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ABSTRACT 
 
     This study integrates field collection, crop modeling, and remote sensing to 
assess spatial variability in biophysical properties of a soybean crop. These tools 
are used to describe and predict leaf area index (LAI), intercepted 
photosynthetically active radiation (PAR), biomass, and yield for the 1998 
growing season at the USDA-ARS Coastal Plains Soil, Water, and Plant Research 
Center. LAI and yield data collected in the field are compared with LAI, PAR, 
biomass, and yield modeled with CROPGRO-Soybean. Field and modeled data 
are then compared to six dates of SPOT 4 satellite imagery and associated 
vegetation indices (NDVI, SR, SAVI, and TSAVI). When averaged over the 
growing season, vegetation indices captured the spatial variability of observed 
LAI and simulated LAI, PAR, and biomass. Vegetation indices from individual 
dates were less successful, possibly due to the coarse spatial resolution of the 
SPOT imagery, or due to shortcomings in the index calculations. SPOT imagery 
did not capture the spatial variability of observed yield. 
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INTRODUCTION 
 
     Applications in precision agriculture require data on a spatial scale that 
allows for intra-field comparison of crop response to varying properties such 
as soil type or management practice. Advances such as satellite positioning  



(GPS) and combine-mounted yield monitors allow for the collection of data 
requisite for precision agriculture, but the collection of field data may not 
always be feasible for spatially dense sampling or throughout a growing 
season. Remote sensing and crop modeling represent alternative methods for 
obtaining spatial and temporal crop data that overcome some field data 
collection problems. 
     In this paper, we examine intra-field variability in soybean biophysical 
properties such as yield, LAI, and PAR using satellite remote sensing, 
physiological crop modeling, and traditional field measurement. LAI, the 
percent of intercepted PAR (%PAR), biomass, and yield for the 1998 growing 
season of a soybean [Glycine max. (L.) Merr.] field in South Carolina were 
analyzed using field data, the CROPGRO-Soybean physiological crop model 
(Hoogenboom et al., 1992), and six SPOT satellite images. Yield, LAI, %PAR, 
biomass, leaf dry weight, seed number, and grain dry weight were simulated by 
the crop model. The remotely sensed imagery and computed vegetation indices 
were statistically analyzed to determine their relationship to in-situ LAI, yield and 
other biophysical variables. We seek to learn: a) the degree of spatial variability in 
observed biophysical variables, b) how well CROPGRO-Soybean captures such 
variability, and c) whether vegetation indices derived from remotely sensed 
imagery can characterize observed intra-field variability. 
     The CROPGRO-Soybean model is one of a group of models supported by the 
International Benchmark Sites Network for Agrotechnology Transfer (IBSNAT). 
The models have successfully predicted crop biophysical parameters for soybean, 
grain, peanut, bean, and potato (Egli and Bruening, 1992; Hoogenboom et al., 
1992; Moen et al., 1994) and have successfully estimated the agricultural impacts 
of climate variability and change (Mearns et al., 1992; Papajorgi et al., 1994; 
Curry et al., 1995; Carbone, 1995). Remote sensing has been tied to crop models 
by providing inputs (Mass, 1988; Carbone et al., 1996), and, inversely, LAI from 
crop models have been used for investigating crop spectral reflectance (Moulin et 
al., 1995).  
     The spatial aspects of modeling yield have been explored in several papers. 
Ritchie et al. (1990) identified soil and weather model inputs as the primary 
factors for defining spatial and temporal variability in crop models; other related 
factors include management practices such as irrigation or fertilizer application. 
Carbone et al. (1996) used varied weather and soil inputs to describe the spatial 
variability of soybean yield at the county level. Similar studies at the field level 
would require soil inputs at a scale larger than that generally produced in soil 
maps (Sadler and Russell, 1997) or measurements of intra-field weather 
variations. In an intra-field variability study, Sadler et al. (1995) found that 
simulated corn yield for soil units did not correlate well to observed yield, and 
suggested improvements in root and water balance algorithms. In a similar study 
of potatoes, Han et al. (1995) modeled yield on varied soil and irrigation units, but 
was unable to compare these data to observed yield. These studies suggest that 
current model treatments of spatially variable parameters might not be adequate 
for predicting within-field variability of crop biophysical properties. 



