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[1] Land use/cover change has been recognized as a key component in global climate
change. Information on land surface biophysical properties and climatic variables based on
in situ data fail to resolve the fine-scale variability that exists in many parts of the
world, including East Africa. In this study, we used the NASA’s Earth Observing System
(EOS) products to improve the representation of the land surface in a regional climate
model as well as assess the model performance. The Moderate Resolution Imaging
Spectroradiometer (MODIS) data of leaf area index (LAI) and vegetation fractional cover
(VFC) were directly incorporated in the Regional Atmospheric Modeling System
(RAMS). The model was validated in terms of the land surface temperature (LST),
utilizing the MODIS LST data from both Terra and Aqua satellites. Compared with the
built-in land surface, the ingested MODIS LAI and VFC greatly improved the spatial and
temporal dynamics of vegetation in East Africa. Three experiments were carried out
for the year of 2003 to test the impacts of land surface conditions. The results showed that
the spatial, seasonal, and diurnal characteristics of the RAMS simulated LST were
improved because of MODIS LAI and VFC. Specifically, the Intertropical Convergence
Zone (ITCZ)–related migration, bimodal temporal variation, and monthly averaged
diurnal cycles of LST were more realistically reproduced. The need to realistically
represent the spatial and temporal distribution of vegetation is thus highlighted, and the
value of the EOS observations for the land-climate modeling is demonstrated.
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1. Introduction

[2] Land is the lower boundary of the atmosphere and thus
a major component of the climate system. Human modifica-
tion of the land surface impacts regional to global climate
processes by changing the fluxes of mass and energy between
ecosystems and the atmosphere [Chase et al., 1999;
Houghton et al., 1999; Pielke et al., 2002]. Over the past
decades, land use/cover has been widely recognized as a
critical factor mediating socioeconomic, political and cultural
behavior and global climate change [International Geosphere-
Biosphere Programme, 1990; Intergovernmental Panel on
Climate Change, 2000]. Interactions between the biosphere
and atmosphere have therefore been the focus of numerous
climate modeling studies [e.g., Xue, 1997; Pielke et al., 1999;
Chase et al., 2000; Lu et al., 2001;DeFries et al., 2002; Taylor
et al., 2002; Feddema et al., 2005; Ge et al., 2007].

[3] In order to simulate the impacts of anthropogenic land
surface changes, climate models require parameterizations
of the land surface, which generally consist of two elements:
mathematical algorithms for the description of the processes
involved and numerical parameter values required to do
calculations [Dickinson, 1995]. Ever since Deardorff ’s
[1978] pioneering work, land surface models have evolved
from quite simple treatments of the surface energy, moisture
and momentum exchanges to increasingly complex descrip-
tions [Dickinson et al., 1991; Sellers et al., 1997; Pitman,
2003]. Because of lack of observations, biophysical surface
variables in land surface models (e.g., leaf area index (LAI),
vegetation fractional cover (VFC), and albedo) were
initially not based on any particular observation data but
were guided by past literature or intelligent guesses
[Dickinson et al., 1986]. Biophysical values were usually
assigned to broad vegetation classes by means of a lookup
table, and seasonal variations of vegetation were repre-
sented by simple mathematical equations. This simple
treatment of surface biophysical properties severely limited
the detailed modeling of land-climate interactions.
[4] Remote sensing from satellites has begun to serve an

essential role as the means of obtaining global data to
improve the land surface representation in climate models.
Various attempts have been made to use remotely sensed
biophysical variables in climate modeling studies. For
example, the Advanced Very High Resolution Radiometer
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(AVHRR) based normalized difference vegetation index
(NDVI) was used to determine the temporal variation of
LAI and fraction of absorbed photosynthetically active
radiation (fPAR) in the revised Simple Biosphere Model
(SiB2) [Sellers et al., 1996a, 1996b]. LAI derived from
AVHRR NDVI was directly incorporated into the Regional
Atmospheric Modeling System (RAMS) to investigate the
sensitivity of regional climate simulations to changes in
vegetation [Lu and Shuttleworth, 2002], and it was found
that regional climates were sensitive to the land surface
heterogeneity and seasonal changes in vegetation phenolo-
gy. A set of biophysical parameters, created from the
Moderate Resolution Imaging Spectroradiometer (MODIS),
were tested in a global model to investigate the impacts of
improved land surface representations [Zhou et al., 2003;
Tian et al., 2004], and the results showed that biases in
surface air temperature decreased and simulated surface
physical evaporation and transpiration were closer to reality.
These studies indicated the importance of realistic repre-
sentation of both the spatial and temporal distribution of
vegetation in climate modeling.
[5] Furthermore, remotely sensed biophysical variables

have been used in many numerical weather prediction
studies, such as Crawford et al. [2001], Santanello and
Carlson [2001], Kurkowski et al. [2003], Yucel [2006], and
de Foy et al. [2006]. These studies found that making use of
remote sensing surface data leads to improved meteorolog-
ical simulations such as heat wave forecasting, daytime
temperature prediction, and modeling wind circulation pat-
terns and urban heat island. The difference between numer-
ical weather prediction and climate simulations is that
numerical weather prediction depends crucially on the
initial state of the atmosphere. On the other hand, climate
simulations are run for sufficiently long periods of time
(typically more than one month) that they are insensitive to
the initial conditions but dependent on boundary conditions
such as ocean temperature, land use, and greenhouse gas
concentrations [Giorgi and Mearns, 1999]. This study
includes some parts of the climate system such as a full
treatment of atmospheric dynamics, thermodynamics and
moisture processes, along with a soil-vegetation-atmosphere
transfer (SVAT) scheme. However, unlike some other climate
models it does not include a fully integrated ocean, but treats
ocean surface temperature as a prescribed boundary condition.
[6] The performance of climate models needs to be

evaluated by comparing observed and modeled variables
such as precipitation and air temperature. The major prob-
lem with traditional meteorological observations when used
to validate models is their poor representation of the grid
point average simulated by a model. More importantly, well
documented station observations of climate variables are
mainly located in populated and industrialized parts of the
world [Williams et al., 2000]. For the East Africa region in
this study (Figure 1), weather station data are extremely
scarce [Ge, 2007]. Spatially, there are very few stations in
Congo, Tanzania and east Kenya. Temporally, few existing
stations have continuous time series of observations with
consistent quality. This brings formidable challenges for
validation of land-climate modeling studies in this region.
[7] The overarching goal of NASA’s Earth Observing

