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Retrieval of Surface Reflectance and Estimation of Forest Leaf Area Index (LAI)  
Using Hyperion, ALI, and AVIRIS 
Peng Gong, Greg Biging, and R. Pu 

 
Objectives 
The objectives of this investigation were to develop a simple atmospheric correction method; 
map leaf area index (LAI), study vegetation indices (VIs), and extract red edge optical parameter 
for estimating forest LAI with the EO-1 Advanced Land Imager (ALI) and Hyperion and with 
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS); examine the capabilities of the 
three sensors for extracting LAI information; and compare different VIs constructed from all 
possible Hyperion bands and red-edge parameters for LAI estimation. 
 
Study Site and Datasets 
Two study sites were used in Patagonia, Argentina, that were located in a flat, semiarid region. 
The study area had many patches of conifer forest plantations of different species of pine trees as 
well as some broad-leaf species and shrubs and grasses.  
 
On March 27-29, 2001, field reflectance measurements were obtained for several targets using 
ASD Field Spec®Pro, and 70 LAI measurements were taken. On March 27, 2001, ALI and 
Hyperion measurements were acquired at a spatial resolution of 30 meters. AVIRIS data at a 
spatial resolution of 3.6 meters were acquired on February 15, 2001. Because of overcast 
conditions at one study site, data from only one of the two sites (the north site) were used for the 
analysis (Figure 1). 
 

 

Figure 1. Part of the AVRIS image over the 
selected study site in Patagonia, Argentina. 
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Atmospheric Correction and LAI Mapping 
Atmospheric correction was obtained by means of a radiative transfer model. The model was 
applied to sensor data in which three total radiances were simulated using MODTRAN4 to 
obtain improved pixel-based surface reflectance. Ground spectrometer data were also used to 
modify the retrieved surface reflectance images.  
 
Using the improved retrieved surface reflectance images from the ALI, Hyperion, and AVIRIS 
sensors, LAI was estimated and mapped by following a set of procedures that involved 
extracting pixel values at 32 LAI measured plots, performing general correlation analysis of 
spectral bands with LAIs, and performing regression analysis on six bands selected from the total 
number of bands available for each sensor. Results were compared using only data from these six 
bands for each sensor.  
 
The effectiveness of the procedures was evaluated using the following criteria: 

1. Multi-correlation coefficient, R2, of the LAI prediction model. 
2. Overall average accuracy of LAI prediction accuracy of training and test samples. 
3. Visual examination of LAI maps. 

 
Results indicated that AVIRIS had the highest correlation with LAI among the three sensors. 
Hyperion had the next highest correlation, and ALI had the lowest correlation. Figure 2  shows a 
pseudo-color composite from AVIRIS (upper left) and LAI maps for the three sensors. AVIRIS 
data experienced fewer atmospheric effects than the data from the other sensors, especially in the 
visible and near infrared (VNIR) region. Hyperion was especially problematic in this region 
because of its strong atmospheric scattering.  
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Pseudo color composite of AVIRIS. LAI map from AVIRIS.  
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LAI map from Hyperion LAI map from ALI. The three white lines 
were from three ALI dead detectors. 

 

Figure 2. LAI maps. 

Conclusions 
Investigators concluded that atmospheric correction is critical for hyperspectral data applications, 
especially for measurements in the VNIR region. Results indicated that the method of 
atmospheric correction used in this study holds promise but needs refinement. Results further 
indicated that retrieval of surface reflectance was the most successful for AVIRIS, followed by 
Hyperion and lastly by ALI. Mapped LAI results demonstrated that the procedure used in this 
investigation to map LAI can produce reasonable LAI maps, and that the LAI map produced 
with AVIRIS data was more reliable than the maps produced with Hyperion and ALI, which 
appear to have similar capabilities for LAI mapping. Hyperion in particular seems to have more 
potential for applications in the shortwave infrared (SWIR) region than in the VNIR region 
because the atmospheric effects are more pronounced on VNIR measurements. For imagery in 
the SWIR region, if atmospheric correction is carefully conducted, Hyperion has the potential to 
produce results similar to that of AVIRIS. 
 
Estimating Forest LAI Using Vegetation Indices Derived From Hyperion Hyperspectral 
Data 
 
Method 
Pixel-based retrieved reflectance spectra from calibrated Hyperion images at the 32 LAI 
measurement plots were extracted from the image. One to four homogenous pixels were 
extracted and averaged for each LAI plot. The 12 VIs (Table 1) were applied to any possible pair 
of the 168 Hyperion bands. Note that red (R) bands and near IR (NIR) bands used for 
constructing one VI in Table 1 have been extended to all 168 bands. Consequently, for each pair 
of bands there are 12 VIs for each of the 32 LAI measurements.   
 
