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Abstract: Leaf area index collected in a needle-leaf forest site near Ruokolahti, Finland, 

during a field campaign in June 14-21, 2000, was used to validate Moderate Resolution Imaging 

Spectroradiometer (MODIS) LAI and FPAR algorithm. The field LAI data was first related to 

30m resolution Enhanced Thermal Mapper Plus (ETM+) images using empirical methods to 

create a high resolution LAI map. It shows that comparisons at patch level are more reliable than 

the pixel level. Comparison of the aggregated high resolution LAI map and corresponding 

MODIS LAI retrievals imbues confidence in the MODIS LAI and FPAR algorithm. However, 

the MODIS algorithm, adjusted to high resolution, generally overestimates the LAI due to the 

influence of the understory vegetation, indicates the need for improvements in the algorithm. An 

improved correlation between field measurements and the Reduced Simple Ratio (RSR) suggests 

that the shortwave infrared (SWIR) band may provide valuable information for needle-leaf 

forests. 
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1 Introduction 

Leaf area index (LAI) is a critical variable for understanding the biological and physical 

processes associated with vegetated land surfaces, and thus is a key input of climate and large-

scale ecosystem models (Foley et al., 1998; Sellers et. al, 1997; Bonan, 1996; Dickinson et. al., 

1986). LAI is defined as one-sided green leaf area per unit ground area in broadleaf canopies and 

as the hemisurface needle leaf area in coniferous canopies (Chen et. al., 1992; Stenberg, 1996; 

Knyazikhin et. al., 1998a). For effective use in global-scale models, this variable must be 

collected over a long period of time and should represent every region of the terrestrial surface. 

LAI is operationally produced from MODerate Resolution Imaging Spectroradiometer (MODIS) 

data. The Terra platform, with MODIS and other instruments, was launched in December 1999 

and data collection began in March 2000. The LAI and FPAR products are at 1 km resolution at 

an 8 day interval. The product was made public in August 2000 through the EROS (Earth 

Resources Observation System) Data Center Distributed Active Archive Center. Presently, the 

emphasis within the MODIS program is on validation of the algorithm and its products (Privette 

et. al., 2002).  

Global validation of moderate to coarse resolution LAI products is a complicated and 

challenging task. It involves field measurements at sites representative of a wide range of 

vegetation types and scaling of field measurements from small areas to the resolution of satellite 

data. Also, one should account for uncertainties in inputs to the retrieval techniques due to 

uncertainties in registration, correction for atmosphere effects, etc, which make the comparison 

of ground-based measurements with coarse resolution data a complicated task. The development 

of appropriate ground-based sampling strategies is critical to an accurate specification of 

uncertainties in the LAI product (Tian et. al., 2002b).  
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In this study, we will evaluate the MODIS LAI product which includes (a) creation of a 30m 

resolution LAI map using data from a field campaign in Ruokolahti, Finland, and 30 m Landsat 

Enhanced Thermal Mapper Plus (ETM+) images, and (b) comparison of the MODIS LAI map 

with the fine resolution LAI map aggregated to the MODIS resolution.  

2 Experiment Descriptions 

2.1 Validation Site and Sampling Strategy 

A 1x1 km area of needle leaf forest near Ruokolahti, Finland (61.32oN, 28.43oE), was 

chosen for field data collection to validate the MODIS LAI/FPAR product. The site is mostly 

occupied by Scots pine (Pinus sylvestris) and Norway spruce (Pices abies), with pines dominant. 

The Ruokolahti Forest site is a typical northern needle leaf forest, mixed with large and small 

lakes. The height of the trees was between 5-20 meters. However, there was a small open area in 

this 1x1 km site, which was occupied by a mixture of re-growing smaller (less than 1.5 m in 

height) pine trees, dwarf shrubs and an understory of grasses. The 1x1 km site was divided into 

20 rows and 20 columns, for a total 400 grid points. Each point was 50 meters apart. 

Additionally, the canopy was stratified into young, intermediate and dense needle forests based 

on examination of an airborne 2-meter resolution Charge-Couple Device (CCD) image. The 

young forest is represented by the area mentioned above with small trees and understory grasses. 

Within each class, data at a higher resolution, 25m, in subplots of 100×150 m and 200×200 m 

were also collected (Figure 1). The LAI of the young forest understory was not measured during 

this field campaign. 

2.2 Instrumentation and Data Collection 

Leaf area index (LAI), canopy and ground spectral reflectances were measured at this site 

during June 14th to 21st of 2000. LAI was measured with a LAI-2000 plant canopy analyzer (Li-
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Cor, Inc., Lincoln, Nebraska), which consists of a LAI-2070 control unit and a LAI-2050 sensor 

head. The sensor head projects the image of its nearly hemispheric view onto five detectors 

arranged in concentric rings (approximately 0-13, 16-28, 32-43, 47-58, 61-74 degrees). A 270 

degree view cap was used to eliminate the operator’s shadow. Two LAI-2000 units were used to 

take simultaneous measurements within the forest and in an open area. They were inter-

calibrated. The measurements were taken shortly before sunset, or during overcast days, when 

the forest was illuminated only by diffuse light. We followed the calibration procedure given in 

the LAI-2000 Plant Canopy Analyzer Instruction Manual, chapter 4-1 (LI-COR, 1992).  

