
Reactive Security and Social Control

Lars Rasmusson, Andreas Rasmusson, Sverker Janson �

Swedish Institute of Computer Science

Untrusted Code

A major security problem for a network oriented

environment is executing untrusted code. Pri-

vate information risks being disclosed or tam-

pered with if unveri�ed remote code manages to

gain access to local resources. Since a program

only shows to the user what it wants the user to

see, it can hide some of its actual actions. This

is the essence of a Trojan horse.
In the days before global networking the acts

of malicious programs mainly perpetrated ran-
dom acts of vandalism, like erasing �les. Now, as
computers get increasingly connected, programs
can communicate back to their creators. This
enables a new range of crimes.

As we begin to use open computer networks
to transfer information of more direct economic
value, we'll �nd that programs can to do more
malicious things than erasing �les. Viruses can

be used to snoop passwords to valuable infor-
mation services or getting hold of e-cash stored
on our hard disks. As the trend leads towards
where we are down-loading and executing many
new programs every day, these problems are only
likely to increase.

Certifying every program on the Internet
would hinder the introduction of new programs,

services and even of bug-�xes. The essence of

the open net is that new information is put there

almost instantaneously. Hence we can't do away

with the concept of an untrusted program.
Cryptographic methods like digital signatures

can be used to authenticate the sender and/or

guarantee that the program hasn't been tam-
pered with. However, the program's hostility
cannot be decided by any level of cryptography.

For the untrusted software to be useful it may

have to be granted access to information that it

�
Email: flra, ara, sverkerg@sics.se

potentially can misuse. There is a notion of risk

involved in dealing with untrusted code, and this

is not well supported in conventional computer

security. Two ways to deal with the risks are

� to use a system where trust/distrust is an

integral part of the system

� runtime monitoring of the untrusted code

and decision support for the user

These methods belong to a class of security
mechanisms we call soft security. Soft security,
as opposed to hard, means that privileges are
granted as they are needed, with the current risks
taken into consideration. Hard security denotes

methods that don't reevaluate granted privileges.
Soft security is related to reactive, \after-the-

fact", security and intrusion detection. The term
reactive emphasizes the when the analysis is done
whereas soft is an indication of on what grounds
resource access is granted, hence the new term.

Why are there malicious programs?

Some crimes (like occasional speeding, or some

white collar crimes) can be said to be rational

in a game theoretic sense. This means that the

expected net payo� is greater than zero, after

considering risk of being caught, expected pun-
ishment and expected gain [1]. If we radically

change the properties of an economic system (as
ours will be changed by Internet) we might �nd

that a number of new crimes will be economically
"sound."

But apart from programs written in evil spite,
like Trojan horses or viruses, a program can also

start to misbehave because of bugs or because it

is being used in a context for which it was not

designed. An interconnected ever-changing pro-
gram environment makes it virtually impossible



for the programmer to understand all the e�ects

of his/her program. Therefore it seems wise to

treat all programs with a little caution, regard-

less of the author's intentions.

Reputation and anonymity instead of

blind trust

One way to help a user to minimize the risk

of using untrusted software is to use reputation

mechanisms [2]. Reputation enables us to dare

to take larger risks with the programs we believe

are benevolent. Microsoft's reputation makes us

dare to install the annual version of MS Word

without �rst verifying its source code. But for

Internet systems dealing with lots of untrusted
code reputation mechanisms need to be made ex-
plicit.

The importance of being able to trust one's
business partner is beginning to be acknowledged
on the Internet. Certi�cation companies and au-
thorities that act as Trusted Third Parts are pro-

liferating on the net. A trusted third part acts
as a guarantor for the seriousness of the other
part. However, authoritative trust has some
drawbacks. It is centralized and hierarchical and
it puts both parties in the hands of the trusted

third. It ends up in a circular reasoning; "How
do I trust the trusted part?"

What we are looking for is a system where
all parties actively cooperate to build up repu-
tation, and where reputation is built on rational
grounds. Further, it should not be necessary to
keep global registers over every person on the In-

ternet, since it is both impossible and violates

personal integrity.

Anonymity

Part of tomorrow's business will be conducted
by programs. Unlike ordinary companies or per-

sons, a program does not have any physical man-
ifestation that guarantees that it will be around

for a longer time. It can be copied in�nitely, or

changed into unrecognizability. If a program put
on the Internet cannot be traced back to an orig-

inator, it is e�ectively an anonymous program.

No-one can be held responsible for its actions.