System (EOS) program is to provide global measurements
over long time periods to improve computer models that can

accurately predict the causes and effects of climate change
[Justice et al., 2002]. MODIS is the primary EOS instru-
ment for global monitoring of terrestrial ecosystems. It
provides high radiometric sensitivity in 36 spectral bands
with spatial resolutions ranging from 250 m to 1 km. Two
EOS satellites, Terra and Aqua, have been successfully
launched into sun-synchronous orbits in December 1999
and May 2002 respectively, both carrying the MODIS
sensor. The Terra overpass time is around 1030 local solar
time in its descending mode and 2230 local solar time in
ascending mode. The Aqua overpass time is around 1330
local solar time in ascending mode and 0130 local solar time
in descending mode. MODIS, flying on these two satellites,
therefore can obtain valuable diurnal variation information
which is more suitable for regional and global climate
change studies. A new generation of land surface products
has been produced from the MODIS data such as LAI,
albedo, the Enhanced Vegetation Index (EVI), the Land
Surface Temperature (LST), etc. [Justice et al., 2002; Wang
et al., 2004; Huete et al., 2002; Wan et al., 2004]. The
enhanced spectral, spatial, radiometric, and geometric qual-
ity of MODIS data provides a greatly improved basis for
monitoring and mapping the global land surface relative to
AVHRR data [Friedl et al., 2002; Justice et al., 2002].
[8] The objectives of this paper are to use EOS MODIS

products to improve the land surface representation in a
regional climate model and evaluate the model outputs.
Monthly LAI and VFC images are directly incorporated in
the regional model. Land surface processes and some
biophysical parameters (e.g., albedo and transmissivity)
strongly depend on the value of LAI and VFC in the model
used in this study. The assumption is that MODIS land
surface products provide a more realistic vegetation distribu-
tion and, therefore, can potentially improve the regional
climate simulations. The impacts of improved land surface
are examined by comparing seasonal and diurnalMODIS LST
with model simulated LST. This is the first such effort to fully
utilize the LST observations from both EOS Terra and Aqua
satellites for evaluating regional climate models. In addition,
precipitation data from other satellite observations are used for
the validation. The advantage of using EOS observations in
land-climate modeling is demonstrated. A detailed description
of model and data is given in section 2. The results and
discussion are presented in sections 3 and 4, and the major
conclusions are reviewed in the final section.

2. Methods and Data

[9] The regional climate model used for the numerical
simulations in this work was the Regional Atmospheric
Modeling System (RAMS) Version 4.4 [Pielke et al., 1992;
Cotton et al., 2003]. Here, ‘‘regional climate model’’ means
a limited area model with high resolution, generally with
grid spacing less than 100 km, run for a simulation time of
more than approximately one month length, so that the
initial atmospheric conditions have been forgotten [Jacob
and Podzun, 1997]. Figure 1 shows the study area in East
Africa illustrated by a new land cover data set, the Global
Land Cover (GLC) 2000 for Africa [Mayaux et al., 2004].
This data set was developed by the Joint Research
Centre’s Global Vegetation Unit based primarily on SPOT
VEGETATION daily 1 km data, which were acquired from
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1 November 1999 to 31 December 2000. The GLC2000 for
Africa was downloaded at http://www-gem.jrc.it/glc2000/.
The study area includes Kenya, Uganda, Tanzania, Congo,
Rwanda, Burundi and a small section of Indian Ocean. The
largest inland water body is Lake Victoria (Figure 1).
RAMS has been found to perform well in various mesoscale
modelings in East Africa [e.g., Mukabana and Pielke,
1996]. In this study, three numerical experiments were
carried out to evaluate the impacts of the improved land
surface parameterization in RAMS. In the first experimental
run, here called the ‘‘default’’ (DEF) run, the default land
surface representation in RAMS was used, which includes
the Olson Global Ecosystem (OGE) land cover data set with
built-in biophysical values. In the second run, here called
the ‘‘GLC’’ run, the built-in LAI and VFC were used but
with OGE land cover replaced by GLC2000 to test the
effect of this new land cover data set. Both GLC2000 and

MODIS derived LAI and VFC were used for the third run,
which is called ‘‘GLC + LAI + VFC’’ in this study. The year
2003 was chosen for all three experiments. Precipitation in
2003 was close to the long-term average (http://cics.umd.
edu/�yin/GPCP/main.html>) and all MODIS products are
available in 2003.

2.1. RAMS and Configuration

[10] RAMS is a three-dimensional, nonhydrostatic, gen-
eral purpose atmospheric simulation modeling system,
which solves equations of motion, heat, moisture, and mass
continuity in a terrain-following coordinate system. It is
capable of both numerical weather prediction and regional
climate simulation.
[11] The SVAT scheme employed in RAMS is the Land

Ecosystem-Atmosphere Feedback model, version 2 (LEAF-2)
[Lee, 1992;Walko et al., 2000]. LEAF-2 represents the storage

Figure 1. Study area illustrated by GLC2000 for Africa. Areas 1, 2, and 3 refer to Lake Victoria,
Rwanda, and Burundi, respectively.

D15101 GE ET AL.: EOS DATA FOR CLIMATE MODELING

3 of 15

D15101



and vertical exchange of water and energy in multiple soil
layers, temporary surface water or snow cover, vegetation
and canopy air. The LEAF-2 is able to represent fine-scale
surface variations by dividing surface grid cells into subgrid
patches. Each patch has its own land cover type and soil
texture class, and it responds to and influences the overlying
atmosphere in its own unique way according to its fractional
area of coverage. The biophysical characteristics, such as
LAI, VFC, albedo, etc., are then defined in a lookup table
for the land cover type each patch possesses (see http://
www.atmet.com/html/docs/rams/RT1-leaf2-3.pdf for the
built-in lookup table for biophysical characteristics defined
in LEAF-2). Of these biophysical variables, LAI and VFC
are assumed to have a simple seasonal dependence, which is
the function of a cosine distribution, latitude and time of
year. Vegetation is assumed to peak in late July (Julian day =
200) in the northern hemisphere and the reverse in the
southern hemisphere. For locations close to the equator,
such as a large part of East Africa in this study, LEAF-2
assumes that seasonal variation is reduced to zero. As a
result, the built-in spatial and temporal vegetation variations
are extremely unrealistic for near-equatorial regions. In the
experiments presented here, the number of patches per grid
cell was set to ten for a relatively detailed representation of

the land surface. One patch is allocated for water in all grid
cells.
[12] A single grid with 50 km horizontal grid spacing was

used as the model domain (Figure 2). When RAMS is run
for a short term (days or a couple of weeks), a multiple
nesting paradigm is typically followed in which the coarsest
grid has the approximate horizontal scale as the reanalysis
data. Castro et al. [2005] found that a coarse outer grid may
introduce undesirable weakening of large-scale atmospheric
variability for long-term (more than 2 weeks) model inte-
grations, and they suggested a single grid paradigm which
directly assimilates the reanalysis to the mesoscale grid.
Bypassing the coarser grid may also avoid the problem of
using different parameterization schemes on different grids
which may introduce additional uncertainties. For the land
surface, the standard RAMS 30-arc sec topography data set
was used. The grid extended over 32 vertical levels, with a
layer thickness of 80 m near the surface and stretching to
1900 m at the top of the domain. The model was driven by
6-hourly lateral boundary conditions derived from the
National Centers for Environmental Prediction (NCEP)
atmospheric reanalysis product [Kalnay et al., 1996]. The
model time step was 90 s with the output period set to every
3 h. At each time step, the reanalysis data were nudged over
five outer grid points. No interior nudging was applied as it