LAI values were calculated according to Miller’s derivation (Miller, 1967), which is the 

default method used by LAI-2000. It should be noted, however, that the LAI-2000 converts 

canopy gap fraction into LAI under the assumption of uniformly distributed leaves (needles) and, 

moreover, the instrument cannot distinguish between foliage and woody material. Values from 

the Miller’s formulae, therefore, give an effective leaf area index, Le, which can be converted to 

the LAI as (Chen and Cihlar, 1996) 

eee /)1(LAI Ω−= γα L  ,         (1) 

where α is the woody-to-total area ratio, γe is the needle-to-shoot area ratio, and Ωe is the 

element clumping index. In the MODIS LAI/FPAR algorithm, a one-year old shoot is taken as 

the basic foliage element (Knyazikhin et. al., 1997; Tian et. al., 2002; Wang et. al., 2002), 

uniformly distributed within the tree crown, and its projected silhouette area is taken as the 

foliage area, i.e., MODIS provides LAI values corresponding to equation (1) with γe = 1 and 

Ωe = 1. Values of the woody-to-total area ratio were set to 0.16. This value was obtained by 

averaging all values of α corresponding to needle forest sites reported by Chen and Cihlar 

(1996), as the required data for our site were not available.  
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GPS locations were made and differential correction performed within each grid level of the 

1x1 km plot. Thus, a set of accurate geolocation measurements, with an uncertainty of about 2 m 

was obtained.  

An ETM+ image collected on June 10, 2000 was used to generate a fine resolution LAI map 

in our study. The image was atmospherically corrected using a simplified method for 

atmospheric correction (SMAC) algorithm (Häme et. al., 2001; Rahman & Dedieu, 1994). The 

ETM+ image was coregistered to the CCD image.  

3. Data Analysis 

Figure 2 presents histograms of ETM+ red and near-infrared (NIR) reflectances of young, 

intermediate and dense forests sites. Table 1 shows the mean values of these histograms and their 

standard deviations. The young forest has distinct reflectance features compared to the others. 

The distributions of the ETM+ reflectances of the intermediate and dense forests are almost 

indistinguishable in these spectral bands. Typically, the reflectances of the intermediate and 

dense forests are about 0.023 in the red, and about 0.20 in the NIR bands. For the young forest, 

reflectances in these spectral bands are 0.07 and 0.27, respectively.  

Figure 3 presents histograms of effective LAI values for young, intermediate and dense 

forests collected at spacings of 25 m and 50 m in the same subplots. Table 2 shows mean values 

of these histograms and their standard deviations. The mean effective LAI for the dense and 

intermediate forests are almost unchanged with sampling frequency. However, for the young 

forest, because the measuring height varied between the two measurements (25m spacing 

measurement was performed at ground level while 50m spacing measurement was performed at 

1 m height), the mean values are substantially different. The t-test results show that the mean 

effective LAI values are not significantly different in the case of the dense and intermediate 
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forests, while mean values for the young forest are not statistically equal (Table 2). Table 2 also 

shows that, generally, dense sampling results in lower variance, as would be expected. 

In the three subplots, some grid points were measured twice because the subplots overlapped 

with the 50 m grid. These measurements were used to assess the uncertainty in the LAI 

measurements. Figure 4 shows the correlation between LAI measured at 50 m grid and 

corresponding 25 m subgrid. The R2 is 0.93 and RMSE is 0.23. This RMSE value indicates the 

uncertainty in the LAI measurements. It also sets a limit to the accuracy of LAI maps derived 

from these field measurements. 

A contour plot of the effective LAIs is shown in Figure 5a. One can see that the spatial 

distribution of the effective LAIs generally captures the spatial pattern of the 1x1 km site shown 

in the CCD picture (Figure 5b); that is, low LAI values within the open area and high LAI values 

near the lower-left and lower-right corners, where the dense canopies are located.  

4. Derivation of a Fine Resolution LAI Map 

The biggest challenge for validation of moderate (100-1000m) and coarse (> 1 km) 

resolution LAI products is the scarcity of ground-truth measurements. Considering the scale of in 

situ measurement (generally <10 m per sample) and the large amount of work associated with 

field measurements, it is unrealistic to expect sufficient data for a pixel-by-pixel comparison. An 

alternative is to employ both field measurements and high resolution satellite data to derive an 

accurate fine resolution LAI map over a sufficiently extended area, degrade it to the coarse 

resolution, and compare this map with that derived from the coarse resolution imagery. Thus, the 

first task is to derive a 30 m resolution LAI map of a 10 km by 10 km region centered on the site 

where LAI measurements were made. 
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4.1 Adjustment of MODIS LAI and FPAR Algorithm at 30 m Resolution  

As a first attempt, the MODIS LAI and FPAR algorithm was adjusted to 30 m resolution to 

produce a 30 m resolution LAI map of the validation site using the ETM+ reflectances. The 

algorithm requires a 6-biome land cover classification (Myneni et. al., 1997). All ETM pixels 

were treated as needle forests except for the young forest class. This class was mostly occupied 

by understory grasses and small shrubs and hence was treated as grasses.  

The MODIS LAI/FPAR algorithm uses a Look-Up Table (LUT) to retrieve LAI values. A 

three-dimensional radiative transfer equation is used to derive spectral and angular biome-

specific reflectances of vegetation canopies. The numerical solutions of this equation are 

calculated and stored in the LUT. We begin with the Landsat TM LUT developed by Tian et. al. 