For each of the 12 VIs, a linear correlation coefficient (R2) was calculated between the VI and 
LAI measurement (32 samples). Because most LAI measurements are less than 5 in this study, a 
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linear R2 is a suitable indicator for finding some important bands contributing to better 
correlation between a two-band index and the LAI. Since each VI in Table 1 could be 
constructed from any pair among the possible 168 bands, a linear correlation coefficient (R2) 
matrix could be constructed. From the correlation matrices, hyperspectral bands with high 
correlation coefficients were examined. 
 
Conclusions 
Results indicate that many hyperspectral bands in the SWIR region and some in the NIR region 
have the greatest potential to form indices for LAI estimation. The most effective band 
wavelengths are centered near 820, 1040, 1200, 1250, 1650, 2100, and 2260 nm with bandwidths 
ranging from 10 to 300 nm (Table 2). These bands are controlled by plant leaf water content, yet 
the absorption features by other biochemicals such as protein, nitrogen, lignin, cellulose, sugar, 
and starch, may have indirect impacts. VIs derived from the R and NIR bands did not produce as 
high correlations with LAI as those with bands in the SWIR and NIR regions. Based on their 
high correlation with LAI measurements, the Modified Non-Linear Vegetation Index (MNLI), 
Simple-Ratio Vegetation Index (SRVI), and Normalized Difference Vegetation Index (NDVI) 
were recommended for use in environments similar to this study site for LAI estimation using 
satellite-based hyperspectral data. 
 
Extraction of Red Edge Optical Parameters from Hyperion Data for Estimation of Forest 
LAI 
 
Method 
A correlation analysis was conducted between forest LAI and two red edge parameters: red edge 
position (REP) and red well position (RWP), extracted from reflectance image retrieved from 
Hyperion data. Field spectrometer data and LAI measurements were collected on the same day 
as the EO-1 satellite overpassed the study site in the Patagonia region of Argentina. They were 
extracted with four approaches: 4-point interpolation, polynomial fitting, Lagrangian technique, 
and IG (inverted-Gaussian) modeling.  
 
Table 1. Summary of 12 two-band vegetation indices used in this analysis. 

Index Formula Description References (e.g.) 
SR 

 

Near-infrared / Red reflectance ratio (Simple Ratio 
VI). Related to changes in amount of green biomass, 
pigment content and concentration and leaf water 
stress etc. 

Baret and Guyot, 1991; 
Tucher, 1979. 

NDVI (ρNIR-ρR)/(ρNIR+ρR) Normalized Difference Vegetation Index. Related to 
changes in amount of green biomass, pigment 
content and concentration and leaf water stress etc. 

Fassnacht et al., 1997; 
Smith et al., 1991. 

PVI 

a = slope of the soil line, b 
= soil line intercept 

Perpendicular Vegetation Index, orthogonal to the 
soil line. Attempts to eliminate differences in soil 
background and is most effective under conditions of 
low LAI, applicable for arid and semiarid regions. 

Baret and Guyot, 1991; 
Huete et al., 1985. 

SAVI 

 
L = a correction factor 

Soil Adjusted Vegetation Index. L ranges from 0 for 
very high vegetation cover to 1 for very low 
vegetation cover; minimizes soil brightness-induced 
variations. L=0.5 can reduce soil noise problems for 
a wide range of LAI. 

Huete, 1988; Leeuwen and 
Huete, 1996. 
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Index Formula Description References (e.g.) 
NLI 

 

Non-Linear vegetation Index. Considers that the 
relationship between many VIs and surface 
biophysical parameters is often nonlinear, and NLI 
linearizes relationships with surface parameters that 
tend to be nonlinear. 

Goel and Qin, 1994 

RDVI 

 

Renormalized Difference Vegetation Index. RDVI 
linearizes relationships with surface parameters that 
tend to be nonlinear. 

Roujean and Breon, 1995. 

MSR 

 

Modified Simple Ratio. It can be an improvement 
over RDVI for linearizing the relationships between 
the index and biophysical parameters. 

Chen, 1996. 

WDVI 
 
a = slope of the soil line 

Weighted Difference Vegetation Index. WDVI 
assumes that the ratio between NIR and R 
reflectances of bare soil is constant; it is related to 
PVI, but it has an unrestricted range. 

Clevers, 1988; Clevers, 
1991. 

MNLI 

 
L = a correction factor 

Modified Non-linear vegetation Index. MNLI is an 
improved version of NLI. L=0.5 may be applicable 
for a wide range of LAI. 

Developed in this paper. 

