
Volume 101, Number 2, March–April 1996
Journal of Research of the National Institute of Standards and Technology

[J. Res. Natl. Inst. Stand. Technol.101, 165 (1996)]

The MasPar MP-1 As a Computer
Arithmetic Laboratory

Volume 101 Number 2 March–April 1996

Michael A. Anuta

Cray Research Inc.,
Calverton, MD 20705

Daniel W. Lozier

National Institute of Standards and
Technology,
Gaithersburg, MD 20899-0001

and

Peter R. Turner
United States Naval Academy,
Annapolis, MD 21402

This paper is a blueprint for the use of a
massively parallel SIMD computer architec-
ture for the simulation of various forms of
computer arithmetic. The particular system
used is a DEC/MasPar MP-1 with 4096
processors in a square array. This architec-
ture has many advantages for such simula-
tions due largely to the simplicity of the in-
dividual processors. Arithmetic operations
can be spread across the processor array to
simulate a hardware chip. Alternatively
they may be performed on individual pro-
cessors to allow simulation of a massively
parallel implementation of the arithmetic.
Compromises between these extremes
permit speed-area tradeoffs to be examined.
The paper includes a description of the

architecture and its features. It then sum-
marizes some of the arithmetic systems
which have been, or are to be, imple-
mented. The implementation of the level-in-
dex and symmetric level-index, LI and SLI,
systems is described in some detail. An ex-
tensive bibliography is included.

Key words: computer arithmetic; fixed-
point and floating-point arithmetic;logarith-
mic and level-index arithmetic; residue
number system arithmetic; serial and paral-
lel simulation of computer arithmetic.

Accepted: November 15, 1995

1. Introduction

This paper describes and discusses the use of a mas-
sively parallel SIMD (single instruction, multiple data)
computer system as a computer arithmetic laboratory.
Specifically the Digital Equipment Corporation MasPar
MP-1 computer1 with 4096 processors is used for soft-
ware implementation of various types of computer arith-
metic for integer, rational, real and complex arithmetic.
The systems implemented (or, in some cases, to be im-
plemented) include both conventional and novel number
representations and arithmetic systems. Some of these

1 Certain commercial equipment, instruments, or materials are identi-
fied in this paper to foster understanding. Such identification does not
imply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

provide general computational frameworks (such as
binary integer and floating-point). Others have been de-
veloped primarily as special systems (such as the
residue number system, RNS) or are still in experimental
design stages (such aslogarithmic, level-index and sym-
metric level-index arithmetic).

The first part of the paper contains a brief introduc-
tion to the MasPar architecture and why it is appropriate
for this task. Section 3 reviews some of the number
representations and their corresponding arithmetic data
types which have been (or, in some cases, are being)
created in this laboratory. In Sec. 4, we concentrate on
one particular case. The implementation of the symmet-
ric level-index, SLI, arithmetic serves as a particularly
illustrative example of the general laboratory project
because it uses some of the other arithmetic systems

165

Volume 101, Number 2, March–April 1996
Journal of Research of the National Institute of Standards and Technology

(such as fixed point fraction arithmetic of various
wordlengths) for its internal processing. This section
also contains details of a modified algorithm for SLI
arithmetic which is better suited to a massively parallel
implementation—and to an eventual VLSI hardware im-
plementation of SLI arithmetic. A substantial bibliogra-
phy is included.

2. The MasPar MP-1 System

The MasPar system is a SIMD array of 4096 proces-
sors configured as a square 643 64 array with toroidal
wraparound in both directions. The individual proces-
sors are just 4-bit processors so that all arithmetic is
implemented in software. Like any SIMD architecture,
at any instant all processors are either performing the
same instruction or areinactive. Clearly, for example,
adding two 643 64 matrices is a particularly simple
instruction for this machine. Matrix multiplication is
less straightforward but is still well-suited to the array.
Its speed advantage for such problems relative to con-
ventional architectures comes from the massive paral-
lelism overcoming the slower individual operations.

The principal advantages of using such a SIMD array
for the implementation of a computer arithmetic labora-
tory arise out of its flexibility.

The 643 64 array of 4-bit processors can be used to
simulate hardware implementations of the various arith-
metic schemes and to make alterations easily in the
algorithms being used. Alternatively the arithmetic can
be implemented using serial algorithms so that the main
computation is then spread across the processors. This
will allow experimental computation to take advantage
of the parallelism to reduce the time-penalty inherent in
such a software system.

By implementing the standard floating-point and in-
teger arithmetic in a similar manner, it should be possi-
ble to create a “level playing field” for comparing the
performance of different arithmetic systems on particu-
lar problems. In particular, timing comparisons can be
made with some justification since even the built-in
arithmetic is “nibble-by-nibble.” Anibbleis a half-byte,
or 4 bits. Since a nibble corresponds to a hexadecimal
digit, using radix 16 to implement the internal arith-
metic of any system is natural.

The parallel array will allow realistic experimental
computation without the enormous time-penalties
which would be suffered on conventional serial ma-
chines—or even on pipelined vector processors.

By making a compromise between the “spread-the-
arithmetic-across-the-array” paradigm and the “serial-
algorithm-executed-in-parallel” alternative, speed-area
tradeoff simulations can be run. The relative perfor-

mances can be expected to be reasonably indicative of
potential hardware, and so to alleviate the need for
building experimental arithmetic units.