Figure 2. RAMS domain with Dx = 50 km. Areas 1, 2, and 3 refer to Lake Victoria, Rwanda, and
Burundi, respectively.
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may mitigate the strength of surface boundary forcings [Ge
et al., 2007].
[13] The soil model in LEAF-2 consisted of 11 vertical

layers spanning a depth of 2.1 m. The topsoil layer was 3 cm
in depth, with lower levels becoming progressively thicker.
The initial soil temperature was set with an offset of the
lowest level atmospheric temperature. For example, the
deepest soil level initially had a temperature 5 K warmer
than the initial temperature of the lowest atmospheric level.
The moisture content of the soil was initialized as 35% of
the saturation value, uniformly over the domain. RAMS was
spun up over six months starting from July, the beginning of
the dry season, to December 2002, and this time period was
omitted in the analysis. Soil moisture can play an important
role in surface atmosphere interactions particularly through
moisture ‘‘memory.’’ The presence of soil moisture influen-
ces the partitioning of latent and sensible heat, thereby
affecting the development of shallow convection. However,
soil types in East Africa are poorly mapped, and available soil
moisture values for the region are speculative because of data
scarcity. We want to emphasize that the role of soil moisture
can strongly affect the model solution. In the absence of
reliable data, and to avoid introducing more complex uncer-
tainties into this study, we chose this homogeneous approach.
[14] The radiative transfer scheme of Chen-Cotton [Chen

and Cotton, 1983] was used to parameterize the vertical
flux of shortwave and longwave radiation. Horizontal
diffusion coefficients were computed on the basis of the
modified Smagorinsky formulation [Smagorinsky, 1963],
and the vertical diffusion was parameterized according to
the Mellor-Yamada scheme [Mellor and Yamada, 1982].
The bulk microphysics parameterization was activated,
which allows the model to consider the effect of moisture
in all phases. The sea surface temperature was specified
using the 1� monthly climatological data set from NCEP
[Reynolds and Smith, 1994]. The convection scheme selected
was the Kain-Fritsch scheme [Kain and Fritsch, 1993].
[15] In remote sensing, LST is defined as the ‘‘surface

radiometric temperature’’ corresponding to the instanta-
neous field of view of the sensor [Prata et al., 1995; Becker
and Li, 1995]. RAMS does not output LST directly. In this
study, canopy temperature and top layer soil temperature
were combined to calculate LST in each grid cell on the
basis of vegetation fractional cover (VFC), using the fol-
lowing equation:

LST4 ¼ svT
4
v þ 1� svð ÞT4

g ð1Þ

where sV is VFC, TV is the canopy temperature, and Tg is
the top layer soil temperature [Jin et al., 1997]. Tempera-
tures here are in Kelvin.

2.2. Data

2.2.1. MODIS LAI and VFC
[16] Evaluation studies have shown that the accuracy of

8-day MODIS LAI is about 0.5 LAI [Wang et al., 2004] and
MODIS EVI performs with higher fidelity than AVHRR-
NDVI by comparing with top-of-canopy and airborne
measurements [Huete et al., 2002]. Daily and 8-day MODIS
products are often affected by cloud contaminations in
tropical regions. Therefore, monthly 1 km MODIS LAI
and EVI products for 2003, which were composited from

8-day data by selecting highest-quality pixels, were used in
this study. They were downloaded from the MODIS group
at Boston University (ftp://primavera.bu.edu/pub/datasets/
MODIS/). These images were transformed to a Polar
Stereographic projection, which corresponds to the projec-
tion of the RAMS domain. It needs to be mentioned that
MODIS LAI has a meaning different than that in RAMS.
As is standard in the remote sensing community, MODIS
LAI is defined as ‘‘the area of green leaves per unit area of
ground’’ [Curran, 1983; Price, 1992], which is sometimes
referred to as ‘‘effective’’ LAI. In contrast, LAI in LEAF-2 and
other land surface models is defined as ‘‘the number of leaf
layers over the vegetated part of the pixel’’ (R. Dickinson,
personal communication, 2006), which is also referred to as
‘‘clump’’ LAI [Choudhury et al., 1994]. In each LEAF-2
patch, conservation equations for energy and moisture are
applied to vegetation, canopy air and bare soil, and LAI is only
assigned to the vegetated area [Walko et al., 2000]. Therefore,
MODIS LAI was divided byMODISVFC so that the ingested
LAI has the same meaning as defined in RAMS. This
modification has the greatest influence on LAI values over
sparsely vegetated areas where VFC is low. Further studies are
needed to test the impacts of effective and modified LAI on
model simulations.
[17] VFC data were developed from the 1 km monthly

MODIS EVI product, based on the theory of ‘‘Mosaic
Pixel,’’ which assumes that a remote sensing pixel has a
patchy (mosaic) structure [Kerr et al., 1992; Valor and
Caselles, 1996]. A quantity measured by satellite (f, e.g.,
vegetation index) for a pixel can be interpreted as the sum of
linear contributions from the vegetated area (sV) and bare
soil (1 � sV):

f ¼ fvsv þ fs 1� svð Þ ð2Þ

where the subscripts v and s denote values over fully
vegetated and bare soil areas. A vegetation index is a proxy
of vegetation density that is linearly related to fPAR and
fractional vegetation cover. Various vegetation indices have
also been shown to exponentially relate to the total green
leaf area index. From this equation, a simple formulation for
fractional cover sV can be derived as:

sv ¼
f� fs

fv � fs

ð3Þ

Following the study by Gutman and Ignatov [1998], fV and
fS in this study are prescribed as seasonally and
geographically invariant constants, which correspond to
the yearly maximum EVI of the Congo Forest (approxi-
mately 0.86) and minimum EVI of deserts (approximately
0.05) in northern Kenya.
[18] Monthly MODIS LAI and VFC data were then

directly ingested in RAMS. The 1 km LAI and VFC values
were aggregated for each patch within a 50 km grid cell on
the basis of land cover type. They were interpolated linearly
to determine daily values so that RAMS can update LAI and
VFC values continuously.
2.2.2. LAI and VFC Comparison
[19] In order to illustrate the improved representation of