(2002c) for the Northwest US (Washington and Oregon). The resulting correlation between 

retrieved LAI and field measured LAI at the pixel scale is shown in Figure 6a. One can see that 

most of the retrieved LAIs are significantly greater than the field measured LAIs and their 

correlation is poor. Therefore, this LUT needed to be adjusted (Tian et. al, 2002a, 200b &2002c).  

Three factors influence the LAI retrieval of the MODIS LAI/FPAR algorithm: a) 

background reflectance which is an averaged effective reflectance of the surface underneath the 

canopy (soil or/and understory canopy); b) canopy structure parameter which depends on the 

biome type and architecture of the vegetation canopy; c) single scattering albedo which is 

defined as the ratio of energy scattered by the elementary volume inside the canopy to the energy 

intercepted by this volume. In the LUT of the algorithm, global vegetation was classified into six 

biome types using a vegetation cover classification parameterized in terms of variables used by 

photon transport theory (Myneni et al., 1997), each representing a pattern of the architecture of 

an individual tree (leaf normal orientation, stem-trunk-branch area fractions, leaf and crown size) 

and the entire canopy (trunk distribution, topography), as well as patterns of spectral reflectance 
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and transmittance of vegetation elements. The soil and/or understory type are also characteristics 

of the biome, which can vary continuously within given biome-dependent ranges (Myneni et. al, 

1999). The single scattering albedo describes the optical properties of elementary volume and 

varies significantly for different species in different parts in the world. A correct value of single 

scattering albedo is required to obtain reliable retrieval. 

The single scattering albedo variable is assumed biome-specific constant with respect to 

spatial and directional variables in the algorithm. However it also depends on the definition of 

the scattering center and the size of elementary volume considered in the formulation of the 

radiative transfer equation. Since the canopy architecture also depends on the definition of the 

scattering center, the canopy structure parameter also depends on it.  Therefore, the canopy 

structure parameter must be consistent with the single scattering albedo. For example, if a cube 

of 50x50x50 cm is taken as an elementary volume in a coniferous forest, a one-year shoot of 5-7 

cm should be taken as a scattering center (Knyazikhin et. al., 1997). The single scattering albedo, 

in this case, characterizes scattering properties of the 50x50x50 cm cube filled with one-year 

shoots, and all coefficients of the transport equation should be derived for such 50x50x50 cells.  

LAI is nonlinearly related to single scattering albedo and canopy structure parameter, 

nevertheless, changing the single scattering albedo will change the distribution of retrieved LAI. 

The LUT can be adjusted by tuning the single scattering albedo or canopy structure parameter to 

find the best match between algorithm retrieved LAI and field measured LAI. The LUT was 

adjusted through matching the distributions of retrieved LAI and field measured LAI. Figure 6b 

shows the results after tuning the single scattering albedo, which improves the overall 

relationship, but the results appear noisy. The reason for this is carefully analyzed in the 

following section. 
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4.2 Validation of MODIS LAI and FPAR Algorithm at 30 m Resolution 

Although every effort has been made to obtain accurate geolocation of each sampling point 

and ETM+ pixels, this still does not guarantee that the sampling point falls within the specified 

satellite pixel. An illustration of pixel-by-pixel comparison is shown in Figure 7a. Field samples 

often fall on the boundary or out of the pixel. Moreover, one or even a few measurements in a 

single pixel may be insufficient to represent the pixel mean value because the area measured 

with the LAI-2000 is considerably smaller than ETM+ pixels. The LAI values in this forest area 

exhibit high variance over short distances, as first noted by Tian et. al (2002a). Based on a 

hierarchical decomposition of variograms (Woodcock et. al., 1997; Collins & Woodcock, 2000), 

Tian et. al. (2002b), proposed a patch based comparison method to scale field measurements to 

the spatial scale of satellite observations. 

For the analysis of remotely sensed imagery, a landscape can be regarded as a collection of 

smaller objects, such as forests stands or other homogenous patches of vegetation. In essence, the 

landscape may be assumed to be composed of a set of objects which are more homogenous 

within than between them (Collins & Woodcock, 2000). In this situation, satellite pixels are 

assumed to be samples of objects. When pixels are small relative to objects, internal variance of 

the objects can adversely affect the analysis (Markham & Townshend, 1981). On the other hand, 

when the pixel size is large relative to the objects, an individual pixel often covers parts of two or 

more objects, resulting in mixed pixels, and the effectiveness of analysis is undermined 

(MacDonald & Hall, 1980). An ideal condition would result when remote measurements 

correspond directly to the objects in the scene (Woodcock & Harward, 1992), a situation which 

is not observed in nature due to the variance in object size.  

One way to try to minimize the effects of sparse sampling of ETM+ pixels and possible 

geolocation errors, is to shift the scale of analysis from pixels to forest stands, or patches. The 
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patches should satisfy the following conditions: a) their internal variance is small such that a 

patch can be regarded as a relatively homogenous area and a small amount of sampling is 

sufficient to characterize the mean feature of the object; b) each patch should be large enough 

such that effect of geolocation errors is minimized. In this case, each point measurement can be 

regarded as a random sample of a larger area. This increases the probability that the sampling 

point falls inside the patch, with the mean value of these samples serving as an estimate of the 

true mean of the entire patch. Figure 7b shows the scheme of a patch-by-patch comparison. 

