(r)}\right)^n \prod_{i=1}^n Q_i^{r-1} e^{-\mu Q_i}$$

(EQ. 14.8)

Average Biomass Production

Average biomass production per unit area was computed for each species group, region, and year. There were some obvious outliers due to variability in survey catches. These outliers had a disproportionate influence on average biomass. To identify outliers in an objective manner we computed biomass production anomalies (B^{ANOM}) for each group and region using the median ($B_{0.5}$) and standard deviation (σ_B) of the observed values (B^{OBS})

(EQ. 14.9)
$$B^{ANOM} = \frac{B_{0.5} - B^{OBS}}{\sigma_B}$$

We removed outliers based on the biomass production anomalies. For demersal species groups, an observed value was an outlier if $B^{ANOM} > 3$. Applying this criterion led to removal of 10 outliers out of a total of 864 observed values ($\approx 1\%$).

Average biomass production per unit area (grams per square meter) was computed for each species group and region over the period 1968-2003. This was done to see if there were regional differences in biomass production by individual species groups. Average total biomass production for demersal species groups was also computed along with the percent contribution of each group to the total. This was expected to show whether the production of demersal biomass differed among regions. Last, the average total production of demersal biomass was computed for each region to determine differences in total biomass production among regions.

Example Results

Average biomass production

Total demersal biomass production differed among regions (Figure 14.1). On average, Georges Bank had the highest demersal biomass (14 g m^{-2}) while the Gulf of Maine had the lowest (10 g m⁻²). The Mid-Atlantic Bight had the most variability in demersal biomass and the Gulf of Maine had the least variability. Overall, total demersal biomass was less variable than biomass for the individual demersal groups.

Biomass production by the individual demersal groups also differed among regions (Figure 14.1). The highest average benthivore biomass was in the Mid-Atlantic Bight (5 g m⁻²) while the lowest was in Southern New England (2 g m⁻²). Average piscivore biomass ranged from a low of 6 g m⁻² in the Mid-Atlantic Bight and Georges Bank to a high of 8 g m⁻² in Southern New England. The highest average omnivore biomass was on Georges Bank (5 g m⁻²). In comparison, omnivore biomass was only 1 g m⁻² in the Gulf of Maine and the Mid-Atlantic. Benthivore biomass varied substantially in each region with CVs ranging from 35-50%. Piscivore and omnivore biomasses were also highly variable, with CVs of 40-65%. The exception was the Gulf of Maine piscivore biomass which was the least variable of all the groups (CV=23%).

Individual demersal groups contributed differing percentages to the total demersal biomass by region (Figure 14.1). The piscivore group was the dominant group in each region. Its contribution to total demersal biomass ranged from a low of 37% for Georges Bank to a high of over 60% in the Gulf of Maine and Southern New England. The benthivore group was the 2^{nd} dominant group in the Gulf of Maine (31%) and Mid-Atlantic Bight (41%). These regions also had the lowest percent composition of omnivores (9%). In comparison, the omnivore group was 2^{nd} dominant on Georges Bank (34%) and in Southern New England (20%).

Production/Growth/Reproduction

Production for demersals and medium pelagics was estimated using age-based data for a small number of assessed stocks to confirm literature values for the P:B ratio (Cohen *et al.* 1982; Sissenwine 1987; Savenkoff *et al.* 2004). Two approaches were used to estimate the P:B ratios from virtual population analysis results: age-based growth and a production model. The age-based growth approach computed the change in weight at age for each cohort in a given year and multiplied these values by the average biomass for that age. Summing these values produced an estimate of production which was then divided by the beginning of the year biomass to generate an estimate of the P:B ratio. The production model approach calculated production as the total catch plus the change in biomass each year and then divided that by the biomass to produce a P:B ratio. Results for Georges Bank cod, haddock and yellowtail flounder ranged from 0.34 to 0.48 for the age-based growth approach and ranged from 0.35 to 0.59 for the production model approach. These results agreed in general with the literature values for demersals and medium

pelagics. The selected values for the P:B ratio varied by group: demersal benthivores and omnivores had a ratio of 0.45 while demersal piscivores and medium pelagics had a ratio of 0.55.

Consumption

Consumption was estimated using the methods described in Section 22: Consumption and Diet Composition Matrix, based on NEFSC research survey observations. Resulting C:B ratios for the Gulf of Maine ecoregion were on the order of 0.6 to 3.0.