     Remote sensing (RS) has proven to be a valuable tool in field-level agricultural 
studies for yield estimation (Maas, 1988; Rudorf and Batista, 1991), soil mapping 
(Barnes et al., 1996; Schepers et al., 1996), and stress mapping (Blackmore and 
White, 1996). While some researchers have done biophysical monitoring using 
20x20 meter SPOT data, 30x30 meter Landsat TM data, or aircraft-based systems, 
remote sensing for field-level studies have often been limited by low spatial 
resolution and high data costs (Sadler et al., 1998). 
     Remotely sensed imagery can also be an effective tool for estimating 
vegetative characteristics of crops (Moran et al., 1997). Vegetation indices use 
knowledge of plant physiology to maximize the information extractable from the 
imagery. Vegetation indices establish a ratio of red reflectance to near-infrared 
reflectance, based on the physical properties of vegetative leaf structure which 
absorbs red wavelengths for photosynthetic activity and reflects infrared 
wavelengths (Jensen, 1996). The use of multiple images through a growing 
season, combined with computed vegetation indices allows for the investigation 
of temporal and spatial patterns of crop properties (Qi et al., 1993).  
     Previous work suggests that vegetation indices do relate to the biophysical 
processes of soybeans. Thenkabail et al. (1994) used two dates of Landsat TM 
imagery for multiple fields in Ohio to develop linear and polynomial regression 
models to correlate in situ measurements of soybean and corn LAI, yield, biomass, 
and plant height to selected vegetation indices. For LAI, the highest R2 was 0.63 
using a linear model and SVI (simple ratio, referred to as SR in this paper). An R2 
of 0.62 was determined using a polynomial model and NDVI. In general, higher 
R2 values were determined for vegetation index correlation to biomass and plant 
height. Yield had a low correlation attributed to the image dates occurring early in 
the growing season. Daughtry et al. (1992) measured LAI, phytomass, and PAR in 
soybeans and corn at Purdue University. An R2 of 0.96 was determined in a linear 
model correlating NDVI to the fraction of absorbed photosynthetically active 
radiation (FPAR). Further relationships were determined to relate FPAR to LAI, 
PAR, and phytomass. Choudhury (1987) looked at SR and NDVI relationships for 
several crops. In soybeans, the relationship between daily mean PAR absorption 
was found to be curvilinearly related to the vegetation indices. These studies 
support both linear and curvilinear relationships of vegetation indices to LAI and 
PAR. 
 

METHODS 
 
     The study area is a soybean field in Florence, South Carolina, maintained by 
the USDA Coastal Plains Soil, Water, and Plant Research Center. The field 
measures about 280 by 280 meters. Researchers at the Center measured LAI and 
plant height during the 1998 soybean growing season at 18 field locations with a 
plant canopy analyzer (LI-COR LAI-2000). LAI stations were chosen to capture 
15 different soil mapping series (Sadler et al., 1995) and fall within irrigated and 
non-irrigated sections of the field (Figure 1). Destructive samplings of all 18 sites 
were performed on August 14, 1998. LAI measurements were taken weekly and 
fall within a few days before or after the imagery was acquired. Height 



measurements were acquired through September 4. Yield data was gathered at 
harvest with an AgLeader yield monitor and global positioning system attached to  
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Figure 1.  Soil map and classifications, sampling stations, and irrigated areas 
for the study site. 