Many of these points will become clearer with refer-
ence to particular implementations. A later phase of the
development of this computer arithmetic laboratory will
be the simulation of various arithmetic hardware com-
ponents. Then a prospective chip design could be
mapped onto the array and tested.

The MP-1 supports programming in C and Fortran.
The MasPar Programming Language (MPL) is an ex-
tended version of ANSI C allowing forplural variables
which are variables for which there is an instance on
each processor—or, more precisely in each processor’s
individual memory. Communication between the vari-
ous processors and their memories is achieved either
through theXnet (which is designed for neighboring
communication in each of the North, South, East and
West directions) or therouter which handles more dis-
tant communications. The bandwidth of the Xnet is 16
times that of the router.

MPF (MasPar Fortran) is a version of high-perfor-
mance Fortran, HPF, which again includes the appro-
priate array constructs and communication instructions.
The two languages have been designed for the easy
inclusion of subroutines written in one language within
programs in the other. There is also a very powerful
debugging and program-development environment
which includes a profiler so that bottlenecks are easily
identified.

3. Review of Proposed Computer Arith-
metic Systems

Integer and floating-point arithmetic already exist in
both MPL and MPF. Floating-point real and complex
arithmetic is supported in the 32-bit and 64-bit IEEE
(Institute of Electrical and Electronics Engineers) for-
mats. Integers are supported in 8, 16, 32, and 64 bits in
MPL, and in 32 bits in MPF. This section contains a
brief summary of some of the other formats which are
(or will be) available in the computer arithmetic labora-
tory. The list is merely illustrative and is not intended to
be complete.

3.1 Integer and Fixed-Point Arithmetics
3.1.1 Binary Integer Arithmetic Binary integer

arithmetic (two’s complement) already exists on the
MP-1 and so need not be implemented specially for this
laboratory. Indeed the shorter integer forms will be used
as a basis for many of the other implementations. At a
later stage of the development many of the hardware

166

Volume 101, Number 2, March–April 1996
Journal of Research of the National Institute of Standards and Technology

components of binary integer processors will be simu-
lated to assist with the design of hardware algorithms.
Details of these algorithms are readily available in stan-
dard texts such as Refs. [1–8]. Online algorithms, signed
digit and redundant arithmetic (see Refs. [9–14] for
example) are often used for internal computation. These
would also be implemented during this later stage.

3.1.2 RNS Arithmetic Residue number systems
(RNS) arithmetic has been extensively researched for
well over twenty years and there is a very considerable
literature on the representation, arithmetic algorithms
and applications of such systems. A sample of these are
listed in the Residue Number Systems section of the
Bibliography, Refs. [15–29].

The principle of RNS arithmetic is that an integer
within the representable range is represented by its
residues modulo a set of basis primes. (Strictly, not all
the basis elements must be prime but for most practical
purposes this is needed.) Thus an integerN is repre-
sented in the RNS system using base modulip1, p2, . . .,
pL by the vector (a1, a2, . . . , aL) where

ai ≡ N mod pi (i = 1, 2, . . . ,L).

Addition and subtraction of integers represented in this
way can be performed by adding (or subtracting) the
respective residues—and this may be done entirely in
parallel since there is no carry from one modulus to
another. The same is true for multiplication provided
that the product does not overflow thedynamic range

M = SP
L

i= 1
piD–1.

(For many practical applications of RNS arithmetic, a
symmetric range equivalent to [–M /2, M /2] would be
used.)

The implementation of RNS arithmetic on the MP-1
would use one processor per modulus. Usually, the
dimensionL of the RNS-basis is much smaller than the
4096 processors available and so it becomes feasible to
implement a degree of SIMD parallelism. For example
even with a 64-dimensional RNS-basis, the MP-1 can
simulate a SIMD processor with 64 processors each
operating on this extended data type.

The implementation covers the common RNS integer
arithmetic formats—both the nonnegative and symmet-
ric forms. Conversion of either of these to binary integer
forms can be achieved using the Chinese Remainder
Theorem, CRT. The processor array can be used to
implement the long accumulator which is needed for this
conversion with a large dynamic range.

Other features which are included are base extension
using a mixed radix conversion and the quadratic exten-
sions of RNS integer arithmetic to admit complex
integer arithmetic. Both the “real and imaginary part”
form of the QRNS and the logarithm-based GEQRNS
(Galois-enhanced quadratic residue number system) are
implemented. (See Ref. [24] for example.)

Various RNS division algorithms have been (or will
be) included for comparison purposes. These include
the newer algorithms of Refs. [21] and [28]. One of the
first applications of this arithmetic will be to the solu-
tion of linear systems and, in particular, the adaptive
beamforming problem.

3.1.3 Fixed-Point Fraction Arithmetic One of
the arithmetic forms which is often missing from the
usual computational data types is fixed-point fraction
arithmetic. Systems such as the lexicographic continued
fractions of Kornerup and Matula [55–59] provide a
general rational arithmetic. Otherwise, typically, binary
fixed-point fractions are implemented as scaled versions
of integers.

The fraction arithmetic implemented within this com-
puter arithmetic laboratory allows direct computation
with fixed-point fractions of varying wordlengths.
Specifically, the wordlength is measured in “nibbles” (or
hexadecimal digits). One nibble is reserved for sign and
other information—such as a record of overflows for
addition or the use of a reciprocation bit in division; see
Sec. 4.1.

Fraction arithmetic is often required not only for itself
but also for the internal computation of other arithmetic
representations such as the level-index scheme which is
discussed in greater detail in the next section. Some of
the details of the implementation of fraction arithmetic
are also presented there.