References

- Azarovitz, TR. 1981. A brief historical review of the Woods Hole Laboratory trawl survey time series. *In:* Bottom Trawl Surveys. *Can. Spec. Sci. Pub. Fish. Aquat. Sci.* 58:62-67.
- Brodziak, JKT; and W.K. Macy., III. 1996. Growth of long-finned squid, *Loligo pealei*, in the northwest Atlantic. *Fish. Bull.* 94:212-236.
- Brodziak, J; Link, J. 2002. Ecosystem-based fishery management: What is it and how can we do it? *Bull. Mar. Sci.* 70(2):589-611.
- Brown, JH; Gillooly, JF; Allen, AP; West, GB. 2004. Towards a metabolic theory of ecology. *Ecol.* 85(7):1771-1789.
- Choi, JS; Frank, KT; Leggett, WC; Drinkwater, K. 2004. Transition to an alternate state in a continental shelf ecosystem. *Can. J. Fish. Aqua. Sci.* 61:505-510.
- Clark, SH; Brown, BE. 1977. Changes in biomass of finfishes and squids from the Gulf of Maine to Cape Hatteras, 1963-74, as determined from research vessel survey data. *Fish. Bull.* 75(1):1-21.
- Cohen, EB; Grosslein, MD; Sissenwine, MP; Steimle, F; Wright, WR. 1982. Energy budget of Georges Bank. Canadian Special Publication of Fisheries and Aquatic Sciences. Workshop on Multispecies Approaches to Fisheries Management Advice, St. John's, Newfoundland.
- Collette, BB; Klein-MacPhee, G, eds. 2002. *Bigelow and Schroeder's Fishes of the Gulf of Maine*, 3rd Ed. Washington, D.C.: Smithsonian Institution Press; 748 p.
- Edwards, RL. 1968. Fishery resources of the North Atlantic area. *In:* Gilbert, DW, ed. *The future of the fishing industry of the United States*. Univ. of Washington Publications in Fisheries. 4:52-60.
- Fogarty, MJ; Cohen, EB; Michaels, WL; Morse, WW. 1991. Predation and the regulation of sand lance populations: an exploratory analysis. *ICES Mar. Sci. Symp.* 193:120-124.
- Fogarty, MJ; Murawski, SA. 1998. Large-scale disturbance and the structure of marine ecosystems: fishery impacts on Georges Bank. *Ecol.* Appl. 8(1) Suppl. S6-S22 p.
- Gilks, WR; Richardson, S; Spiegelhalter, DG, eds. 1996. *Markov chain monte carlo in practice*. London, UK: Chapman and Hall; 486 p.
- Harley, SJ; Myers, R; Barrowman, N; Bowenand, K; Admiro, R. 2001. Estimation of research trawl survey catchability for biomass reconstruction of the eastern Scotian Shelf. *Can. Sci. Advis. Sec. Res. Doc.* 2001/084; 54 p.
- Hatfield, EMC; Hanlon, RT; Forsythe, JW; Grist, EPM. 2001. Laboratory testing of a growth hypothesis for juvenile squid *Loligo pealeii* (Cephalopoda: Loliginidae). *Can. J. Fish. Aquat. Sci.* 58:845-857.
- Link, J. 1999. (Re)Constructing food webs and managing fisheries. *In:* Ecosystem approaches for fisheries management. Univ. Of Alaska Sea Grant, AK-99-01, Fairbanks; p. 571-588.
- Link, JS; Garrison, LP. 2002. Changes in piscivory associated with fishing induced changes to the finfish community on Georges Bank. *Fish. Res.* 55:71-86.
- Mayo, RK; Fogarty, MJ; Serchuk, FM. 1992. Aggregate fish biomass and yield on Georges Bank, 1960-87. J. Northw. Atl. Fish. Sci. 14:59-78.
- Mountain, DG; Holzwarth, TJ. 1989. Surface and bottom temperature distribution for the northeast continental shelf. *NOAA Technical Memorandum*. NMFS-F/NEC-73; 32 p. Available from NEFSC Library, 166 Water St., Woods Hole, MA 02543.
- Mountain, DG; Taylor, MH; Bascuñán, C. 2004. Revised Procedures for Calculating Regional Average Water Properties for Northeast Fisheries Science Center Cruises. Woods Hole, MA. *Northeast Fish. Sci. Cent. Ref. Doc.* 04-08; 62 p.
- Murawski, SA; Brown, R; Lai, H-L; Rago, PJ; Hendrickson, L. 2000. Large-scale closed areas as a fishery-

management tool in temperate marine ecosystems: the Georges Bank experience. *Bull. Mar. Sci.* 66(3):775-798.