the combine. Instantaneous yields were gathered as point data and recorded in 
bushels per acre. 
     The Center researchers provided CROPGRO-Soybean inputs including: 
cultivar, meteorological and soil variables, irrigation, and other management 
information. Crop parameters for generic Maturity Group 7 were used in all 
simulations. Irrigated and non-irrigated soil types were chosen as the unit of 
simulation for the field. All other input variables were held constant. This choice 
of inputs resulted in 30 separate model runs, which output yield, LAI, %PAR, 
biomass, grain weight, leaf weight, and seed number. ASCII output files from 
CROPGRO-Soybean were then imported into a geographic information system 
(GIS) and matched to georeferenced irrigated and non-irrigated soil units. Within 
the GIS, modeled yield values were interpolated to 20x20 meter grids using block 
inverse distance weighting (IDW) to match the spatial resolution of SPOT satellite 
imagery. The 18 sampling station points were overlaid with the soil units and to 
extract values of simulated biophysical variables. Simulated LAI and yield were 
regressed against field LAI and yield to measure model precision. Simulated LAI, 
yield, %PAR, height, and biomass were regressed against vegetation indices 
computed for each SPOT overpass date. 
     Six multispectral SPOT 4 satellite images were acquired between the mid-
vegetative stage and maturity to capture green up through senescence (Figure 2). 
Sensor calibration, atmospheric, and geometric corrections were made to 
minimize errors associated with atmospheric and sun angle differences between 
the different acquisition dates as well as for sensor gains and biases (Sellers et al., 
1994; Jensen, 1996; and Goetz, 1997). 
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Figure 2.  Soybean development stage, soybean stage as simulated by the 
crop model, and image acquisition dates. 
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     The corrected images were used to compute four vegetation indices and were 
compared: the normalized difference vegetation index (NDVI), the simple ratio 
(SR) index (both non-adjusted indices), the soil adjusted vegetation index (SAVI), 
and the transformed soil adjusted vegetation index (TSAVI): 
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Following Huete (1988), the L coefficient for the SAVI equation was set at 0.5. 
An average soil line equation was also used for the TSAVI calculations as given 
in Baret and Guyot (1991). The a coefficient is the slope of the soil line and was 
set to 1.20. The b coefficient is the intercept of the soil line and was set to 0.04. 
The X coefficient is an adjustment factor and was set to 0.08. 
     The observed LAI and yield, and simulated LAI, %PAR, biomass, and yield 
were then regressed against each calculated vegetation index. Linear and 
curvilinear regressions were performed for each date of imagery and each 
vegetation index for pre- and post- LAI maximum.  
 

ANALYSIS AND RESULTS 
 
     Analysis of soybean LAI, height, and yield as measured in the field is 
presented in this section. LAI varied spatially through the growing season, but all 
stations followed the same general pattern: LAI increased to around August 20, 
decreased for a 10-day period, increased through the pod filling stage reaching a 
maximum around September 18 – 24, and decreased thereafter (Figure 3). 
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Figure 3.  Observed soybean LAI for the 1998 growing season.



Table 1.  Observed irrigated and non-irrigated yield, averaged to soil series. 
Soil Yield 

 Non-irrigated Irrigated 
 _______________________kg ha-1_____________________ 

BnA 1438.2 1972.1 
Cx 1929.9 2036.5 
Dn 1203.2 2451.2 
Do 1297.1 2669.8 
EmA 2292.3 4278.0 
ErA 1613.5 1955.3 
ErB   748.9 2260.8 
GoA 1775.0 1590.6 
NbA 2236.1 3095.6 
NcA 2122.3 2492.3 
NfA 2457.6 2058.1 
NkA 1518.9 2168.5 
NoA 1514.6 1937.9 
NrA 1769.9 2697.1 
Average 1708.39 2404.56 