The use of the “nibble-base” means that multiplica-
tion of digits can be easily performed in an 8-bit integer
format. Division is readily implemented using a radix-
16 nonrestoring algorithm.

The basic fraction arithmetic is also to be extended
for various library functions including some special
function definitions which are needed for efficient al-
gorithms for LI, SLI, orlogarithmic arithmetic. These
arithmetic algorithms also require the use of fixed-point
number representations which have both an integer and
a fractional part. These representations are accommo-
dated by allowing “fractions” withn.mhexadecimal dig-
its meaningn digits in the integer andm in the fraction.

3.2 Real Number Representations and Arithmetic
3.2.1 Floating-Point Systems The standard IEEE

floating-point data types are already implemented in
MPL and MPF. The laboratory will include software
implementations of these with variations to allow for

167

Volume 101, Number 2, March–April 1996
Journal of Research of the National Institute of Standards and Technology

different wordlengths and different partitioning of those
words between the exponent and mantissa.

For all the real number representations to be imple-
mented, complex arithmetic will be implemented both
in its conventional (real and imaginary part) form and in
modulus-argument (or polar) form. Appropriate ele-
mentary and special function routines will also be avail-
able for each of these data types.

Much work has, of course, been done over the years
on various aspects of the floating-point system. This has
included the IEEE standards, hardware algorithm devel-
opment, error analysis and correction, CORDIC (Coor-
dinate Rotation Digital Computer) algorithms for ele-
mentary functions and multiple precision packages. (See
Refs. [30–42], for example.)

Other variations on the basic floating-point arith-
metic which are included are implementations of
directed rounding so that interval arithmetic (Refs. [43–
48]) may be simulated along with conventional arith-
metic operations. In this context a “super-accumulator”
for “exact” accumulation of floating-point inner prod-
ucts is to be implemented using the processor array to
simulate the multiple precision unit.

The extended floating-point systems of Matsui-Iri
[83] and Hamada [80,81,85] are based on the principle
of only using the necessary number of bits in a floating-
point word to represent the exponent. These are there-
fore developments of Morris’s tapered floating-point
system [84]. The intention of both of these systems is to
alleviate the overflow/underflow problem of floating-
point arithmetic.

Matsui and Iri used part of the computer word to
represent a pointer which indicates the number of bits
allocated to the exponent with the rest then being avail-
able for mantissa representation. The relative representa-
tion error therefore grows with the magnitude of the
number being represented, approximately linearly with
the logarithm of its binary exponent. However, a “single
precision” version of this representation requires 5 bits
for this pointer and so can only yield higher precision
over a very restricted range. The system is therefore
suitable only for longer wordlengths.

This is also true of Hamada’s “Universal Representa-
tion of Real Numbers” or URR in which Matsui and Iri’s
pointer is replaced by a dual purpose segment of the
representation. In essence, this section of the word re-
places both the pointer and the first bit of the exponent.
Thus if the exponent has the form 2m + n the first bit is
replaced by a unary string ofm bits followed by a
terminator. The rest of the exponent (the binary repre-
sentation ofn) occupy the nextm bits and these are
followed by the mantissa. Because of the need for the
terminating bit in the representation ofm, it follows that
this representation is less compact than Matsui and Iri’s

oncem is greater than the pointer length of the latter
representation.

The computer arithmetic laboratory will include both
32-bit and 64-bit versions of both these arithmetics as
further variations on the binary floating-point system.

3.2.2 Logarithm-Based Arithmetics Logarith-
mic arithmetic has been extensively studied in recent
years as an alternative to floating-point for real arith-
metic. Work has included theoretical error analysis stud-
ies, algorithmic analysis and developments, and practi-
cal hardware processor designs. (See Refs. [49–54] for
a sample of this work.)

The basis oflogarithmic arithmetic is that a positive
number is represented by its base 2logarithm. This
logarithm is represented in fixed-point form. The inter-
nal arithmetic of thelogarithmic arithmetic in the MP-1
laboratory is therefore one of the places where the
fixed-point binary fraction arithmetic referred to in Sec.
3.1.3. is used.

The recently developed algorithms based on polyno-
mial interpolation techniques [53] will be incorporated
into the implementation.

It is easy to extend the ideas oflogarithmic arithmetic
to an arbitrary base. Usinge the base of naturalloga-
rithms may have some advantages forlogarithmic com-
plex arithmetic and for the evaluation of elementary
functions within this system. This, too, will be added to
the laboratory.

Natural logarithmic arithmetic is a bridge to the im-
plementation of the level-index, LI, and symmetric level-
index, SLI systems [60–79]. The implementation of
these systems is discussed in greater detail in the next
section.

4. SLI Implementation

Like many arithmetic systems the LI and SLI systems
rely on a simpler arithmetic for their underlying internal
arithmetic. In this case the underlying arithmetic is
fixed-point fraction arithmetic. This section begins with
a brief description of this and then of the LI and SLI
implementations.

4.1 Fraction Arithmetic

In the fraction arithmetic of the MP-1 computer arith-
metic laboratory, a numberf with | f | < 1 is represented
by a sign digit followed by a number of fraction digits.
Each of these is a hexadecimal digit (or nibble) which
simplifies spreading an arithmetic operation across the
processor array.