the land surface in the RAMS model, the default and new
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LAI and VFC were examined. Figures 3 and 4 present the
spatial comparison of LAI and VFC respectively for differ-
ent time periods in 2003: March, June, and September. The
original 1 km MODIS imagery is also included in the
comparison. The resolution for the default and new LAI
and VFC maps is 50 km, which corresponds to the RAMS
grid spacing (Figure 2). RAMS LAI and VFC values
(default and new) shown in Figures 3 and 4 only represent
the biggest patches in grid cells. As a result, details of
smaller patches are not included and coastlines appear not
explicitly resolved. Overall, the default LAI and VFC are
extremely homogeneous spatially. Except for deserts and
lakes, vegetation has little variation over the domain. The

default data show the Congo forest to have similar bio-
physical characteristics as the semiarid areas in the east.
Furthermore, the default LAI and VFC present unrealistic
temporal variation. For example, the observed VFC in a
large part of southeast portion of the study area decreases
significantly in the second half of the year. However, this is
completely missed in the default VFC. In addition, seasonal
variation of VFC was examined with detail for one land
cover type (wooded grassland) at a selected location (8.9�S,
23.8�E) (Figure 5). Again, RAMS default VFC displayed
little annual change and had much higher values compared
to the MODIS observations. When daily or 8-day MODIS

Figure 3. Spatial comparison of the default, new, and original 1 km LAI for March, June, and
September 2003.

Figure 4. Same as in Figure 3 but for VFC.
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vegetation products with high quality are available, the
vegetation phenology could be further improved.
2.2.3. MODIS LST
[20] Wan et al. [2004] validated the daily MODIS LST

product at 1 km resolution in 11 clear-sky cases with in situ
measurement data and the accuracy was better than 1 K in
the range from 263 to 300 K. However, no such validation
has been reported for the East Africa region. Monthly Terra
(MOD) and Aqua (MYD) LST data (version 4) with 0.05�
(approximately 5.5 km) spatial resolution was downloaded
from the EOS Data Gateway (http://wist.echo.nasa.gov).
QC flags for quality assurance control were carefully
examined with errors less than 3 K under clear sky
conditions. Images were subset and resampled to 50 km
footprint to match with RAMS output.
[21] It needs to be pointed out that MODIS LST is valid

only under clear-sky conditions. For this low-latitude study

area, the daily product is usually severely contaminated by
clouds. Monthly MODIS LST was thus used in this study. It
was composited and averaged on the basis of clear-sky
observations. However, LSTs in several months of 2003
were still adversely affected by the persistent cloud cover,
especially over the western part of the study area (Congo
forest) during nighttime. The data quality of MOD and
MYD LST in 2003 based on cloud cover is summarized in
Table 1, where circles indicate no significant cloud cover
and crosses indicate significant cloud contamination. It is
noticeable that most cloud contamination occurs during
nighttime and in the raining seasons. Other factors such as
algorithms and sensor characteristics could also affect the
LST quality. The cloud cover, which produces invalid LST
pixels, is the focus of this study.
[22] In this study, daytime MYD (1100 UTC or 1400

local time) was assumed as the maximum daily LST and
was compared with RAMS LST at (1200 UTC) for the
whole domain. Nighttime MYD (2300 UTC or 0200 local
time) was assumed as the minimum daily LST, recognizing
that minimum temperature may actually occur a couple of
hours later in the early morning. Starting from 0000 UTC,
RAMS yielded output at 3-h intervals. Thus, there is a 1 h
difference between MOD and MYD observing times and
the simulation times in RAMS. This difference may have
some influence on the comparison in this study, which will
be addressed in section 4. Since nighttime LST is usually
contaminated with clouds in the western part of the domain,
the minimum LST comparison was restricted to the eastern
part of the domain. In addition, diurnal LST was compared
from May to August, because of minimum cloud contam-
ination in this time period (Table 1).
[23] In addition to the LST data, precipitation from the

Tropical Rainfall MeasuringMission (TRMM) was also used
for model evaluation [Simpson et al., 1988;Kummerow et al.,
2000]. The TRMM products have recently been evaluated
over East Africa using station observations [Dinku et al.,
2007], and they perform reasonably well. For this study, the
latest TRMM product (3B42 version 6) was used.

3. Results

[24] Spatial, seasonal and diurnal LST was examined in
three experiments (DEF, GLC and GLC + LAI + VFC) to
look at the impacts of the ingested MODIS LAI and VFC.
Precipitation was also examined.

Figure 5. Seasonal variation of vegetation fractional cover
for wooded grassland at one selected location.

Table 1. Data Quality of MODIS LST in 2003a

Month

MYD MOD

Day Night Day Night

1 O X O O
2 O O O O
3 O O O X
4 O O O O
5 O O O O
6 O O O O
7 O O O O
8 O O O O
9 O X O O
10 O X O X
11 O X O X
12 O X O X
aCircles indicate no significant cloud cover, and crosses indicate

significant cloud contamination.

Figure 6. Temporal comparison of maximum daily LST
from three RAMS runs (DEF, GLC, and GLC + LAI + VFC)
and monthly MYD observations for the whole study domain.
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3.1. Seasonal LST

[25] Figure 6 shows the RAMS simulated maximum daily
LSTs and the MYD monthly composited observations,
which were averaged for the whole study area excluding
water bodies. The three runs are differentiated in colors and
bold lines are simply 30-day averages of daily results.
Detailed statistics of each time series are given in Table 2.
The impacts of the land surface conditions are significant,
especially when MODIS LAI and VFC products were used.
In contrast with the RAMS default land surface, LST
seasonal variation has been dramatically improved in
GLC + LAI + VFC (green curve in Figure 6). According
to MYD observations the lowest LST in 2003 occurs in
May. This is correctly captured by GLC + LAI + VFC, but
is incorrectly simulated to be in July by DEF and GLC runs.
The improved seasonality is also shown by standard devi-
ation and correlation coefficients in Table 2. GLC + LAI +
VFC increases seasonal LST variation (standard deviation)
with substantially improved correlation (0.86) with MYD
observations. LSTs peak at about the same time periods
(March and September) in all three runs. However, RAMS
underestimates LST in the second half of the year. Overall,
GLC2000 increases the maximum daily LST by about half
degree (Table 2), but fails to change the seasonal dynamics.
LST flattens out later in the year, both with and without
GLC2000. The increase in LST in the second half of the
year, giving better agreement with observations, is due to
more realistic description of vegetation cover in GLC +
LAI + VFC, particularly seasonal phenology of VFC, which
will be analyzed with detail in section 4.
[26] Minimum daily LST is also compared in Figure 7.