Without extraordinary registration accuracy and high sampling density, a patch-by-patch 

comparison is more reliable than a pixel-by-pixel comparison. 

Image segmentation can be used to generate patches in images. The objective of image 

segmentation is to partition the image into a set of patches, which correspond to objects on the 

ground (Beaulieu & Goldberg, 1989). It groups pixels into patches based on their spectral 

similarity and adjacency. The decision of the size and number of patches are based on following 

considerations: a) patches can not be too small, which ensures enough field samples in each 

patch and reduce geolocation errors; b) patches can not be too big, which ensures enough number 

of patches for statistics and also preserves patch homogeneity. Using this method, the 1 km 

ETM+ image of the validation site was divided into 19 patches. Each consists of tens to hundreds 

of pixels and is relatively homogenous (Figure 8). Table 3 shows the mean values of red and NIR 

reflectances over these segments and their standard deviations. The coefficient of variation does 

not exceed 10−2 indicating that the segments can be treated as homogeneous areas with respect to 

their red and NIR reflectances. However, the LAI values exhibit higher variation within the 

patches (Table 4). If the coefficient of variation is taken as a measure of uncertainty, most of the 

patches can be represented by the mean LAI value within an uncertainty of 20%. However, in 

some segments (1,4,8 and 9) the uncertainty can be high.  
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The patch map shown in Figure 8 was then used to produce mean LAIs over each patch. 

Figure 9 demonstrates a patch-by-patch correlation between measured and retrieved LAI values. 

Although the correlation between retrieved LAI and field measured LAI is improved after 

adjustment of the LUT, significant disagreement still exists. The disagreement between the 

measured and retrieved LAI values is a decreasing function of LAI. One possibility is the effect 

of understory vegetation, as the field measurements do not capture the effect of the understory. 

Thus the field measurements only characterize the forest canopy yet the reflectance in the 

imagery includes the understory, which includes mosses, shrubs and small trees. In this situation, 

one would expect estimates of LAI from imagery to exceed those measured on the ground and 

the effect to be larger at low canopy LAI values as the understory is more visible from above, as 

is observed in Fig. 9b.  

4.3 Generating a Fine Resolution LAI Map of the 1x1 km Using Empirical 

Approaches 

In hopes of producing a better high resolution LAI map for comparison with MODIS 

retrievals, empirical methods were tested. Numerous similar studies have been performed to 

relate ground-measured LAI to satellite observations (Franklin, 1986; Spanner et. al., 1990; 

Nemani et. al., 1993; Chen & Cihlar, 1996; Fassnacht et. al., 1997; Tian et. al., 2002a&2002b). 

A widely used approach is to regress ground-measured LAI on vegetation indices such as the 

normalized differential vegetation index (NDVI) and the simple ratio (SR). The NDVI is the 

most commonly used vegetation index for LAI retrievals. This variable is defined in terms of red 

and NIR reflectances, ρred and ρNIR,  

redNIR

redNIRNDVI
ρ+ρ
ρ−ρ

=               (2) 
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Figure 10a shows that the pixel-by-pixel correlation between field-measured LAI and 

satellite-derived NDVI is low; the R2 is 0.23 in this case. These results appear noisy in much the 

same fashion as previous results based on pixels (Figure 6). As Tables 3 and 4 indicate, LAI 

values can vary considerably with reflectances in red and NIR spectral bands essentially 

unchanged. This results in poor correlation between the field measured LAI and satellite-derived 

NDVI.  

The correlation improves considerably if patches are used as the element of the analysis. The 

correlation between mean NDVI and mean field-measured LAI of patches is shown in Figure 

10b. The R2 increases to 0.73 with a RMSE of 0.34. Note that mean reflectances of the patches 

were used in equation (2) to calculate the mean NDVI.  

Although a good correlation can be obtained at the patch scale between NDVI and LAI, the 

dynamic range in NDVI is small. Figure 10b shows that mean NDVI values fall in the interval 

between 0.6 and 0.8, while the LAI values vary between 0.2 and 2.7.  

The simple ratio (SR) is another index used to relate LAI values to satellite data. For a given 

area, this variable is the ratio of NIR to red reflectance. Figure 11 shows the pixel and patch level 

relationship between the SR and LAI. Again, the pixel level relationship is poor between field 

measured LAI and the SR (R2=0.20). However, at the patch level, a better relationship is 

obtained (R2=0.82, RMSE=0.29). The range of the SR is between 4.5 and 9.0. It should be noted 

that there is a direct but nonlinear relationship between the SR and NDVI; that is, SR = 

(1+NDVI)/(1-NDVI), and thus SR and NDVI contain similar information. 

The understory strongly affects the SR and NDVI. The influence of the understory on these 

variables can be quite high, as our field LAI measurements were taken for overstory canopy 

only. The understory NDVI can be as high as 0.6. The contribution of understory to NDVI or SR 

is also a function of canopy closure (Franklin, 1986; Spanner et. al., 1990). Several studies 
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suggest that the use of shortwave infrared (SWIR) reflectances can account for the background 

reflectances (Butera, 1986; Baret et. al., 1988; Nemani et. al., 1993; Brown et. al., 2000). A 

modified form of the simple ratio, or the reduced simple ratio (RSR) was proposed by Brown et. 

al. (2000): 

]
)min()max(

)min(
1[

SWIRSWIR

SWIRSWIR

red

NIRRSR
ρ−ρ

ρ−ρ
−

ρ
ρ

=           (3) 

where SWIRρ  is the shortwave infrared reflectance, which can be obtained from Band 5 of ETM+ 

data, and the min( SWIRρ ) and max( SWIRρ ) are the minimum and maximum SWIR reflectance 

found in the ETM+ image. The advantages of RSR over SR are (Brown et. al., 2000; Chen et. al., 

2002): a) the background influence is suppressed because the SWIR band is mainly sensitive to 

the amount of vegetation containing liquid water in the background; and b) the difference 

between cover types is reduced, so a single LAI algorithm can be developed without using a 

coregistered landcover map.  