The sign digit can obviously carry much more infor-
mation than just the sign of the number. This additional
space allows the storage of a reciprocation bit (or flag),

168

Volume 101, Number 2, March–April 1996
Journal of Research of the National Institute of Standards and Technology

and an overflow indicator bit. The reciprocation bit
allows meaningful results to be returned for division of
a larger number by a smaller one. If this result is itself
to be used later as a divisor, unnecessary failure is thus
averted.

Similarly, the “overflow bit” can be used to prevent
overflow resulting from the addition of two fractions. In
fact two such bits are available and these could be used
to extend the representable range to (4, 4). Adding
further integer nibbles can obviously extend this range.

Fractions of up to 15 nibbles can be stored in each
processor using the MPL data typelong long —a
64-bit integer which is one of its extensions of ANSI C.
There are therefore packing and unpacking routines for
conversion between types such asfraction10 (a
fraction with sign plus 10 hexadecimal digits) and its
various components. The bit manipulation operators of
C make this operation reasonably straightforward. Fur-
ther conversion routines are provided for changing be-
tween conventional real storage and the fraction types.

The available types will allow up to 15 hexadecimal
digit fractions. Longer fractions can be stored by using
an integer-type array in each processor—or, more likely,
by using more than one processor. In either case multi-
ple precision algorithms will be required to implement
arithmetic operations.

Once the storage of such quantities is achieved, addi-
tion and subtraction are implemented by using their
integer counterparts. The same is not true of multiplica-
tion.

Overflow (or wraparound) of integer multiplication is
not appropriate since the most significant digits of the
product are the ones which must be kept for fraction
arithmetic. However the hexadecimal digit products can
be constructed using unsigned 8-bit integer arithmetic
and then combined with appropriate shifts to reformu-
late the result. Similarly hexadecimal digits provide a
natural framework for a software radix-16 nonrestoring
division algorithm.

The presence of the reciprocation bit necessitates a
preprocessing of fractions for multiplication and/or divi-
sion so that the correct sign and reciprocation sign are
assigned to the result of the appropriate final arithmetic
operation. For example division of a larger fraction,x,
by a smaller one,y, is performed by setting the recipro-
cation bit of the result and computing the reciprocal
quotienty/x.

Many of the design decisions here are reminiscent of
those used in the Turbo Pascal implementation of SLI
arithmetic described in Refs. [77–79].

4.2 LI Arithmetic

In the LI system a positive numberX is represented by
its generalized logarithm xwhere

X = f (x). (1)

The generalized exponential functionf (the inverse
of the generalizedlogarithm) is given by

f (x) = 5 x

ef(x–1)

if 0 # x # 1,

if x > 1.
(2)

The basic representation, arithmetic algorithms and
analysis for this system were discussed in detail in Refs.
[60–64,68,72].

To give a flavor of the MP-1 implementation of this
system we describe just the algorithm for addition and
subtraction, and its use of the fixed-point fraction arith-
metic. This operation consists of findingz such that

f (z) = f (x) 6 f (y) (3)

wherex = l + f > m + g = y > 0 andl = [x], m= [y]. This
is achieved by computing members of the sequences

aj =
1

f (x–j)
, bj =

f (y–j)
f (x–j)

, cj =
f (z–j)
f (x–j)

. (4)

The first two of these are evaluated by similar recur-
rence equations fordecreasingvalues ofj :

aj–1 = exp(–1/aj), al–1 = e–f,

bj–1 = exp((–1 +bj)/aj), bm–1 = am–1e–g. (5)

The initial value for theb-sequence can be redefined to
allow the simultaneous computation of these two se-
quences. Their values are bounded by 0 and 1 and the
analysis of the algorithm [63] shows that they can be
computed to fixed absolute precisions. It follows that
fixed-point fractions are the desired internal arithmetic
form.

The remainder of the algorithm consists of setting

c0 = 1 6 b0, (6)

then computing terms of thec-sequence by another
short recurrence, and performing a final step to obtain
z. The cj ’s are included in [0, 1] for subtraction and
[1, 2] for addition. Again, fixed-point fraction arith-
metic is appropriate.

The analysis of the LI arithmetic algorithms [63]
shows that, for a 32-bit LI wordlength, the data types
fraction10 and fraction8 (that is fractions with
10 and 8 hexadecimal digits) are suitable for the compu-
tation of thea-sequence and theb- and c-sequences
respectively. Furthermore, the sign nibble of the fraction

169

Volume 101, Number 2, March–April 1996
Journal of Research of the National Institute of Standards and Technology

representation above admits a 1-bit integer part so that
the terms of thec-sequence for addition create no diffi-
culty.

Efficient computation with these data types will
certainly require implementation of special algorithms
for the exponential andlogarithm functions for the re-
stricted range of arguments which are encountered in
the LI algorithms. These special algorithms can be
spread across the processor array. They would probably
be based on the modified CORDIC algorithms origi-
nally presented in Ref. [75] or the table-lookup approach
of Ref. [73]. (It is interesting to note that table-lookup
has also been discussed in connection withlogarithmic
arithmetic in Refs. [53, 54].

Development of these algorithms is another task
which will be eased by the computer arithmetic labora-
tory.

4.3 SLI Arithmetic

We begin with a brief description of a new SLI arith-
metic algorithm and then consider its implementation in
the MP-1 computer arithmetic laboratory. The notation
here is the same as for LI arithmetic above except that
now a real numberX is represented by

X = 6 f (x)61

with f given by Eq. (2) andx $ 1.
4.3.2 Modified SLI Algorithm In the standard

SLI arithmetic algorithms described in Refs. [63, 65] all
the basic arithmetic operations involve the computation
of a quantity c0 from which computation of the
c-sequence proceeds.