- New England Fishery Management Council (NEFMC). 2003. Final Amendment 13 to the Northeast Multispecies Fishery Management Plan including a Final Supplemental Environmental Impact Statement and an Initial Regulatory Flexibility Analysis. NEFMC, Newburyport, MA 01950; 1659 p. Available at: http://www.nefmc.org/nemulti/index.html
- NEFSC (Northeast Fisheries Science Center). 2000. Atlantic Mackerel. 30th Northeast Regional Stock Assessment Workshop (30th SAW). Woods Hole, MA. *Northeast Fish. Sci. Cent. Ref. Doc.* 00-03; 37 p.
- NEFSC. 2002. Assessment of 20 northeast groundfish stocks through 2001. A report of the Groundfish Assessment Review Meeting. Woods Hole, MA. Northeast Fish. Sci. Cent. Ref. Doc. 02-16; 478 p.
- NEFSC. 2003. 37th Northeast Regional Stock Assessment Workshop (37th SAW) Stock Assessment Review Committee (SARC) Consensus Summary of Assessments. Woods Hole, MA. Northeast Fish. Sci. Cent. Ref. Doc. 03-16; 603 p.
- NEFSC. 2004. Atlantic Butterfish. 38th Northeast Regional Stock Assessment Workshop (38th SAW). Woods Hole, MA. Northeast Fish. Sci. Cent. Ref. Doc. 04-03; 72 p.
- O'Reilly, J; Evans-Zetlin, C; Busch, D. 1987. Primary production. *In:* Backus, R; Price, R; Bourne, D, eds. *Georges Bank.* Cambridge, MA: MIT Press; p. 220-233.
- Overholtz, WJ; Friedland, KD. 2002. Recovery of the Gulf of Maine-Georges Bank Atlantic herring (*Clupea harengus*) complex: perspectives based on bottom trawl survey data. *Fish. Bull.* 100:593-608.
- Overholtz, WJ; Jacobson, LD; Melvin, GD; Cieri, M; Power, M; Libby, D; Clark, K. 2004. Stock assessment of the Gulf of Maine-Georges Bank Atlantic herring complex, 2003. Woods Hole, MA. *Northeast Fish. Sci. Cent. Ref. Doc.* 04-06; 290 p.
- Savenkoff, C; Castonguay, M; Despatie, S-P; Chabot, D; Hammill, MO. 2004. Inverse modelling of trophic flows through an entire ecosystem: the northern Gulf of St. Lawrence in the mid-1980s. *Can. J. Fish. Aquat. Sci.* 61: 2194–2214.
- Sissenwine, MP. 1987. Fish and squid production. *In:* Backus, R; Price, R; Bourne, D, eds. *Georges Bank.* Cambridge, MA: MIT Press; p. 347-350.
- Spiegelhalter, D; Thomas, A; Best, N; Lunn, D. 2003. WinBUGS User Manual. Available at: http://www.mrc.bsu.carn.ac.uk/bugs
- Terceiro, M. 2003. Stock Assessment of Summer Flounder for 2003. Wood Hole, MA. Fish. Sci. Cent. Ref. Doc. 03-09. 190 p.
- Wigley, S; Brodziak, JKT; Col, L. 2003. Assessment of the Gulf of Maine and Georges Bank witch flounder stock for 2003. Wood Hole, MA. *Fish. Sci. Cent. Ref. Doc.* 03-14; 194 p.

Table 14.1. List of species in the demersal benthivore category.