Figure 12 shows the relationship between RSR and LAI at the patch scale (R2=0.91; 

RMSE=0.22). Note that the mean reflectance over the corresponding patch was used in equation 

(3) to calculate the patch RSR. The linear regression is 

LAI = 0.4693RSR – 0.6277           (4) 

This relationship was applied to a 10 km by 10 km ETM+ scene centered on the validation site to 

generate a fine resolution LAI map. This 10 km area was first segmented into patches and then 

equation (4) was applied to each patch. Figure 13 shows LAI maps of the 10 km area and its 

central part, the 1km area, derived from the ETM+ image using the relationship (4). The LAI 

map of the 1x1km captures the basic spatial features shown in Figure 5b, namely, the young 

forest in the middle of the image, and the dense forest on the lower-left and lower-right corners.  
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The RMSE for the relationship (4) is 0.22 which is taken as a measure of the uncertainty. 

Assuming that relationship (4) is valid for the entire 10x10 km area, and assuming that 

uncertainties in the channel ETM+ data do not affect the reduced simple ratios (equation 3), one 

can conclude that the uncertainty of the fine resolution LAI map is 0.22. This is consistent with 

the estimation in figure 4 (RMSE=0.23).  

5 Validation of the MODIS LAI Product 

5.1 The MODIS LAI Product 

The MODIS LAI and FPAR product is produced at 1 km spatial resolution daily 

(MOD15A1) and composited over an 8-day period based on the maximum FPAR value. The 8-

day product (MOD15A2) is distributed to the public from the EROS Data Center Distributed 

Active Archive Center (EDC DAAC). The products are projected on the Integerized Sinusoidal 

(IS) 10-degree grid, where the globe is divided for production and distribution purposes into 36 

tiles along the east-west axis, and 18 tiles along the north-south axis, each approximately 

1200x1200km. Each tile contains LAI, FPAR and two quality assessment (QA) variable data sets 

(Myneni et al., 2002). The QA variable data sets contain information about retrieval status such 

as the overall quality of input data, cloud condition, algorithm used to retrieve LAI etc. 

The MODIS LAI and FPAR algorithm uses a biome classification map and atmospherically 

corrected MODIS spectral reflectances at 1 km resolution to retrieve LAI and FPAR. It compares 

measured reflectances with those determined from a suite of canopy models, which depend on 

biome type, canopy structure, and soil/understory reflectances. The canopy/soil/understory 

models for which simulated and measured surface reflectances do not exceed uncertainties in 

model and observations are used to derive the distribution of all possible solutions, i.e., LAI and 

FPAR distribution functions. The mean values of these distribution functions are archived. The 
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overall uncertainty (Wang et al., 2001) in model and observations is set to 20%. This number is 

our best estimation of the overall uncertainty derived from SeaWiFS data (Kimes et. al., 2000; 

Knyazikhin et. al., 1998) and subject to change when uncertainty information about MODIS land 

surface reflectance is available. Should this main algorithm fail, a backup algorithm is triggered 

to estimate LAI and FPAR using vegetation indices. Information on which algorithm was used is 

archived in the QA variable data set. In the case of a dense canopy, its reflectance can be 

insensitive to various parameters (e.g., LAI) characterizing the canopy. When this happens, the 

canopy reflectance is said to belong to the saturation domain (Knyazikhin et al., 1998b). This 

situation is recognized by the retrieval technique (Knyazikhin et al., 1998b) and reported in the 

QA variables. It also should be noted that the MODIS algorithm is executed independently of 

information provided by the cloud mask. Therefore, users are required to consult the QA file to 

select LAI values retrieved under clear sky conditions.  

5.2 Validation of the MODIS LAI Product 

The 002 MOD15A2 product for days 169-177 (June 17-25, 2000) was used in our analysis. 

The Ruokolahti Forest is located in tile h19v02, line 1016 and sample 442. A region of 10x10 

km centered on the validation site was extracted from the corresponding MODIS tile which was 

then coregistered to the ETM+ scene. LAI values produced by the main algorithm under clear 

sky conditions were selected. Figure 14 shows the distribution of selected pixels in the 10x10 km 

area which satisfy these criteria. Vegetated cloud free pixels for which the main algorithm was 

triggered made up 30% of all pixels. The 30 m resolution map derived using the regression based 

on RSR was aggregated to 1 km resolution by averaging all fine resolution LAI values within 

each MODIS pixel. LAI of water and barren pixels were set to zero. Figure 15 shows a contour 

plot of the aggregated LAI map. A pixel-by-pixel comparison between MODIS LAI and 

aggregated LAI is shown in Figure 16. Similar to the cases described earlier (Figs. 10a and 11a), 