For the “large” case, the add/subtract operation is just
the LI operation in Eq. (3) above. Thenc0 is given by

c0 = 1 6 b0 = 1 6
f (y)
f (x)

.

The corresponding “mixed” operation is

f (z) = f (x) 6 f (y)–1

with c0 given by

c0 = 1 6 a0a0 = 1 6
1

f (x)f (y)
.

For “small” arithmetic the basic operation is

f (z)–1 = f (x)–1 6 f (y)–1

with c'0 = 1/c0 given by

c'0 = 1 6 b0 = 1 6
f (x)
f (y)

. (9)

There are similar recurrence relations to those in Eq.
(5) which are used from appropriate starting values to
generate the members of thea - andb -sequences given
by

aj–1 = exp(–1/aj j) (j = m – 1, . . . , 1),

bj–1 = exp((–1 +bj)/ajbj) (j = l –1, . . . , 1)

where, again,l , mare the levels ofx, y respectively. Note
that in all cases, the first argument to the arithmetic
operation is assumed to be the larger in absolute value
so thatx $ y for the large case andx # y in the small
case.

These arithmetic operations are analyzed in Ref. [65]
in terms of the required precisions in the fixed-point
computation of the sequences in order to deliver results
with error comparable with inherent errors.

The alternative algorithms presented here are based
on using only thea- and a -sequences. This has great
potential advantages for both SIMD software and VLSI
hardware implementation of SLI arithmetic since the
definitions of these sequences are identical for the two
argumentsx andy.

These alternative algorithms reduce to redefining the
initial values of thec-sequences by:

c0 = 1 6 a0/a0 (large arithmetic) (10)

c0 = 1 6 a0a0 (mixed arithmetic) (11)

and

c'0 = 1 6 a0/a0 (small arithmetic) (12)

in place of Eqs. (7) to (9). The remainder of the
algorithm remains unchanged. We observe here that the
divisions in Eqs. (10) and (12) are always of a smaller
quantity by a larger so that our fixed-point fraction
arithmetic remains appropriate.

The precision requirements of the fixed-point internal
computation will, of course, be slightly different for this
modified algorithm. The detailed error analysis of this
algorithm will be published elsewhere. The availability
of variable wordlength fixed-point fractions will sim-
plify computational testing of this algorithm.

Extensions of this algorithm to the extended arith-
metic operations such as summation, scalar products
and vector norm computations (see Refs. [69, 78] for
example) yield further simplifications in the algorithm
logic and therefore in the potential for VLSI hardware

170

Volume 101, Number 2, March–April 1996
Journal of Research of the National Institute of Standards and Technology

designs. A SIMD software implementation is a natural
step in this direction.

4.3.2 SLI Implementation In this section we
highlight some of the features of the MP-1 implementa-
tion of SLI arithmetic with reference to the task of
summing a series of SLI terms which fits the processor
array.

This example demonstrates some of the simplifica-
tions which follow from the adoption of the revised SLI
algorithm described above. It is also a good vehicle for
illustrating some of the features of the MPL language
and its extensions of ANSI C. One of the primary bene-
fits of this from the arithmetic viewpoint is that the
SIMD instructions make it plain where there is multiple
use of the same instruction which may be a good indica-
tor of suitability for VLSI design. The many reduction
algorithms that are built into the language also show
clearly the places in a VLSI algorithm where adder, or
other logic, trees would be used.

These advantages obviously carry over to any arith-
metic system that is to be implemented on this or any
similar SIMD architectures.

First the single precision, 32-bit, SLI data type
slisingle can be identified with the 32-bit integer
type long in such a way that the integer ordering is the
correct SLI ordering. This is just the same data packing
routine as was used in Refs. [77–79]. This order-pre-
serving mapping is important for the identification of
the largest element of the array of terms.

These terms would exist as a variableX of type
plural slisingle which is to say it has one in-
stance on each of the processors in the 643 64 array.

To describe the algorithm we shall denote the individ-
ual terms by

Xi = sif (xi)ri (i = 0, 1, . . . ,4095).

The largest element in this array of terms, and more
importantly its position, can be obtained using the built-
in MPL reduction functions reduceMax32 and
rank32 . We shall denote the position of the maximal
element byp. For simplicity we shall assume |Xp | $ 1
so thatrp = 1.

The next step of the algorithm is to compute
the a-sequence for each term. This operation is per-
formed simultaneously on each processor to produce a
plural fraction10 a[7] where again the word
“plural” indicates the existence of this array on all pro-
cessors. (The dimension 7 here reflects the maximum
level needed in SLI arithmetic.) We shall denote the
values of a[0] for the various operands byAi . ThusAi =
1/f (xi).

The only branch in the algorithm is now used to
compute the quantities

Bi = 5 (13)

These terms are then summed over all processors to
obtain c0 using the fraction equivalent of the built-in
reduceAdd function. The number of terms demands
that a maximum of 12 bits, or 3 hexadecimal digits, are
needed for the integer part ofc0.

The computation is completed by generating subse-
quent members of thec-sequence as for regular SLI
addition.

The algorithm just described is much simpler than
that presented in Ref. [78]. The use of the parallel in-
structions and reduction-based algorithms demonstrates
clearly the inherent suitability of the algorithm for VLSI
implementation.