		Demersal Benthivores		
Gadiformes	Elasmobranchs	Perciformes	Scorpaeniformes	Others
Melanogrammus aeglefinus	Dasyatis centroura	Macrorhamphosus scolopax	Pontinus longispinis	Myxine glutinosa
Urophycis chuss	Etmopterus princeps	Synagrops bellus	Sebastes fasciatus	Antigonia capros
Urophycis regia	Dasyatis say	Micropogonias undulatus	Helicolenus dactylopterus	Opsanus tau
Antimora rostrata	Myliobatis freminvillei	Synagrops spinosus	Helicolenus maderensis	Dibranchus atlanticus
Enchelyopus cimbrius	Torpedo nobiliana	Orthopristis chrysoptera	Artediellus sp.	Ogcocephalus corniger
Brosme brosme	Raja eglanteria	Stenotomus chrysops	Cottidae	Chlorophthalmus sp
Gaidropsarus ensis	Leucoraja garmani	Epigonus pandionis	Triglops murrayi	Chlorophthalmus agassizi
Macrouridae	Malacoraja senta	Menticirrhus saxatilis	Myoxocephalus scorpius	Gonostoma bathyphilum
Nezumia bairdi	Dasyatis americana	Pogonias cromis	Myoxocephalus octodecemspinosus	Gonostoma atlanticum
Macrourus berglax	Rhinoptera bonasus	Bairdiella chrysoura	Hemitripterus americanus Aspidophoroides	Gonostoma elongatum
Coelorhynchus carminatus		Leiostomus xanthurus	monopterygius	Vinciguerria sp
Otophidium omostigmum		Howella sherborni	Myoxocephalus aenaeus	Polymetme thaeocoryla
Ophidion marginatum	Pleuronectiformes	Lopholatilus chamaeleonticeps	Liparis inquilinus	Chauliodus danae
Lepophidium profundorum	Poecilopsetta beani	Tautogolabrus adspersus	Eumicrotremus spinosus	Parasudis truculenta
Malacocephalus occidentalis	Hippoglossoides platessoides	Tautoga onitis	Prionotus carolinus	Xenodermichthys copei
Ophidion gravi	Paralichthys oblongus	Astroscopus guttatus	Prionotus evolans	Polymixia lowei
Ophidion welshi	Limanda ferruginea	Lumpenus lumpretaeformis	Peristedion miniatum	Polymixia nobilis
1	Pseudopleuronectes americanus	Lumpenus maculatus	Triglidae	Hoplostethus occidentalis
	<i>Glyptocephalus cynoglossus</i>	Ulvaria subbifurcata	Careproctus ranula	Gephyroberyx darwini
	Scophthalmus aquosus	Mullus auratus	Prionotus paralatus	Saurida brasiliensis
	Citharichthys arctifrons	Lycodes reticulatus	Trionorus pur di di di di	Bagre marinus
	Monolene sessilicauda	Lycenchelys verrilli		Opsanus pardus
	Etropus microstomus	Cryptacanthodes maculatus		Porichthys plectrodon
	Trinectes maculatus	Anarhichas lupus		1 on contrays preetrouon
	Trincetes macatatas	Macrozoarces americanus		
		Nesiarchus nasutus		
		INCOM CHUS HUSUHUS		

Table 14.2. List of species in the demersal piscivore category.

Demersal Piscivores				
Gadiformes	Elasmobranchs	Others		
Merluccius albidus	Carcharhinus obscurus	Reinhardtius hippoglossoides		
Merluccius bilinearis	Centroscyllium fabricii	Hippoglossus hippoglossus		
Gadus morhua	Carcharhinus plumbeus	Paralichthys dentatus		
Pollachius virens	Carcharias taurus	Trichiurus lepturus		
Urophycis tenuis	Mustelus canis	Lophius americanus		
Urophycis chesteri	Scyliorhinus retifer	-		
Gadidae	Squalus acanthias			
Merluccius sp.	Squatina dumeril			

Table 14.3. List of species in the demersal omnivore category.

Demersal Omnivores		
Elasmobranchs	Others	
Dipturus laevis	Centropristis striata	
Leucoraja ocellata		
Leucoraja erinacea		
Amblyraja radiata		