Because a significant amount of invalid LST pixels exist in
the nighttime MYD in the western domain from September
to January (Table 1), this comparison was conducted only
for the eastern domain, which is approximately the eastern
half of the study area. Water bodies were excluded in this
comparison as well. Detailed statistics of each time series
are given in Table 2. Generally, RAMS produces much
better minimum LST dynamics than the maximum LST in
all three runs. This is possibly due to less moisture in this
arid/semiarid area. Unlike the maximum daily LST, the
lowest minimum LST occurs in July. Seasonal variation is
as large as about four degrees. Similarly as in Figure 6,
RAMS produces lower LSTs at the beginning of the year,
but higher LSTs after June using the GLC + LAI + VFC
run. In addition, GLC2000 does not have much impact on
the LST seasonality. Table 2 (mean LST) indicates that
RAMS shows a warm bias at night but a cold bias during
the day. This is possibly related to the characteristics of
MODIS products and other factors that will be discussed in
detail in section 4.

3.2. Spatial LST

[27] In Figure 8, the maximum daily LSTs from MODIS
(MYD daytime) and RAMS are spatially compared month
by month. The first image for each month is from the
MODIS observations, resampled to 50 km resolution. Only
LSTs from the DEF run (second image) and the GLC + LAI
+ VFC run (third image) are included. Because the com-
parison is in terms of land surface temperature all water
bodies (lakes and oceans) were masked out (white color).
The magnitude of LST is indicated by color: yellow to red
show high LSTs while green to blue show relatively low
LSTs.
[28] MODIS LSTs peak from February to March and

again from August to September, and reach their minimum
around May. This is consistent with the bimodal temporal
pattern shown in Figure 6. This feature is obviously
captured by the GLC + LAI + VFC run, but is completely
missed by the DEF run. LSTs do not vary much after June
for the DEF run. Spatially, the western domain which is
covered by more vegetation and has more moisture and
rainfall has lower LSTs compared to the eastern part. Both
the DEF and the GLC + LAI + VFC runs seem to capture
this feature, but the latter captures this contrast much better.
More importantly, MODIS-observed LSTs in the east shows
a strong Intertropical Convergence Zone (ITCZ) related
pattern, in which hottest LSTs migrate from north to south
with time and correspond to the local dry season. This
feature is fully captured by the GLC + LAI + VFC run. In
Figure 4, the MODIS VFC shows a similar pattern. This

Table 2. Mean, Standard Deviation, and Correlation Coefficient of LST Time Series in Figure 6 (Maximum) and Figure 7 (Minimum)

Calculated on Monthly Averagesa

Experiments

Maximum LST Minimum LST

Mean (�C) SD Correlation Coefficient Mean (�C) SD Correlation Coefficient

DEF 30.22 1.21 0.32 19.14 1.26 0.94
GLC 30.89 1.21 0.33 19.52 1.26 0.95
GLC + LAI + VFC 30.91 1.51 0.86 19.42 1.11 0.90
MYD 32.58 2.14 – 18.01 1.23 –

aCorrelation coefficients are between three experiments and MODIS observations (MYD). SD stands for standard deviation.

Figure 7. Same as in Figure 6 but for minimum daily LST
and for eastern domain only.
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confirms the importance of VFC in calculating LST as is
manifested in equation (1). The warmer bare soil temper-
atures gain more importance during the July–August or so
time period because of the low VFC that is manifested only
in the MODIS-driven experiment. Maximum, minimum and
standard deviation of LST in each panel in Figure 8 are
given in Table 3. Seasonal variation of these three statistics
follows the similar pattern in Figure 6. Table 3 also indicates
a cold daytime bias in RAMS.
[29] In addition to the month-by-month examination of

MYD and simulated spatial LSTs, differences between them
are presented in Figure 9. LST differences are averaged over
two periods: January to June and July to December 2003.

Similar to Figure 8, the biggest differences occur in the
eastern domain primarily showing a cold bias in RAMS. In
the western domain (mostly Congo forest area), RAMS
produces higher LSTs. Averaged over the first half year,
DEF performs a little better than GLC + LAI + VFC run in
terms of mean (mn) LST difference. However, during the
second half, LST from the GLC + LAI + VFC run becomes
much closer to observations.

3.3. Diurnal LST

[30] The impacts of the land surface representation in
RAMS were further examined by looking at diurnal LSTs,
taking advantage of the multiple daily observations by

Figure 8. Spatial comparison of LST from MODIS observations (first image for each month), RAMS
with default land cover and biophysical parameters, DEF run (second image for each month), and RAMS
with GLC2000 and MODIS LAI/VFC, GLC + LAI + VFC run (third image for each month).
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MODIS Terra (MOD) and MODIS Aqua (MYD). Because
of cloud contamination (Table 1), only four months, May to
August, were analyzed. In Figure 10, the RAMS simulated
LSTs are shown by the color lines, while the four MODIS
observations are shown in red squares. Time is in UTC,
which lags local time about 3 h in the study area. Mean LST
and diurnal temperature range are given in Table 4.
[31] Figure 10 shows that RAMS captures the diurnal

cycles quite well. LST reaches its daily maximum at about
1200 UTC and the daily minimum at about 0300 UTC.
During the day (0900 and 1200 UTC), the simulated LST is
close to the MODIS values in May and June. However, in
July and August the differences between simulated and
observed daytime LSTs magnify. This is also shown in
Figure 6. During the day in July and August, only the LSTs
simulated by the GLC + LAI + VFC run are close to the

MODIS observations. In Table 4, diurnal temperature range
calculated by GLC + LAI + VFC increases significantly
with time which is consistent with MODIS observations. In
general, the GLC + LAI + VFC produces the coldest LST in
May and June but the warmest LST in July and August
(Table 4). This is because the vegetation cover as well as
soil moisture decreases dramatically during this time period
(dry season) in larger part of the domain (Figure 4), which
inhibits transpiration (more discussion to follow in section 4).

3.4. Precipitation

[32] Figure 11 shows the TRMM-observed 3-h precipita-
tion rates in 2003. The TRMM observations are compared
with the three RAMS simulations: DEF, GLC, and GLC +
LAI + VFC. RAMS is able to produce the general temporal
dynamics of rainfall in this area considering RAMS has a
much lower spatial footprint size than the TRMM observa-
tions (50 km versus about 27 km). The two wet seasons
separated by a dry season in between (around June) are
clearly captured. In contrast to LST, the RAMS simulated
precipitation seems to be less sensitive to different land
surface representations. All three experiments produced
similar rainfall patterns. In Figure 11, mean precipitation
rates are 0.098, 0.088, 0.093 and 0.091 mm/3 h for TRMM,
DEF, GLC and GLC + LAI + VFC, respectively. An one-
way analysis of variance (ANOVA) test showed no differ-
ence at the 95% significance level among three time series
in Figure 11 (DEF, GLC and GLC + LAI + VFC). The p
value of this test was 0.196. Figure 12 shows the accumu-
lated precipitation over the domain for 2003. Spatially, the
major features are captured by RAMS, such as high rainfall
over the Congo forest and Lake Victoria and relatively dry
areas in eastern Kenya and Tanzania. However, RAMS