The underlying fraction arithmetic requires just a few
extensions beyond regular arithmetic operations. For
example, a special purpose routine for computing
exp(–1/F) for a fixed-point fractionF in (0, 1) to a fixed
absolute precision is needed to compute the various
a-sequences efficiently. This can be achieved using a
modified CORDIC algorithm similar to those in Refs.
[75, 78].

5. Conclusions

In this paper we have introduced the ideas behind the
development of a software computer arithmetic labora-
tory on a massively parallel SIMD array processor. The
particular machine used is a DEC/MasPar MP-1 with
4096 processors although the principles would apply
equally well on any other similar SIMD machine.

A wide variety of number representations and arith-
metic systems for computers can be incorporated into
this laboratory. This paper has described some of those
and then presented some salient details of just a few,
including fixed-point fractions and the level-index and
symmetric level-index systems. These systems and RNS
arithmetic have been implemented while most of the
others are yet to be added. Algorithmic improvements
and modifications are being incorporated continually on
the MasPar facility in the U.S. Naval Academy Mathe-
matics Department.

The primary benefits to be gained are in the provision
of a reasonable basis for comparison between various
arithmetic forms and in allowing algorithmic experi-
mentation as an aid to hardware design processes.

spsi Ap/Ai if ri = +1,

sp si ApAi if ri = 21.

171

Volume 101, Number 2, March–April 1996
Journal of Research of the National Institute of Standards and Technology

6. Bibliography
6.1 General

[1] I. Koren, Computer Arithmetic Algorithms, Prentice-Hall
(1993).

[2] K. Hwang, Computer Arithmetic: Principles, Architecture, and
Design, John Wiley and Sons (1978).

[3] K. Hwang and F. A. Briggs, Computer Architecture and Parallel
Processing, McGraw-Hill (1984).

[4] N. R. Scott, Computer Number Systems and Arithmetic, Pren-
tice Hall (1985).

[5] P. Sterbenz, Floating-Point Computation, Prentice Hall (1974).
[6] E. E. Swartzlander, Jr., ed., Computer Arithmetic, Dowden,

Hutchinson and Ross, Stroudsburg, Pennsylvania (1980).
[7] E. E. Swartzlander, Jr., ed., Computer Arithmetic, Vol. II, IEEE

Computer Society Press (1990).
[8] S. Waser and M. J. Flynn, Introduction to Arithmetic for Digital

Systems Designers, Holt, Rinehart and Winston (1982).

6.2 Fixed-Point Arithmetic

[9] A. Avizienis, Signed-digit number representations for fast paral-
lel arithmetic, IRE Trans. Elec. Comput.10, 389–400 (1961).

[10] J. Duprat, Y. Herreros, and S. Kla, New redundant representa-
tions of complex numbers and vectors, in Proceedings, 10th
Symposium on Computer Arithmetic, IEEE Computer Society
Press (1991) pp. 2–9.

[11] M. D. Ercegovac, T. Lang, and P. Montuschi, Very high radix
division with selection by rounding and prescaling, in Proceed-
ings, 11th Symposium on Computer Arithmetic, IEEE Com-
puter Society Press (1993) pp. 112–119.

[12] J-M. Müller, Arithmétique des Ordinateurs, Masson, Paris
(1989).

[13] G. S. Taylor, Radix 16 SRT dividers with overlapped quotient
selection stages, in Proceedings, 7th Symposium on Computer
Arithmetic, IEEE Computer Society Press (1985) pp. 64–71.

[14] D. Wong and M. Flynn, Fast division using accurate quotient
approximations to reduce the number of iterations, IEEE Trans.
Comput.41, 981–995 (1992).

6.3 Residue Number Systems

[15] S. S. Bizzan, G. A. Jullien, N. M. Wigley, and W. C. Miller,
Integer mapping architectures for the polynomial ring engine,
in Proceedings, 11th Symposium on Computer Arithmetic,
IEEE Computer Society Press (1993) pp. 44–51.

[16] W. A. Chren, Jr., A new residue number system division al-
gorithm, Comput. Math. Appl.19 (7), 13–29 (1990).

[17] G. I. Davida and B. Litow, Fast parallel arithmetic via modular
representation, SIAM J. Comput.20, 756–765 (1991).

[18] D. Gamberger, New approach to integer division in residue
number systems, in Proceedings, 10th Symposium on Com-
puter Arithmetic, IEEE Computer Society Press (1991) pp.
84–89.

[19] R. T. Gregory and D. W. Matula, Base conversion in residue
number systems, in Proceedings, 3rd Symposium on Computer
Arithmetic, IEEE Computer Society Press (1975) pp. 117–125.

[20] M. Griffin, M. Sousa, and F. J. Taylor, Efficient scaling in the
residue number system, in Proceedings IEEE Conf. on ASSP,
IEEE, New York (1989).

[21] M. A. Hitz and E. Kaltofen, Integer Division in Residue Num-
ber Systems, Comp. Sci. Tech. Rep.[93-9, RensselaerPoly-
technic Institute, May 1994.

[22] B. J. Kirsch and P. R. Turner, Adaptive beamforming using
RNS arithmetic, in Proceedings, 11th Symposium on Computer
Arithmetic, IEEE Computer Society Press (1993) pp. 36–43.

[23] Mi Lu and J-S. Chiang, A novel division algorithm for the
residue number system, IEEE Trans. Comput.41, 1026–1032
(1992).

[24] J. D. Mellott, J. C. Smith, and F. J. Taylor, The Gauss machine:
A Galois-enhanced quadratic residue number system systolic
array, in Proceedings, 11th Symposium on Computer Arith-
metic, IEEE Computer Society Press (1993) pp. 156–162.