Derest	Unclassified Southern Demersal Species				
Perciformes	Perciformes (Cont.)	Perciformes (Cont.)	Tetradontiformes		
Schultzea beta	Epinephelus mystacinus	Halichoeres caudalis	Balistidae		
<i>Mycteroperca interstitialis</i>	Apogon aurolineatus	Halichoeres poeyi	Parahollardia lineata		
Centropristis ocyurus	Rypticus subbifrenatus	Halichoeres radiatus	Aluterus heudeloti		
Centropristis philadelphica	Eucinostomus gula	Hemipteronotus novacula	Aluterus monoceros		
Epinephelus inermis	Gerreidae	Lachnolaimus maximus	Aluterus schoepfi		
Diplectrum bivittatum	Archosargus probatocephalus	Labridae	Aluterus scriptus		
	<u> </u>	Chaetodontidae	1		
Diplectrum formosum	Perciformes		Balistes vetula		
Epinephelus adscensionis	Calamus bajonado	Chaetodon aculeatus	Canthidermis sufflamen		
Epinephelus drummondhayi	Calamus calamus	Cryptotomus roseus	Monacanthus ciliatus		
Epinephelus flavolimbatus	Calamus leucosteus	Nicholsina usta	Lactophrys bicaudalis		
Epinephelus guttatus	Calamus nodosus	Scarus coeruleus	Lactophrys polygonia		
Epinephelus morio	Calamus penna	Sparisoma radians	Lactophrys quadricornis		
Epinephelus nigritus	Calamus proridens	Scaridae	Lactophrys trigonus		
Epinephelus niveatus	Diplodus argenteus	Mugil liza	Lactophrys triqueter		
Epinephelus striatus	Diplodus holbrooki	Mugil gyrans	Canthigaster rostrata		
Ĥemanthias vivanus	Lagodon rhomboides	Sphyraena barracuda	Sphoeroides dorsalis		
Mycteroperca bonaci	Pagrus sedecim	Sphyraena borealis	Sphoeroides nephelus		
Mycteroperca microlepis	Stenotomus caprinus	Sphyraena guachancho	Sphoeroides spengleri		
Mycteroperca phenax	Sparidae	Opistognathus lonchurus	Sphoeroides testudineus		
Mycteroperca venenosa	Cynoscion arenarius	Opistognathus maxillosus	Chilomycterus antillarun		
Holanthias martinicensis	Cynoscion nebulosus	Bembrops gobioides	Chilomycterus atinga		
Paranthias furcifer	Cynoscion nothus	Astroscopus y-graecum	Diodon holocanthus		
Hemanthias aureorubens	Equetus acuminatus	Xenocephalus egregius	Diodon hotocaninus Diodon hystrix		
	1		~		
Serraniculus pumilio	Equetus lanceolatus	Kathetostoma albigutta	Tetraodontidae		
Serranus annularis	Equetus punctatus	Clinidae	Sphoeroides pachygaster		
Serranus atrobranchus	Equetus umbrosus	Hypsoblennius ionthas			
Serranus baldwini	Larimus fasciatus	Blenniidae			
Serranus notospilus	Menticirrhus americanus	Ammodytes americanus			
Serranus phoebe	Menticirrhus littoralis	Foetorepus agassizi			
Serranus subligarius	Sciaenops ocellatus	Dormitator maculatus			
Serranidae	Stellifer lanceolatus	Bathygobius soporator			
Rypticus bistrispinus	Sciaenidae	Gobiosoma bosc			
Priacanthus cruentatus	Eucinostomus argenteus	Gobiidae			
Pristigenys alta	Pseudupeneus maculatus	Uranoscopidae			
Apogon maculatus	Upeneus parvus	Anisotremus virginicus			
Apogon pseudomaculatus	Kyphosus sectatrix	Haemulon aurolineatum			
Caulolatilus cyanops	Chaetodipterus faber	Haemulon carbonarium			
Lutjanus analis	Chaetodon aya	Haemulon plumieri			
Lutjanus apodus	Chaetodon capistratus	Haemulidae			
Lutjanus buccanella	Chaetodon ocellatus	Acanthurus bahianus			
Lutjanus campechanus	Chaetodon sedentarius	Acanthurus chirurgus			
Lutjanus griseus	Chaetodon striatus	Acanthurus coeruleus			
Lutjanus jocu	Holacanthus bermudensis	Ariomma regulus			
Lutjanus synagris	Holacanthus ciliaris	Peprilus alepidotus			
Lutjanus vivanus	Holacanthus tricolor	Stromateidae			
Ocyurus chrysurus	Pomacanthus arcuatus	Trichiuridae			
Pristipomoides aquilonaris	Abudefduf saxatilis	Ruvettus pretiosus			
Rhomboplites aurorubens	Chromis enchrysurus	Lepidocybium flavobrunneum			
Lutjanidae	Chromis insolata	Pomacentrus variabilis			
Lobotes surinamensis	Pomacentrus leucostictus	Scombridae			
Cookeolus japonicus	Bodianus pulchellus	Gempylus serpens			
Caulolatilus microps	Clepticus parrae	Cubiceps pauciradiatus			
Caulolatilus chrysops	Decodon puellaris	Seriola fasciata			
Caulolatilus intermedius	Halichoeres bathyphilus	Haemulon striatum			
Malacanthus plumieri	Halichoeres bivittatus	Ariomma melanum			
maiacannas pramieri		Paralepidae			
		Uraspis secunda			
		Parablennius marmoreus			
		Chasmodes bosquianus			
		1			
		Hypleurochilus geminatus			
		Hypsoblennius hentz			

Table 14.4. List of species in the unclassified southern demersal category.