Table 3. Maximum, Minimum, and Standard Deviation of LST

for Panels in Figure 8a

Months

Maximum Minimum SD

MYD DEF GLV MYD DEF GLV MYD DEF GLV

1 55.8 46.2 52.2 16.3 22.2 21.0 6.7 4.7 5.4
2 57.6 49.9 56.1 18.5 23.2 21.4 7.7 4.3 6.7
3 57.5 50.0 57.0 19.9 23.7 21.9 7.9 4.5 7.3
4 56.0 47.6 53.4 17.5 23.1 20.7 6.4 4.1 5.9
5 49.4 44.7 48.3 10.0 23.3 18.5 4.3 3.4 4.3
6 50.6 45.7 49.3 16.2 22.8 18.0 5.4 3.1 3.8
7 51.3 46.0 52.0 11.4 22.2 19.7 6.3 3.4 5.3
8 52.1 45.3 52.2 13.7 22.1 21.1 7.0 3.6 6.6
9 54.5 48.0 54.6 11.2 21.7 20.0 7.4 4.4 8.0
10 55.5 44.9 50.2 13.1 22.3 19.2 7.6 4.0 7.7
11 53.4 42.4 47.7 16.4 21.8 19.9 7.2 3.7 6.4
12 55.4 43.8 44.6 14.3 21.8 20.1 6.9 3.8 5.1
aGLV stands for GLC + LAI + VFC. Unit is �C.

Figure 9. Spatial differences between MYD LST (OBS) and simulated LSTs averaged over January–
June 2003 and July–December 2003. NEW means the GLC + LAI + VFC run. The mean (mn) and
standard deviation (sd) for each panel are also given.
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produces little rainfall at the left and right boundaries and
much more rainfall over Congo forest than observations.
Although there are some differences in terms of mean
values and standard deviations as well as over hot spot
areas (e.g., high rainfall area), different surface conditions in
DEF, GLC and GLC + LAI + VFC have little impacts on
the overall precipitation pattern.

4. Discussion

[33] The partitioning of sensible and latent heat flux is a
function of varying surface soil water content and vegetation
cover. Since vegetation considerably enhances water vapor
fluxes to the atmosphere through the transpiration process,
greater vegetation cover is often associated with increased
latent heat losses and therefore a reduction in surface tem-
perature. Increasing vegetation height increases surface
roughness, turbulent exchange of water above the canopy,
and the efficiency of energy dissipation. It thus further

decreases surface temperature [Smith and Choudhury,
1990]. In addition, during daylight hours, plant leaves are
cooler than exposed bare soil because the heat capacity of
plant leaves is much lower than the heat capacity of soil
[Gates, 1980]. On surface with a low moisture content, latent
heat fluxes associated with evaporation and transpiration
become the dominant mechanism accounting for variations

Figure 10. Monthly averaged diurnal cycles from MODIS and three RAMS runs: DEF, GLC, and
GLC + LAI + VFC.

Table 4. Mean LST and Diurnal Temperature Range for Monthly

Averaged Diurnal Cycles in Figure 10a

Months

Mean DTR

MODIS DEF GLC GLV MODIS DEF GLC GLV

5 23.6 24.1 24.5 23.1 11.3 11.0 11.5 10.2
6 23.3 23.1 23.4 22.8 13.3 12.0 12.3 11.7
7 23.5 22.0 22.3 22.7 15.5 12.4 12.7 13.1
8 24.5 22.5 22.9 24.0 17.1 12.5 12.8 14.2
aGLV stands for GLC + LAI + VFC. DTR stands for diurnal temperature

range. Unit is �C.
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in surface temperature with increases in vegetation cover
[Price, 1990].
[34] As shown in Figure 9, the greatest LST difference

found in this study occurs in the eastern domain, which is a
primarily semiarid area with limited soil moisture. By
incorporating spatially and temporally explicit MODIS
LAI and VFC, RAMS improved its performance of simu-
lating the seasonal dynamics of LST in two ways. Informed
by the MODIS LAI data, a more realistic vegetation density
of the vegetated area in a grid cell may help to improve the
interactions of plants and overlying atmosphere. The other
one, which is more important, is the relative contributions of
vegetation and bare soil as determined by VFC. Signifi-
cantly increased spatial extent of bare soil in the eastern
domain during the second half of the year (Figure 4) may
help to lift the flat LST curves after June (Figure 6). MODIS
VFC provides more realistic description of the less vege-
tated zone in the eastern domain during the later part of the
year, which has much less physical evaporation and tran-
spiration. The surface temperature in GLC + LAI + VFC
therefore increases compared to DEF and GLC with unre-
alistically complete coverage by vegetation.

[35] As discussed in section 2.1, the land surface in
RAMS is primarily represented by both land cover types
and their related biophysical parameters. Introducing a new
land cover data set, GLC2000, provides a better description
of the spatial distribution of land cover types across the
study domain. This should help to produce better spatial
characteristics of LST. However, GLC2000 did not result in
improvement in seasonal vegetation dynamics, which are
still prescribed as simple mathematical equations in LEAF-
2. The temperatures of vegetation and bare soil, as well as
their relative contributions in a grid cell (equation (1)), vary
not just by location, but also over time. As a result, using
GLC2000 alone does not improve the LST seasonality.
[36] Climate is a major determinant of vegetation. The

location and seasonal migration of ITCZ are crucial for
large areas of the tropics including East Africa. It links to
the rainy season, which supplies a large fraction of the
annual rainfall. We can trace a causal continuum wherein
ITCZ leads to rainfall patterns that determine vegetation
distribution and structure that affect the spatial and temporal
characteristics of LST. In this study, a large area south of
Lake Victoria is in the Southern Hemisphere (Figure 2).
From April to September the vertical rays of the Sun strike