 
     The spatial pattern of soybean yield was similar to those seen in other years 
(Sadler et al., 1995). Average irrigated and non-irrigated yield over all soil types 
was 2056 kg/ha; the standard deviation was 668 kg/ha (Table 1). The relationship 
between observed yield and LAI was weak, suggesting that the remotely sensed 
data, primarily displaying a leaf reflectance signal, might not be useful for 
predicting intra-field yield. This question will be explored further in the remote 
sensing analysis section. It should be noted however, that the methodology used 
for determining point yield at each sample site may not successfully address errors 
associated with combine-mounted yield monitors such as sensor yield lag or 
variable grain flow rates (Birrell et al., 1996; Missotten et al., 1996). The observed 
point yield included many zero values followed by large (6,000 to 7,000 kg/ha) 
yield values, perhaps indicating a variable flow rate through the yield sensor. The 
large range of yield for each sample station (127 to 4414 kg/ha) might indicate 
that a simple point IDW interpolation did not overcome the yield sensor 
limitations. Further research should address this issue. 
    The model simulated phenology very accurately; all simulated soybean 
development stages fell within a few days of those observed (Figure 2). The 
model accurately simulated the seasonal pattern of LAI, but simulated LAI values 
were generally lower and less variable than those observed (Figure 4). The model 
helps to explain why observed LAI decreases prior to the end of the reproductive 
stage. Figure 5 shows a period of high water stress around August 20, to which 
simulated and observed LAI responded. It is only after this period of stress that 
simulated LAI begins to differ among soil units, reflecting the models sensitivity 
to differences in soil water storage capacity. 
     The relationship between simulated and observed yield in the 20m grids was 
weak. Simulated yield for each soil type is comparable to observed yield that  



 

has been averaged for each soil type, although the simulated yields are lower for 
both irrigated and non-irrigated soils. These results suggest that the model predicts 
average field yield reasonably well, but does not capture spatial variability in 
yield. This inability to capture intra-field variability could be related to the choice 
of soil type as the model simulation unit. Such a strategy does not account for 
spatial variability within a soil that could be caused by environmental factors such 
as soil nitrogen levels, microclimate, or nonuniform topography. Another possible 
explanation is that soil type is a suitable unit for model simulation but that the 
model algorithms do not handle soil water interactions correctly. In either case,  
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Figure 4.  Simulated LAI regressed against observed LAI.
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Table 2.  R-squared values for regressions of vegetation indices against 
   observed LAI on individual dates. 

 Vegetation Indices 
Date SR NDVI SAVI TSAVI Green Red NIR SWIR 

8/4 0.628 0.570 0.593 0.585 0.299 0.520 0.537 0.276
8/19 0.124 0.101 0.140 0.130 0.135 0.075 0.140 0.033
9/14 0.132 0.063 0.226 0.151 0.041 0.031 0.435 1.87E-05
9/25 0.160 0.155 0.115 0.125 0.092 0.002 0.092 0.011
10/10 0.332 0.448 0.452 0.456 0.373 0.417 0.418 0.171
10/26 0.097 0.156 0.078 0.099 0.310 0.259 0.060 0.424
 
further research needs to be conducted for the use of the CROPGRO-Soybean 
model for intra-field yield studies.     
     The correlations between vegetation indices and observed LAI values were 
very low on four of the six individual image dates (Table 2). The first (August 4) 
and fifth (October 10) dates showed the highest correlation. Not coincidently, 
spatial variability in both LAI and the vegetation indices is highest on these dates. 
LAI values vary spatially in the first two images (August 4 and 19) and last two 
images (October 10 and October 25). The vegetation indices have highest spatial 
variability on August 4 and October 10. The green-up and senescence of the 
soybeans can thus be traced through the LAI/vegetation index feature space. This 
suggests that if limited dates of imagery are available they should be acquired 
before an LAI of around 3 to 5. 
     The vegetation indices and SPOT bands show a strong relationship with 
observed LAI when data are split in pre- and post-maximum LAI periods (Table 
3). NDVI shows the strongest to observed LAI. Simulated LAI was also compared 
to vegetation indices for the six dates of imagery (Table 3). Similar slopes for the 
regression suggest that for season comparisons the simulated LAI mimics the 
observed LAIs relationship to the vegetation indices. These findings indicate that 
modeled data could be useful for establishing seasonal vegetation index 
relationships to LAI if observed LAI is not available. 
     The in situ yield data for the field represents a larger and denser data set for 
analyzing the remotely sensed imagery. The relationship between grid cell yield 
 
Table 3.  R-squared values for regressions of average seasonal vegetation 
  indices against observed LAI. 