Table 14.4, continued.

Pleuronectiformes	Elasmobranchs	Scorpaeniformes	Gadiformes
Ancylopsetta dilecta Ancylopsetta quadrocellata Bothus lunatus Bothus ocellatus Chascanopsetta lugubris	Narcine brasiliensis Raja ackleyi Dipturus olseni Bathyraja spinicauda Raja texana	Neomerinthe hemingwayi Pontinus rathbuni Scorpaena agassizi Scorpaena brasiliensis Scorpaena calcarata	Laemonema barbatulum Ophidion beani Ophidion selenops
Citharichthys arenaceus	Dasyatis sabina	Scorpaena dispar	Others
Citharichthys cornutus Citharichthys cornutus Citharichthys spilopterus Cyclopsetta fimbriata Engyophys senta Etropus crossotus Etropus rimosus Gastropsetta frontalis Paralichthys albigutta Paralichthys albigutta Paralichthys squamilentus Syacium gunteri Syacium micrurum Syacium papillosum Etropus sp Bothidae Paralichthys sp. Citharichthys sp. Bothus robinsi Pleuronectiformes Citharichthys gymnorhinus Pleuronectidae Gymnachirus melas Symphurus civitatus Symphurus marginatus Symphurus marginatus Symphurus plagiusa Symphurus pusillus	Dasyatis violacea Gymnura altavela Gymnura micrura Urolophus jamaicensis Myliobatis goodei Squalidae Etmopterus gracilispinis Etmopterus hillianus Centroscymnus coelolepis Breviraja plutonia Alopias vulpinus Alopias superciliosus Isurus paucus Carcharhinus isodon Carcharhinus altimus Carcharhinus longimanus Carcharhinus brevipinna Carcharhinus porosus Carcharhinus perezii Carcharhinus signatus Mustelus norrisi Triakis semifasciata Sphyrna media	Scorpaena grandicornis Scorpaena grandicornis Scorpaenidae Bellator brachychir Bellator egretta Bellator militaris Peristedion gracile Prionotus alatus Prionotus ophryas Prionotus roseus Prionotus longispinosus Prionotus rubio Prionotus scitulus Prionotus tribulus Myoxocephalus quadricornis Prionotus stearnsi Trachyscorpia cristulata	Xenolepidichthys dalgleish Engraulidae Synodontidae Argentina striata Anchoa lyolepis Chaunax stigmaeus Gymnothorax saxicola Harengula jaguana Echiophis punctifer Gobiesox strumosus Ogcocephalus radiatus

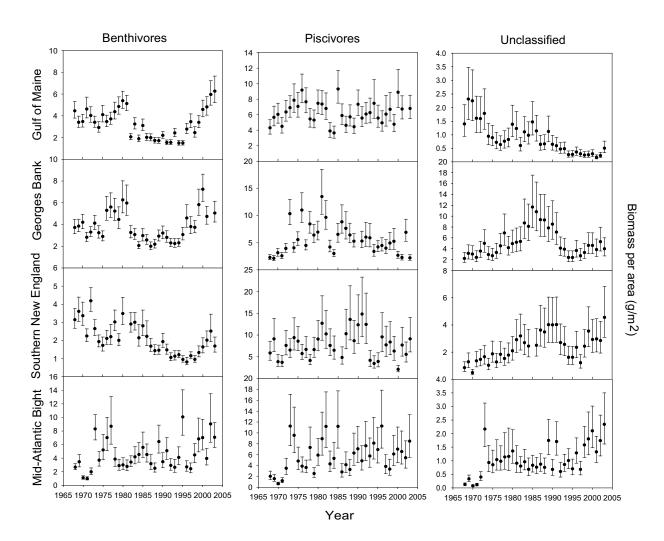


Figure 14.1. Time series of annual demersal biomass production (g m⁻²) by benthivores, piscivores, and unclassified species in four regions of the Northeast United States Continental Shelf Ecosystem (Gulf of Maine, Georges Bank, Southern New England, and Mid-Atlantic Bight) during 1968-2003.