Figure 11. Domain averaged 3-h precipitation rate from TRMM for 2003 and three RAMS runs: DEF,
GLC, and GLC + LAI + VFC.
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the Earth’s surface north of the equator, and therefore the
area south of Lake Victoria receives less insolation. MODIS
observations (Figure 8), however, show that LST over this
area starts to increase during this time period. In contrast,
the area south of Lake Victoria receives more insolation
during October to March, and the LST decreases with time.
The spatial pattern of LST is primarily related to the
movement of ITCZ. From April to September, ITCZ moves
toward the Northern Hemisphere, which leads to less
rainfall with sparser vegetation in the area south of Lake
Victoria, which in turn contributes to higher LST. The
causal continuum can also be applied to the period from
October to March. This study demonstrates (section 3.2)
that MODIS LAI and VFC significantly enhance the ITCZ-
related pattern of LST compared to the default vegetation
conditions.
[37] Precipitation in RAMS is governed by large-scale

fields and model parameterizations. In this study, the
demonstrated improvement of the land surface representa-
tion is not sufficient to change the simulated precipitation
significantly. This is probably due to the 50 km horizontal
grid spacing used for RAMS. Reducing the grid spacing
may better represent the mesoscale structure of precipita-
tion. The Kain-Fritsch convection scheme, which has been
suggested to be more suitable for modeling with �30 km
grid spacing [Kain and Fritsch, 1993], was used in this
study. Additionally, the greatest difference in vegetation
cover between MODIS observations and RAMS default
conditions occurs in considerably dry areas (Figure 4),
which may also influence the sensitivity of precipitation
to land surface conditions.
[38] RAMS showed a notable warm bias at night and a

cold bias during the day (Table 2). Three possible factors

may contribute to this in the model. The first factor is
related to the LST product itself. Monthly MODIS LST is
composited on the basis of clear-sky observations. By
screening out cloud contamination, the MODIS observa-
tions are biased toward the highest daytime values and the
lowest nighttime values in a month. In the daytime, clouds
diminish insolation and thus cause much lower LSTs;
during the night, clouds tend to keep surface warmer by
absorbing and emitting longwave radiation from the Earth.
The second factor involves the lag of about 1 h between
MODIS observation times and RAMS simulation times.
According to the study by Jin and Dickinson [1999], the
timing of maximum LST corresponds to the insolation peak
time, with some phase lag. LST may begin to decrease after
1400 local time (MYD). Using 1500 local time RAMS
simulation time for comparing maximum LST could be a
factor in the cold bias shown in previous results. The final
factor is soil moisture, which was not validated in the
model. Excessive soil moisture in the semiarid area (eastern
domain) may reduce the simulated LST because of the
latent heat flux.

5. Summary

[39] Human activities have substantially modified the
Earth’s surface in the past and will continue to do so in
the future. The impacts of human activities such as land
cover change on regional and global climate can be studied
using climate modeling techniques. Two types of data are
required for effective land-climate modeling studies. One is
biophysical variables used in the land surface parameteri-
zation, and the other is the climatic variables for validating
model outputs. However, these data are usually limited in

Figure 12. Accumulated precipitation in 2003 from TRMM and three RAMS runs: DEF, GLC, and
GLC + LAI + VFC. The mean (mn) and standard deviation for each plot are also given.
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many parts of the world such as East Africa in this study.
This brings formidable challenges for land-climate model-
ing studies in those areas.
[40] In this paper, MODIS LAI and VFC images were

directly incorporated in the RAMS model. Spatially, the
default LAI and VFC were too homogeneous to differenti-
ate distinct land surface types across the domain. Tempo-
rally, simple cosine functions of very small magnitude and a
phase appropriate to midlatitudes produced unrealistic sea-
sonal variation in East Africa. The impacts of this improved
land surface were examined by comparing the RAMS
simulated LST and LST products from both MODIS Terra
and Aqua satellites. The spatial, seasonal and diurnal LST
characteristics were greatly improved because of the
ingested MODIS LAI and VFC. The bimodal feature of
the LST seasonal variation, which was completely missed in
the default configurations, was captured when MODIS LAI
and VFC were used. The ITCZ-related seasonal migration
of LST in the eastern domain was also greatly enhanced.
Both MODIS Terra and Aqua LST were used for the first
time to validate the diurnal pattern of model outputs. This
study found that diurnal LST cycles were slightly improved
because of the new land surface representation. GLC2000
alone, however, was not able to modify the seasonality of
LST. Precipitation was less sensitive to the change in the land
surface conditions primarily because of model configuration
and the convection scheme used. Vegetation changes in arid
areas may also contribute to this insensitivity.
[41] EOS satellites are providing a new generation of land

data products in support of global change research and
natural resource management. However, it usually takes
time for new land products derived from a new sensor
system to be adopted by users. As with AVHRR in the past,
the potential of EOS products has not been fully recognized
in the climate modeling community. This paper presents the
use of EOS products to improve the land-climate modeling
in East Africa. More EOS products need to be tested in the
land-climate modeling studies at regional and global scales.

[42] Acknowledgments. Part of this research was funded by NASA’s
grant (NNG05GD49G) and by NSF grant (NSF BCS 0308420). The
present study was greatly facilitated by the research support while J. Ge
was a graduate research assistant at Michigan State University. This is
GLERL contribution 1468.

References
Becker, F., and Z.-L. Li (1995), Surface temperature and emissivity at
different scales: Definition, measurement and related problems, Remote
Sens. Rev., 12, 225–253.

Castro, C. L., R. A. Pielke Sr., and G. Leoncini (2005), Dynamical down-
scaling: Assessment of value retained and added using the Regional
Atmospheric Modeling System, J. Geophys. Res., 110, D05108,
doi:10.1029/2004JD004721.

Chase, T. N., R. A. Pielke Sr., T. G. F. Kittel, J. S. Baron, and T. J. Stohlgren
(1999), Potential impacts on Colorado Rocky Mountain weather and
climate due to land use changes on the adjacent Great Plains,
J. Geophys. Res., 104, 16,673–16,690, doi:10.1029/1999JD900118.

Chase, T. N., R. A. Pielke Sr., T. G. F. Kittel, R. Nemani, and S. W.
Running (2000), Simulated impacts of historical land cover changes on
global climate in northern winter, Clim. Dyn., 16, 93–105, doi:10.1007/
s003820050007.

Chen, C., and W. R. Cotton (1983), A one-dimensional simulation of the
stratocumulus-capped mixed layer, Boundary Layer Meteorol., 25, 289–
321, doi:10.1007/BF00119541.

Choudhury, B. J., et al. (1994), Relations between evaporation coefficients
and vegetation indices studied by model simulations, Remote Sens.
Environ., 50, 1–17, doi:10.1016/0034-4257(94)90090-6.

Cotton, W. R., et al. (2003), RAMS 2001: Current status and future
directions, Meteorol. Atmos. Phys., 82, 5 –29, doi:10.1007/s00703-
001-0584-9.

Crawford, T. M., et al. (2001), Value of incorporating satellite-derived
land cover data in MM5/PLACE for simulating surface temperatures,
J. Hydrometeorol., 2, 453 –468, doi:10.1175/1525-7541(2001)002<
0453:VOISDL>2.0.CO;2.

Curran, P. J. (1983), Multispectral remote sensing for the estimation of
green leaf area index, Philos. Trans. R. Soc. London, 309, 257–270,
doi:10.1098/rsta.1983.0039.

Deardorff, J. W. (1978), Efficient prediction of ground surface temperature
and moisture, with inclusion of layer of vegetation, J. Geophys. Res., 83,
1889–1903, doi:10.1029/JC083iC04p01889.

de Foy, B., L. T. Molina, and M. J. Molina (2006), Satellite-derived land
surface parameters for mesoscale modelling of the Mexico City basin,
Atmos. Chem. Phys., 6, 1315–1330.