MODIS LAI and aggregated LAI are poorly correlated (R2=0.33) at the pixel scale.  
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Pixel-by-pixel comparison is not appropriate for the following reasons: a) the registration 

accuracy of a single pixel is not guaranteed, so the pixel aggregated from fine resolution may not 

match well with the MODIS pixels; b) the MODIS algorithm is designed to retrieve a 

distribution function of all possible LAI values of a pixel on the basis of the spectral information 

and biome type, taking the mean of the distribution function as the retrieved LAI (Knyazikhin et. 

al, 1998b; Tian et. al, 2000; Wang et. al, 2001). Theoretically it is possible that the LAI of a 

single MODIS pixel is not retrieved accurately, but the mean of multiple retrievals over a region 

with similar pixels is accurately retrieved. Therefore, averaging over a homogeneous area is 

required. The aggregated LAI map is then divided into several patches according to the similarity 

of LAI values (Figure 15). Each patch can be represented by the mean LAI value sufficiently 

well. Figure 17 shows the patch-by-patch relationship between the MODIS and aggregated LAI 

values. A much better agreement is achieved at the patch scale, as the comparisons in the case of 

30 m resolution. However, only four points remain, hence R2 and RMSE cannot be calculated 

due to the insufficient number of observations. Figure 18 shows the histograms of LAI values for 

the 10x10 km area obtained from aggregated LAI and the MODIS LAI fields. A t-test (p=0.62) 

indicates that the mean values of these histograms are not significantly different, thus suggesting 

satisfactory performance of the algorithm in this case study. 

6 Discussion and Conclusions 

It was found that pixel scale results are unreliable for a whole range of methods tested. Patch 

level comparisons improve the correlation between field measurements and satellite derived 

vegetation indices because this reduces the registration errors and the averaged field 

measurements are more representative of the mean LAI of the whole patch.  

For a specific site, empirical approaches work well to produce a fine resolution LAI map 

from satellite data because the regression processes finds the best fit between field measurements 
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and satellite data and eliminates the problem of systematic bias. Various relationships such as 

linear (Fassnacht et. al., 1997; Peterson et. al., 1987; Chen and Cihlar, 1996; Chen et. al., 2002; 

Curran et. al., 1992; Running et. al., 1986; Nemani et. al., 1993), polynomial (Turner et. al., 

1999), power (Peterson et. al., 1987), logarithm (Spanner et. al., 1994) and other (Gong et. al., 

1995) regressions have been used to estimate LAI from TM images. Table 5 lists the regression 

models reported in literature that relate field LAI measurements and these vegetation indices 

derived from Landsat TM data for coniferous forests with R2 values ranging from 0.32 to 0.97. 

These relationships are also influenced by the difference in LAI definition, field measurement 

method and atmospheric correction of the satellite image (Running et. al., 1986). Figure 19 plots 

these regression curves. One can see that the regression models are highly site-specific; there is 

no uniform relationship between vegetation indices and field measured LAI for all those sites, 

especially when the canopy is dense (high LAI) because the surface reflectance is insensitive to 

LAI change in this case. Therefore, although very good correlation between satellite derived 

vegetation indices and field measured LAI can be achieved for a specific site, empirical methods 

do not consider the physics behind the regression relationships and are highly site dependent, and 

thus cannot be generalized to very large areas or different sites, their utility is limited. 

A patch-level comparison of the aggregated high resolution LAI map with corresponding 

MODIS LAI retrievals reveals good correspondence between the two and imbues confidence in 

the MODIS LAI and FPAR algorithm. However, we failed to adjust the LAI/FPAR algorithm to 

produce a fine resolution LAI map for this particular site. The ETM+ pixels coincide with the 

finest resolution that the algorithm can recognize and which is assumed to represent one biome 

type in each pixel. In the case of the Ruokolahti site, a forest biome can be mixed with 

understory sprigs, shrubs, mosses and grasses within the 30 m pixel, causing high uncertainties 

in the specification of biome type which is input to the algorithm. The creation of a finer than 30 

m resolution Look-up-Table (LUT) is a possible solution to account for biome mixture at 30 m 
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resolution. Alternatively, radiative transfer models for multiple layer vegetation canopies which 

count in understory vegetation effect could be explored. 

The singles scattering albedo is a very important variable for LAI retrieval when using a 

radiative transfer based method. It depends on the size of the elementary volume and optical 

properties of scattering centers, although it is not clear as how to measure the mean single 

scattering albedo systematically over a site or how to account for the influence of understory 

vegetation and how it changes with scale. The single scattering albedo of an elementary volume 

could be retrieved using hyperspectral canopy reflectance and transmittance data (Wang et. al., 

2002). An alternate way could be calculating from a shoot model according to the optical 

properties of a single needle. 

This analysis also indicated that the reduced simple ratio (RSR), which includes red, near-

infrared and shortwave infrared bands, is best correlated with field LAI measurements. Thus, it 

appears that the use of shortwave infrared band in MODIS LAI retrievals over needle leaf forests 

should be investigated.  
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Table Captions 

Table 1. Means and standard deviations of ETM+ reflectances over the dense, intermediate and 

young forests. 

Table 2. Mean, standard deviation and t-test results of LAI for 50 m and 25 m grid locations in 

the dense, young and intermediate forests.  

Table 3. Mean ETM+ reflectances over patches, their standard deviations and number of pixels 

per segment. 