 Observed LAI Simulated LAI 
Index Pre-LAI Max Post-LAI Max Pre-LAI Max Post-LAI Max 

NDVI 0.779 0.746 0.750 0.785 
SR 0.482 0.685 0.718 0.726 
SAVI 0.753 0.742 0.713 0.872 
TSAVI 0.772 0.743 0.730 0.843 
Green 0.638 0.712 0.801 0.381 
Red 0.769 0.764 0.764 0.730 
NIR 0.610 0.686 0.572 0.885 
SWIR 0.481 0.745 0.754 0.915 



 
Table 4.  R-squared values for regressions of observed and simulated yield 
  against seasonally averaged vegetation indices. 
 Yield 
Index Observed Simulated 
 ____________________kg ha-1_________________ 
NDVI 0.416 0.030 
SR 0.401 0.020 
SAVI 0.415 0.022 
TSAVI 0.424 0.025 
Green 0.276 0.024 
Red 0.322 0.028 
NIR 0.365 0.014 
SWIR 0.029 0.008 
 
and vegetation indices on individual imagery dates is weak. However, when 
vegetation indices were averaged for each grid cell for all six dates, over 40% of 
the variance in yield  
can be explained by the four vegetation indices (Table 4). These results suggest 
that vegetation indices could be used for intra-field yield mapping. Higher 
correlations of vegetation indices to observed yield might be found using imagery 
with a higher spatial resolution.  
 

CONCLUSIONS 
 

     Several conclusions can be drawn about the performance of the crop model for 
estimating soybean biophysical properties. First, the crop model captures the 
temporal increase and decrease of LAI, and the LAI response to stresses during 
the growing season. The model did not capture the spatial variability of LAI, 
%PAR, or biomass. The model captured average field yield, but not the spatial 
variability of yield within the field. This indicates that the crop model does not 
currently provide data at a scale useful for variability studies in precision 
agriculture, but can be useful for examining general field biophysical responses. 
Modeled data could be improved by a better understanding of the factors causing 
spatial variability across a field, increased spatial resolution of input data, using 
improved model algorithms, or innovations such as the use of fuzzy logic 
allowing for uncertainty in intra-field soil type classifications (Ambuel et al., 
1994). The ability of the model to simulate observed patterns of data suggests that 
such improvements should allow a crop model to be used successfully for 
studying variability in precision agriculture.  
     The remotely sensed imagery was linearly correlated to observed LAI for 
individual dates when LAI was below 3 to 5. With higher LAI, a seasonal series of 
images was able to construct a linear correlation to LAI. When looking at the 
seasonal imagery it was important to recognize the biphasic nature of the data. 
Simulated LAI, %PAR, and biomass showed similar linear correlations to the 
imagery and the biphasic relationship. Biomass was less correlated than the other 



properties. The relationship between yield and vegetation indices on individual 
dates was weak but stronger when vegetation indices were averaged for the 
season, suggesting imagery could possible be used for yield mapping. This 
conclusion indicates that techniques are available to extract biophysical 
information from remotely sensed imagery, and that this information is at a scale 
useful for intra-field variability studies in precision agriculture. However, the 
imagery must be collected at certain stages of crop development or for multiple 
dates through the growing season. Finally, the soil-adjusted indices did not show 
consistently lower error for low canopy situations than the non-adjusted indices. 
     Remotely sensed data show promise for yield and biophysical parameter 
mapping, and for creating temporal series of LAI and biomass from multiple dates 
of imagery. This information could then be used for evaluating field management 
practices, identifying stressed or low-yield field areas, and providing field-level 
inputs for crop models. Increased availability of higher spatial resolution imagery 
will allow for more detailed intra-field studies that should be more comparable to 
field sampling techniques. Crop modeling and remote sensing combined with 
field data collection can successfully be used for some applications in soybean 
biophysical property extraction. Physiological crop models will continue to grow 
in complexity and accuracy for modeling plant processes, and future research 
should lead to a better understanding of the simulation units appropriate for 
capturing intra-field variability. 
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