DeFries, R. S., L. Bounoua, and G. J. Collatz (2002), Human modification
of the landscape and surface climate in the next fifty years, Global
Change Biol., 8, 438–458, doi:10.1046/j.1365-2486.2002.00483.x.

Dickinson, R. E. (1995), Land processes in climate models, Remote Sens.
Environ., 51, 27–38, doi:10.1016/0034-4257(94)00062-R.

Dickinson, R. E., A. Henderson-Sellers, P. J. Kennedy, and M. F. Wilson
(1986), Biosphere-atmosphere transfer scheme for the NCAR community
climate model, NCAR Tech. Note, NCAR/TN-275+STR, Natl. Cent. for
Atmos. Res., Boulder, Colo.

Dickinson, R. E., A. Henderson-Sellers, C. Rosenzweig, and P. J. Sellers
(1991), Evapotranspiration models with canopy resistance for use in
climate models, a review, Agric. For. Meteorol., 54, 373 – 388,
doi:10.1016/0168-1923(91)90014-H.

Dinku, T., P. Ceccato, E. Grover-Kopec, M. Lemma, S. J. Connor, and C. F.
Ropelewski (2007), Validation of satellite rainfall products over East
Africa’s complex topography, Int. J. Remote Sens., 28, 1503–1526.

Feddema, J. J., K. W. Oleson, G. B. Bonan, L. O. Mearns, L. E. Buja, G. A.
Meehl, and W. M. Washington (2005), The importance of land-cover
change in simulating future climates, Science, 310, 1674 – 1678,
doi:10.1126/science.1118160.

Friedl, M. A., et al. (2002), Global land cover mapping from MODIS:
Algorithms and early results, Remote Sens. Environ., 83, 287–302,
doi:10.1016/S0034-4257(02)00078-0.

Gates, D. M. (1980), Biophysical Ecology, Springer, New York.
Ge, J. (2007), Improving regional climate modeling in East Africa using
remote sensing products, Ph.D. dissertation, Mich. State Univ., East
Lansing.

Ge, J., J. Qi, B. M. Lofgren, N. Moore, N. Torbick, and J. M. Olson (2007),
Impacts of land/use cover classification accuracy on regional climate
simulations, J. Geophys. Res., 112, D05107, doi:10.1029/2006JD007404.

Giorgi, F., and L. O. Mearns (1999), Introduction to special section: Re-
gional climate modeling revisited, J. Geophys. Res., 104, 6335–6352,
doi:10.1029/98JD02072.

Gutman, G., and A. Ignatov (1998), The deviation of the green vegetation
fraction from NOAA/AVHRR data for use in numerical weather predic-
tion models, Int. J. Remote Sens., 19, 1533 – 1543, doi:10.1080/
014311698215333.

Houghton, R. A., J. L. Hackler, and K. T. Lawrence (1999), The U.S.
carbon budget: Contributions from land-use change, Science, 285,
574–578, doi:10.1126/science.285.5427.574.

Huete, A., et al. (2002), Overview of the radiometric and biophysical per-
formance of the MODIS vegetation indices, Remote Sens. Environ., 83,
195–213, doi:10.1016/S0034-4257(02)00096-2.

International Geosphere-Biosphere Programme (1990), The International
Geosphere-Biosphere Programme: A study of global change—The initial
core projects, IGBP Rep. 12, Stockholm, Sweden.

Intergovernmental Panel on Climate Change (2000), Summary for policy
makers, in IPCC Special Report on Land Use, Land-Use Change, and
Forestry [electronic], Geneva, Switzerland.

Jacob, D., and R. Podzun (1997), Sensitivity studies with the regional
climate model REMO, Meteorol. Atmos. Phys., 63, 119 – 129,
doi:10.1007/BF01025368.

Jin, M., and R. E. Dickinson (1999), Interpolation of surface radiative
temperature measured from polar orbiting satellites to a diurnal cycle:
1. Without clouds, J. Geophys. Res., 104, 2105–2116, doi:10.1029/
1998JD200005.

Jin, M., R. E. Dickinson, and A. M. Vogelmann (1997), A comparison of
CCM2-BATS skin temperature and surface-air temperature with satellite
and surface observations, J. Clim., 10, 1505–1524, doi:10.1175/1520-
0442(1997)010<1505:ACOCBS>2.0.CO;2.

Justice, C. O., et al. (2002), An overview of MODIS land data processing
and product status, Remote Sens. Environ., 83, 3 –15, doi:10.1016/
S0034-4257(02)00084-6.

D15101 GE ET AL.: EOS DATA FOR CLIMATE MODELING

14 of 15

D15101



Kain, J. S., and J. M. Fritsch (1993), Convective parameterization for
mesoscale models: The Kain-Fritsch scheme, in The Representation of
Cumulus Convection in Numerical Models, Meteorol. Monogr., 24, 165–
170.

Kalnay, E., et al. (1996), The NCEP/NCAR 40-year reanalysis project, Bull.
Am. Meteorol. Soc., 77, 437–471, doi:10.1175/1520-;0477(1996)077<
0437:TNYRP>2.0.CO;2.

Kerr, Y. H., J. P. Lagouarde, and J. Imbernon (1992), Accurate land surface
temperature retrieval from AVHRR data with use of an improved split-
window algorithm, Remote Sens. Environ., 41, 197–209, doi:10.1016/
0034-4257(92)90078-X.

Kummerow, C., et al. (2000), The status of the tropical rainfall measuring
mission (TRMM) after two years in orbit, J. Appl. Meteorol., 39, 1965–
1982, doi:10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.

Kurkowski, N. P., D. J. Stensrud, and M. E. Baldwin (2003), Assessment of
implementing satellite-derived land cover data in the Eta model, Weather
Forecast., 18, 404 – 416, doi:10.1175/1520-0434(2003)18<404:
AOISDL>2.0.CO;2.

Lee, T. J. (1992), The impact of vegetation on the atmospheric boundary
layer and convective storms, Atmos. Sci. Pap. 509, Colorado State Univ.,
Fort Collins.

Lu, L., and W. J. Shuttleworth (2002), Incorporating NDVI-derived LAI
into the climate version of RAMS and its impact on regional climate,
J. Hydrometeorol., 3, 347 –362, doi:10.1175/1525-7541(2002)003<
0347:INDLIT>2.0.CO;2.

Lu, L., et al. (2001), The implementation of a two-way interactive atmo-
spheric and ecological model and its application to the central United
States, J. Clim., 14, 900 – 919, doi:10.1175/1520-0442(2001)014<
0900:IOATWI>2.0.CO;2.
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