Table 4. Mean Leaf Area Index (LAI) of segments, standard deviations, coefficients of variation, 

and number of samples in the segment. 

Table 5. Regression models reported in literature to relate Leaf Area Index (LAI) and vegetation 

indices derived from Landsat TM data . 
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Figure Captions 

Figure 1. Ruokolahti field campaign sampling strategy. 

Figure 2. Histograms of atmospherically corrected ETM+ reflectances at (a) red and (b) NIR 

spectral bands. 

Figure 3. Histograms of effective LAI values for young, intermediate and dense forests, at 

resolutions of 25m and 50 m. 

Figure 4. Correlation between LAI measured at 50 m grid and corresponding 25 m subgrid. 

Figure 5. (a) Contour plot of LAI values for the validation site and (b) its high resolution CCD 

image. 

Figure 6. Correlation between LAI retrieved by the MODIS LAI algorithm at 30 m resolution 

and field measured LAI at the pixel scale. (a) Before LUT adjustment; (b) After LUT 

adjustment. 

Figure 7. The schemes of comparison between satellite pixels and field samples. (a) pixel-by-

pixel comparison; (b) patch-by-patch comparison. Circles represent field samples and squares 

represent satellite pixels. 

Figure 8. (a) RGB image of the 1 km region of Ruokolahti from ETM+ band 4, 3, 2 (b) Map of 

the 1 km region using a segmentation procedure.  

Figure 9. Correlation between LAI retrieved by the MODIS LAI and FPAR algorithm at 30 m 

resolution and field measured LAI at patch scale: (a) before LUT adjustment; (b) after LUT 

adjustment.  

Figure 10. Correlation between the normalized differential vegetation index (NDVI) and field 

measured LAI at (a) pixel comparison and (b) patch scale. 
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Figure 11. Correlation between simple ratio (SR) and field-measured LAI at (a) pixel and (b) 

patch scale. 

Figure 12. Patch level comparison between Leaf Area Index (LAI) and reduced simple ratio 

(RSR). 

Figure 13. (a) 10x10 km LAI maps derived from the ETM+ image using the relationship (4) and 

(b) its 1x1 km central part.  

Figure 14. MODIS pixels in the 10x10 km area. Green: LAI value produced by the main 

algorithm; Red: LAI is produced by the backup algorithm; Blue: cloud contaminated pixel; 

Black: water or barren. 

Figure 15. Contour plot of Leaf Area Index (LAI) aggregated from the fine resolution ETM+ 

LAI map. 

Figure 16. Pixel-by-pixel correlation between the MODIS and aggregated Leaf Area Index 

(LAI) values. 

Figure 17. Patch level correlation between the MODIS and aggregated Leaf Area Index (LAI) 

values. 

Figure 18. Histograms of LAI values for the 10x10 km area obtained from aggregated ETM+ 

LAI and the MODIS LAI fields. 

Figure 19. Regression curves between simple ratio (SR) and LAI reported in literature. 
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Figure 1. Ruokolahti field campaign sampling strategy. 
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Figure 2. Histograms of atmospherically corrected ETM+ reflectances at (a) red and (b) NIR 
spectral bands. 
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Figure 3. Histograms of effective LAI values for young, intermediate and dense forests, at 
resolutions of 25m and 50 m. 
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Figure 4. Correlation between LAI measured at 50 m grid and corresponding 25 m subgrid. 
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Figure 5. (a) Contour plot of LAI values for the validation site and (b) its high resolution CCD 
image. 
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Figure 6. Correlation between LAI retrieved by the MODIS LAI algorithm at 30 m resolution 
and field measured LAI at the pixel scale. (a) Before LUT adjustment; (b) After LUT 
adjustment. 
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. The schemes of comparison between satellite pixels and field samples. (a) pixel-by-
pixel comparison; (b) patch-by-patch comparison. Circles represent field samples and squares 
represent satellite pixels. 
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(b) 

 
 

Figure 8. (a) RGB image of the 1 km region of Ruokolahti from ETM+ band 4, 3, 2 (b) Map of 
the 1 km region using a segmentation procedure.  
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Figure 9. Correlation between LAI retrieved by the MODIS LAI and FPAR algorithm at 30 m 
resolution and field measured LAI at patch scale: (a) before LUT adjustment; (b) after LUT 
adjustment.  
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Figure 10. Correlation between the normalized differential vegetation index (NDVI) and field 
measured LAI at (a) pixel comparison and (b) patch scale. 
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Figure 11. Correlation between simple ratio (SR) and field-measured LAI at (a) pixel and (b) 
patch scale. 
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Figure 12. Patch level comparison between Leaf Area Index (LAI) and reduced simple ratio 
(RSR). 
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Figure 13. (a) 10x10 km LAI maps derived from the ETM+ image using the relationship (4) and 
(b) its 1x1 km central part.  
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Figure 14. MODIS pixels in the 10x10 km area. Green: LAI value produced by the main 
algorithm; Red: LAI is produced by the backup algorithm; Blue: cloud contaminated pixel; 
Black: water or barren. 
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Figure 15. Contour plot of Leaf Area Index (LAI) aggregated from the fine resolution ETM+ 
LAI map. 
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Figure 16. Pixel-by-pixel correlation between the MODIS and aggregated Leaf Area Index (LAI) 
values. 
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Figure 17. Patch level correlation between the MODIS and aggregated Leaf Area Index (LAI) 
values. 
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Figure 18. Histograms of LAI values for the 10x10 km area obtained from aggregated ETM+ 
LAI and the MODIS LAI fields. 
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Figure 19. Regression curves between simple ratio (SR) and LAI reported in literature. 
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Table 1. Means and standard deviations of ETM+ reflectances over the dense, intermediate and 
young forests. 