[25] K. H. O’Keefe and J. L. Wright, Remarks on base extension for
modular arithmetic, IEEE Trans. Comput.22, 833–835 (1973).

[26] M. A. Soderstrand, W. K. Jenkins, G. A. Jullien and F. J. Taylor,
Residue Number System Arithmetic: Modern Applications in
Digital Signal Processing, IEEE, New York (1986).

[27] N. S. Szabo and R. I. Tanaka, Residue Arithmetic and Its
Application to Computer Technology, McGraw-Hill (1967).

[28] P. R. Turner, An Improved RNS Division Algorithm, Tech.
Report, NAWC-AD, Warminster, 1994 (submitted to 12th Sym-
posium on Computer Arithmetic).

[29] N. M. Wigley, G. A. Jullien and D. Reaume, Large dynamic
range computations over small finite rings, IEEE Trans. Com-
put. 43, 78–86 (1994).

6.4 Floating-Point and IEEE

[30] D. H. Bailey, Algorithm 719: Multiprecision translation and exe-
cution of Fortran programs, ACM Trans. Math. Softw.19,
288–319 (1993).

[31] J-C. Bajard, S. Kla, and J-M. Muller, BKM: A new algorithm
for complex elementary functions, in Proceedings, 11th Sympo-
sium on Computer Arithmetic, IEEE Computer Society Press
(1993) pp. 146–153.

[32] R. Brent, A Fortran multiple precision arithmetic package,
ACM Trans. Math. Softw.4, 57–70 (1978).

[33] M. Daumas and D. W. Matula, Design of a fast validated dot
product operation, in Proceedings, 11th Symposium on Com-
puter Arithmetic, IEEE Computer Society Press (1993) pp.
62–69.

[34] J. W. Demmel and X. Li, Faster numerical algorithms via ex-
ception handling, in Proceedings, 11th Symposium on Com-
puter Arithmetic, IEEE Computer Society Press (1993) pp.
234–241.

[35] M. D. Ercegovac and T. Lang, On-the-fly rounding, IEEE
Trans. Comput.41, 1497–1503 (1992).

[36] G. J. Hekstra and E. F. A. Deprettere, Floating-point CORDIC,
in Proceedings, 11th Symposium on Computer Arithmetic,
IEEE Computer Society Press (1993) pp. 130–137.

[37] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/
IEEE Std. 754, IEEE, New York (1985).

[38] D. M. Priest, Algorithms for arbitrary precision floating-point
arithmetic, in Proceedings, 11th Symposium on Computer
Arithmetic, IEEE Computer Society Press (1993) pp. 132–143.

[39] M. Schulte and E. Swartzlander, Exact rounding of certain
elementary functions, in Proceedings, 10th Symposium on
Computer Arithmetic, IEEE Computer Society Press (1991)
pp. 138–145.

[40] E. M. Schwartz and M. J. Flynn, Hardware starting approxima-
tion for the square–root operation, in Proceedings, 11th Sympo-
sium on Computer Arithmetic, IEEE Computer Society Press
(1993) pp. 103–111.

[41] D. M. Smith, Algorithm 693: A Fortran package for floating–
point multiple–precision arithmetic, ACM Trans. Math. Softw.
17, 273–283 (1991).

172

Volume 101, Number 2, March–April 1996
Journal of Research of the National Institute of Standards and Technology

[42] W. T. Wyatt, Jr., D. W. Lozier, and D. J. Orser, A portable
extended–precision arithmetic package and library with For-
tran precompiler, ACM Trans. Math. Softw.2, 209–231
(1976).

6.5 Interval Arithmetic and Super Accumulators

[43] O. Aberth and M. J. Schaefer, Precise computation using
range arithmetic via C++, ACM Trans. Math. Softw.18, 481–
491 (1992).

[44] G. Alefeld and J. Herzberger, Introduction to Interval Compu-
tations, Academic Press (1983).

[45] A. Knofel, Fast hardware units for the computation of accurate
dot products, in Proceedings, 10th Symposium on Computer
Arithmetic, IEEE Computer Society Press (1991) pp. 70—74.

[46] U. W. Kulisch and W. L. Miranker, Computer Arithmetic in
Theory and Practice, Academic Press (1981).

[47] R. E. Moore, Methods and Applications of Interval Analysis,
SIAM (1979).

[48] M. Muller, C. Rub, and W. Rulling, Exact accumulation of
floating–point numbers, in Proceedings, 10th Symposium on
Computer Arithmetic, IEEE Computer Society Press (1991)
pp. 64—69.

6.6 Logarithmic Arithmetic

[49] M. G. Arnold, T. A. Bailey, J. R. Cowles, and J. J. Cupal,
Redundantlogarithmic arithmetic, IEEE Trans. Comput.39,
1077–1086 (1990).

[50] M. G. Arnold, T. A. Bailey, J. R. Cowles, and M. D. Winkel,
Applying features of IEEE 754 to sign/logarithm arithmetic,
IEEE Trans. Comput.41, 1040–1050 (1992).

[51] J. L. Barlow and E. H. Bareiss, On roundoff distributions in
floating–point andlogarithmic arithmetic, Computing34,
325–347 (1985).

[52] D. M. Lewis, An architecture for addition and subtraction of
long word length numbers in thelogarithmic number system,
IEEE Trans. Comput.39, 1325–1336 (1990).

