Stretchable Architectures for Next Generation Cellular Networks

Presented By

Shashidhar Lakkavalli, Ansuya Negi and Dr. Suresh Singh

Portland State University

Relaying

Path loss reduction with Relaying

Relaying

- Multi-hop connection between source and destination
- Advantages
 - Longer battery life for the source mobile
 - Lower Node and System power
 - Increased capacity of cell
 - Higher system throughput (Energy per bit reduces)
 - Improves coverage in dead spots
 - path diversity
 - Propagation conditions can vary hop by hop.

3G Issues

- Battery power utilized for benefit of others
- Mobile-to-Mobile communication
- Interference at relay's receiver
- Absence of diversity gain at the relay
- Security
- Handoffs between mobiles in multi-hop
- Power Control between relay and MT
- QOS & Overhead
 - 3G standards shelves multi-hop protocol ODMA due to excessive overhead from signaling.

Our Proposal – Stretched Connection

Stretched Connection

- AIM: To increase battery life of a Mobile Terminal using relaying in 3G systems.
- Scenario: 2 hop relaying
 - Suitable for real time applications with less jitter.
 - Requires a "simple handoff/routing algorithm"
 - Appreciable "energy savings".
 - Relay: A device with abundant power reserve cars, full charged MTs
 - Relay is called "intermediary"
 - Relayed connection is a called "stretched connection"

Stretched Connection

Soft Handoff

Intermediary Initiated Soft Handoff (1)

- Handoff is initiated by intermediaries and assisted by BS.
- BS assist candidate intermediaries by passing location of MT, system parameters of the mobile
- Relays listen promiscuously to MT's transmissions, assuming some changes to uplink (ODMA specifications)
- Relays maintain 3 sets active, neighbor and candidate sets of MTs in its vicinity: similar to Soft Handoff mechanism.
- BS selects the best intermediary.
- Note: For multihop scenario, BS cannot choose all the intermediaries not scalable.
 - Use of adhoc networking protocol, with metric being SIR at the intermediary.

Intermediary Initiated Soft Handoff (2)

M - Mobile

Advantages of Intermediary Initiated Soft Handoff

- Receiver centric
 - The intermediary knows about its "Interference temperature" better than the sender.
- Neighbor discovery and maintenance is done at intermediary
 - Reduced overhead for the MT.
- (MT need not know the identity of the intermediary)
 - Signals from 2 intermediaries is considered as multipath
 - During intermediary soft handoff, MT's parameters for the connection remain unchanged – unlike soft handoff

FSM of Node in Simulation

Simulation Setup

- Discrete Event simulation
 - Recursive path loss formula for Pedestrian and vehicular radio channel in a Manhattan type terrain (UMTS 30.03 Selection Procedures)
 - Block size = 20 meters
 - Frequency = 1.9Ghz
 - Poisson call arrival (Call rate = 1,2 per hour)
 - All nodes moving with velocity 1.5m/s
 - Stretched connection pathloss is always less than direct connection.

Terrain Map

Experimental Setup

- Metrics chosen: Energy, # of handoffs, Time spent in relaying
- Factors chosen: Number of nodes and location of BS
- 1000 sec per run, with 10 repetitions
- Mean and 90% confidence interval plotted
- Diversity gain only between Intermediary and BS
- Pair-wise comparison between stretched and direct connections
- Selection of intermediary based on greedy method

Energy for BS at center

Energy for BS at Corner

Handoff

Time spent in stretched connection by MT

Related Work

- ODMA & Intelligent Relaying: Multihop relaying
- Integrated Cellular & Ad hoc Relaying Systems (iCAR)
 - Relay stations at strategic locations
 - To enable rerouting of congested traffic
 - Increase capacity
 - Uses 802.11 between MTs and relays, and cellular between relays and BS
- Mobility Increases the Capacity of Ad hoc Wireless Networks.
 - Multi-user diversity: Relays "carry" traffic from source to destination.
 - Non-real time applications
 - 2 hop
 - Advantage: O(1) throughput, independent of number of users.

Conclusions

- A 2-hop stretched connection yield significant power savings between 3X 7X!!!!
- The amount of time spent in relaying is 10-15% of idle time not a significant overhead!!!!
- Handoffs increase linearly with number of nodes
 - Intermediary initiated handoff reduces overhead for MT.
 - No overhead of ad-hoc networking protocol for 2-hop stretched connection.
- 2-hop stretched connection suitable for real time applications

Future Work

- Implementing intermediary based soft handoff.
- Capacity and throughput analysis.
- Developing optimizations to choose the best intermediaries