 Dense Forest Intermediate 
Forest 

Young Forest Entire site 

Mean red 0.023 0.025 0.065 0.032 
STD red 0.004 0.003 0.007 0.012 
Mean NIR 0.19 0.19 0.27 0.21 
STD NIR 0.006 0.008 0.013 0.031 
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Table 2. Mean, standard deviation and t-test results of LAI for 50 m and 25 m grid locations in 
the dense, young and intermediate forests.  

 Dense Forest Intermediate Forest Young Forest 
Mean (50m) 1.91 2.06 0.07 
STD (50m) 0.36 0.68 0.11 
Mean (25m) 1.95 2.10 0.22 
STD (25m) 0.26 0.56 0.19 

t-test (P value) 0.68 0.76 0.04 
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Table 3. Mean ETM+ reflectances over patches, their standard deviations and number of pixels 
per segment. 

Red band NIR band 
Patch No. Mean STD Mean STD 

Number of 
pixels 

1 0.02311 1.21E-05 0.1883 0.0003 218 
2 0.02685 3.25E-05 0.2014 0.000172 67 
3 0.03778 2.98E-05 0.2561 0.000235 79 
4 0.03489 3.60E-05 0.2378 0.00032 38 
5 0.02895 2.96E-05 0.2087 0.00036 286 
7 0.03185 6.05E-05 0.1933 0.000362 149 
8 0.02445 3.66E-05 0.2021 0.000359 121 
9 0.06119 9.27E-05 0.274 0.000253 244 

10 0.02503 1.78E-05 0.1849 8.31E-05 121 
11 0.03958 65E-05 0.2205 0.000373 175 
12 0.02176 5.18E-06 0.1766 6.05E-05 74 
13 0.0242 1.04E-05 0.1991 5.56E-05 91 
14 0.03611 3.30E-05 0.2145 0.0002 149 
15 0.02527 1.07E-05 0.1979 7.81E-05 174 
16 0.02773 1.33E-05 0.1968 65E-05 44 
17 0.02366 1.16E-05 0.185 6.07E-05 202 
18 0.02365 1.22E-05 0.185 5.41E-05 26 
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Table 4. Mean Leaf Area Index (LAI) of segments, standard deviations, coefficients of variation, 
and number of samples in the segment. 

Patch No. Mean LAI STD STD/Mean Number of samples 
1 2.035 0.5514 0.270958 42 
2 1.631 0.2743 0.168179 14 
3 1.02 0.1721 0.168725 16 
4 1.322 0.586 0.443268 10 
5 1.562 0.2486 0.159155 43 
7 1.259 0.4844 0.38475 26 
8 1.897 0.6777 0.357248 22 
9 0.2258 0.2106 0.932684 38 

10 1.509 0.3049 0.202054 16 
11 1.105 0.2236 0.202353 30 
12 2.606 0.3465 0.132962 13 
13 2.623 0.3557 0.135608 17 
14 0.895 0.1727 0.192961 28 
15 1.924 0.327 0.169958 31 
16 1.423 0.02948 0.020717 10 
17 1.986 0.2177 0.109617 34 
18 2.712 0.5147 0.189786 8 
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Table 5. Regression models reported in literature to relate Leaf Area Index (LAI) and vegetation 
indices derived from Landsat TM data . 

Vegetation 
Index 

Field LAI 
measurements 

Equation R2 Author 

LAI=0.5724+0.0989LAI-
0.0114LAI2+0.0004LAI3 

0.74 NDVI/SR Allometric 
method 

SR=2.2282+2.5376LAI-0.1576LAI2 0.59 

Turner et. 
al. (1999) 

NDVI= 0.0377LAI+0.607 0.72 NDVI/SR Allometric 
method SR= 0.9357LAI+3.552 0.71 

Fassnacht 
et. al. (1997) 

SR=1.92LAI0.583 0.91 SR Allometric 
method SR=1.92+0.532LAI 0.83 

Peterson et. 
al. (1987) 

NDVI=0.032LAI+0.635 0.42 NDVI/SR LAI-2000 and 
TRAC* SR=1.014LAI+3.637 0.49 

Chen and 
Cihlar, 
(1996) 

SR LAI-2000 and 
TRAC* 

SR=1.153LAI+2.56 0.66 Chen et. al. 
(2002) 

SR Ceptometer SR=3.1196+5857log(LAI) 0.97 Spanner et. 
al., (1994) 

NDVI=1.2383/(1/LAI+0.9061)-
0.3348 

0.87 NDVI/SR LAI-2000 

SR=0.96/(1/LAI-0.066)+0.987 0.88 

Gong et. al. 
(1995). 

NDVI Allometric 
method 

LAI=33.99NDVI-121 0.75 Curran et. 
al. (1992) 

SR Allometric 
method 

SR=0.614LAI+1.23 0.82 Running et. 
al. (1986) 

NDVI Allometric 
method 

NDVI=0.03LAI+0.6 0.32 Nemani et. 
al. (1993) 
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