With complete anonymity, selling stolen informa-

tion or goods, computer break-ins without risk of

being caught, or plain vandalism (making other

peoples computers crash, etc.) can be safely com-

mitted.

The converse, complete identi�cation in all

steps, is also susceptible to new crimes. Com-

plete logging of someone can generate a computer

shadow that could be used for annoying adver-

tising or blackmailing, for break-ins ("locate per-

sons who have bought a new VCR and who are

at work") etc.

To anonymity, two approaches are possible.

Either say "let's just forbid anonymous programs
- everything must be traceable back to the orig-
inator," a common view. Or say "we can't pre-

vent anonymous programs - we must therefore
design our system so that it doesn't collapse if
anonymous programs slip in."

The former view is unacceptable since there is
no way to "forbid" some programs in an open
network such as Internet to which anyone can
connect their computer. If we insisted and de-
signed such a system, it would be very vulner-
able if someone released such a program in the

system. It's not a good idea to construct open
systems so they only work if all the other com-
ponents work as intended.

Reputation demands identity

In a reputation based system identity is some-

thing valuable. Reputation coupled to an iden-

tity enables two parties to make business to-
gether, something from which they both bene�t.

Loosing one's reputation equals a loss of income
from other business. It becomes irrational and

costly to waste one's reputation by malicious be-
haviour.

Unforgeable identities don't have to be created

by an identity issuing authority. They can be cre-

ated by anyone using digital signatures, or zero-

knowledge (interactive) protocols. The id works
as an unforgeable trade mark, and reputation is



established when the same id is used more than

once. Anonymity is achieved by creating a new

id for every transaction.

If we manage to construct a system where the

interacting programs are "suspicious" to one an-

other and don't expect other programs to behave

nicer than their reputation guarantees, we will in

fact have a system that can support anonymous

programs. It will not have drawbacks such as

complete logging of every person, or centralized

trust servers. It acts cautiously if new (possibly

buggy or malicious) components are added, but

once they have merited a certain amount of trust,

they are integrated into the system.

Behavior-based resource granting

Traditionally operating systems limit user access
to system resources by enforcing access rules in
system calls. Ordinary read/write access control
and capability systems are examples of this. Once
granted permission, the program has free access

to the resource.

These security barriers are necessary but not
su�cient in a networked environment where

programs are exchanged promiscuously between
computers. Capability systems do not solve the
problems of denial-of-service attacks or of leak-
ing information, since they are just a means to
decrease granularity for the privilege assignment.

Many useful restrictions are not possible to en-
force before runtime. For instance, forbidding si-
multaneous access to a shared resource by two

or more programs inhibits potential covert chan-

nels between the programs. Whether covert com-

munication will take place or what information
might be leaked depends on the actual situation.

It probably doesn't matter as much if your word
processor leaks the contents of your shopping list

as if it leaks your business mail.

Assigning correct privileges to a program re-
quires the user's afterthought and skill and will

be very cumbersome as the number of programs

we interact with each day increases. Instead

of just classifying the resources, untrusted pro-
grams could be classi�ed by their expected be-

havior. This would constrain the range of ex-

pected \normal" actions and making it harder

for a program to undetected do something unex-

pected/malicious. We are studying how to give

automated support for deciding if and how a pro-

gram deviates from its expected behaviour [3].

Di�erent implementations of a service could, if

similar enough, be classi�ed as belonging to the

same class. Behaviour classes reduce the number

of choices the user has to make since the user

needn't be aware of all rules a particular behav-

ior implies. Since a violated rule can be explained

in behavioral terms it is easy to understand and

giving the user decision-support for how to han-

dle the situation.

Automatically communicating and updating

behaviour descriptions, will make the society of
Internet hosts more resilient to malicious pro-
grams.

Conclusions

We need to remove the obstacles for an open In-
ternet with commercial interests without using

centralized solutions. Trust relationships could
be used to assess the economical risks of engag-
ing in activities with unknown parties. To in-
hibit malicious programs from covert activities
we suggest runtime monitoring for constraining

the allowed behavior of programs.

References

[1] Economic Times The Economics of Crime,

journal, vol 4, no.1, 1995. Addison-Wesley.

[2] Rasmusson, Lars & Janson, Sverker Sim-

ulated Social Control for Secure Internet

Commerce New Security Paradigms Work-

shop '96, 1996.

[3] Rasmusson, Andreas & Janson, Sverker Per-
sonal Security Assistant for Secure Internet

Commerce New Security Paradigms Work-

shop '96, 1996.