NDVI*SR 

 

Attempts to combine merit of NDVI with that of SR. Developed in this paper. 

SAVI*SR 

 

Attempts to combine merit of SAVI with that of SR. Developed in this paper. 

TSAVI 

a = slope of the soil line, b 
= soil line intercept, X = 
adjustment factor to 
minimize soil noise. 

Transformed Soil Adjusted Vegetation Index. Modify 
Huete (1988) SAVI to compensate for soil variability 
due to changes in solar elevation and canopy 
structure. 

Baret and Guyot, 1991;  

  

Note:                      denoted as reflectances in red and near-infrared wavelengths, but in this study, they represent 
band 1 and band 2 across all avaliable 168 bands of Hyperion data. 

 
Table 2. Potential hyperspectral bands for 12 vegetation indices applied to forest LAI estimation. 

Index R2  
NIR-R/Optim. 

Band 
center (nm) 

Bandwidth
(nm) 

Band description 
(spectral region and possible absorption features) 

SR 0.55/0.70 825 140 NIR region, cell structure multi-reflected spectra. 
  1038 230 NIR-SWIR region, water, protein, lignin, starch & oil 

absorption 
  1250 180 SWIR region, water, cellulose, starch and lignin absorption 
  1648 290 SWIR region, protein, nitrogen, lignin, cellulose, sugar, 

starch absorption. 
NDVI 0.55/0.70 … … 4 bands similar to SR's 
PVI 0.45/0.64 814 140 NIR region, cell structure multi-reflected spectra. 

  1050 100 NIR-SWIR region, protein, lignin, and oil absorption 
  1250 190 SWIR region, water, cellulose, starch and lignin absorption 
  2100 10 SWIR region, starch, cellulose absorption 

SAVI 0.50/0.67 … … 4 bands similar to NDVI's or SR's 
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Index R2  
NIR-R/Optim. 

Band 
center (nm) 

Bandwidth
(nm) 

Band description 
(spectral region and possible absorption features) 

NLI 0.50/0.73 821 157 NIR region, cell structure multi-reflected spectra. 
  1200 578 NIR-SWIR region, water, protein, starch, lignin, cellulose, and 

oil absorption 
  1250 191 SWIR region, water, cellulose, starch and lignin absorption 
  1640 300 SWIR region, protein, nitrogen, lignin, cellulose, sugar, 

starch absorption. 
RDVI 0.45/0.66 810 170 NIR region, cell structure multi-reflected spectra. 

  1054 10 SWIR region, lignin and oil absorption 
  1255 161 SWIR region, water, cellulose, starch and lignin absorption 
  1669 10 SWIR region, lignin and starch absorption 
  2093 10 SWIR region, starch and cellulose absorption 

MSR 0.50/0.70 … … 4 bands similar to NDVI's or SR's 
WDVI 0.45/0.63 1639 10 SWIR region, non apparent absorption 

  2113 10 SWIR region, starch and cellulose absorption 
  2285 30 SWIR region, starch, cellulose and protein absorption 

MNLI 0.45/0.75 … … 4 bands similar to NLIs 
NDVI*SR 0.50/0.71 … … 4 bands similar to NDVI's or SR's, but  
SAVI*SR 0.50/0.71 … … 1 - 4 bands similar to SAVI's or SR's 

  2083 30 SWIR region, sugar, starch and cellulose absorption 
  2153 10 SWIR region, protein absorption 

TSAVI 0.50/0.71 832 120 NIR region, cell structure multi-reflected spectra. 
  1038 150 NIR-SWIR region, water, protein, lignin, starch & oil 

absorption 
  1240 170 SWIR region, water, lignin, cellulose and starch absorption 
  1660 260 SWIR region, lignin, cellulose, sugar, starch, protein, and 

nitrogen absorption 
  2108 20 SWIR region, starch, cellulose and protein absorption 

   
Note: Optim. = optimal correlation R2; bold chemicals are principal for the absorption features 

 
Conclusions 
The experimental results indicate that the 4-point approach is a more practical method for 
extracting the two red edge parameters because only 4 bands are needed. The polynomial fitting 
approach also has the advantage that it is a direct method for deriving these parameters. It also 
has practical value if hyperspectral data (spectral resolution narrower than 10 nm like Hyperion 
data) are available. Moreover, this approach can model the phenomenon of two maximum first-
derivatives along the red edge curve. Since the first derivative spectra frequently are not directly 
available for most multi/hyperspectral sensors, use of the Lagrangian technique is less practical. 
The IG modeling, used for extracting red edge optical parameters from space-borne 
hyperspectral data, needs further testing if a linear fitting approach as tested in this study is 
applied. 
 