[53] D. M. Lewis, An accurate LNS arithmetic unit using inter-
leaved memory function interpolator, in Proceedings, 11th
Symposium on Computer Arithmetic, IEEE Computer Soci-
ety Press (1993) pp. 2–9.

[54] D. M. Lewis and L. K. Yu, Algorithm design for a 30 bit
integratedlogarithmic processor, in Proceedings, 9th Sympo-
sium on Computer Arithmetic, IEEE Computer Society Press
(1989) pp. 192–199.

6.7 Lexicographic Continued Fractions

[55] P. Kornerup and D. W. Matula, Finite precision rational arith-
metic: An arithmetic unit, IEEE Trans. Comput.32, 378–388
(1983).

[56] P. Kornerup and D. W. Matula, Finite precision lexicographic
continued fraction number systems, in Proceedings, 7th Sym-
posium on Computer Arithmetic, IEEE Computer Society
Press (1985) pp. 207–214.

[57] P. Kornerup and D. W. Matula, An on–line arithmetic unit for
bit–pipelined rational arithmetic, J. Parallel and Distributed
Comput.5, 310–330 (1988).

[58] P. Kornerup and D. W. Matula, Exploiting redundancy in
bit–pipelined rational arithmetic, in Proceedings, 9th Sympo-
sium on Computer Arithmetic, IEEE Computer Society Press
(1989) pp. 119–126.

[59] D. W. Matula and P. Kornerup, An order–preserving finite
binary encoding of the rationals, in Proceedings, 6th Sympo-
sium on Computer Arithmetic, IEEE Computer Society Press
(1983) pp. 201–209.

6.8 LI and SLI Arithmetic

[60] M. A. Anuta, D. W. Lozier, N. Schabanel, and P. R. Turner,
Basic linear algebra operations in SLI arithmetic, submitted to
Euro-Par ’96, if accepted will appear in Springer-Verlag series
Lecture Notes in Computer Science.

[61] C. W. Clenshaw, D. W. Lozier, F. W. J. Olver, and P. R. Turner,
Generalized exponential andlogarithmic functions, Comput.
Math. Appl. 12B, 1091–1101 (1986).

[62] C. W. Clenshaw and F. W. J. Olver, Beyond floating point, J.
ACM 31, 319–328 (1984).

[63] C. W. Clenshaw and F. W. J. Olver, Level-index arithmetic
operations, SIAM J. Numer. Anal.24, 470–485 (1987).

[64] C. W. Clenshaw, F. W. J. Olver, and P. R. Turner, Level–index
arithmetic: An introductory survey, in Numerical Analysis and
Parallel Processing, P. R. Turner, ed., Springer–Verlag (1989)
pp. 95–168.

[65] C. W. Clenshaw and P. R. Turner, The symmetric level–index
system, IMA J. Numer. Anal.8, 517–526 (1988).

[66] C. W. Clenshaw and P. R. Turner, Root–squaring using level–
index arithmetic, Computing43, 171–185 (1989).

[67] D. W. Lozier, An underflow–induced graphics failure solved
by SLI arithmetic, in Proceedings, 11th Symposium on Com-
puter Arithmetic, IEEE Computer Society Press (1993) pp.
10–17.

[68] D. W. Lozier and F. W. J. Olver, Closure and precision in
level–index arithmetic, SIAM J. Numer. Anal.27, 1295–1304
(1990).

[69] D. W. Lozier and P. R. Turner, Robust parallel computation in
floating–point and sli arithmetic, Computing48, 239–257
(1992).

[70] D. W. Lozier and P. R. Turner, Symmetric level index arith-
metic in simulation and modeling, J. Res. Natl. Inst. Stand.
Technol.97, 471–485 (1992).

[71] D. W. Lozier and P. R. Turner, Error-bounding in level-index
computer arithmetic, in Numerical Methods and Error
Bounds, G. Alefeld and J. Herzberger, eds., Akademie Verlag,
Berlin (1966), to appear.

[72] F. W. J. Olver, Rounding errors in algebraic processes—in
level–index arithmetic, in Reliable Numerical Computation,
M. G. Cox and S. Hammarling, eds., Oxford University Press
(1990) pp. 197–205.

[73] F. W. J. Olver and P. R. Turner, Implementation of level–index
arithmetic using partial table lookup, in Proceedings, 8th
Symposium on Computer Arithmetic, IEEE Computer Soci-
ety Press (1987) pp. 144–147.

[74] I. Reid, Symmetric Level Index Arithmetic: Towards Its Inte-
gration into the Scientific Computing Environment, Ph. D.
Thesis, Lancaster University, Lancaster, U. K. (April 1993).

[75] P. R. Turner, Towards a fast implementation of level–index
arithmetic, Bull. Inst. Math. Appl.22, 188–191 (1986).

[76] P. R. Turner, Algorithms for the elementary functions in level–
index arithmetic, in Scientific Software Systems, J. C. Mason
and M. G. Cox, eds., Chapman and Hall (1990) pp. 123–134.

[77] P. R. Turner, A software implementation of sli arithmetic, in
Proceedings, 9th Symposium on Computer Arithmetic, IEEE
Computer Society Press (1989) pp. 18–24.

173

Volume 101, Number 2, March–April 1996
Journal of Research of the National Institute of Standards and Technology

[78] P. R. Turner, Implementation and analysis of extended SLI
operations, in Proceedings, 10th Symposium on Computer
Arithmetic, IEEE Computer Society Press (1991) pp.118–
126.

[79] P. R. Turner, Complex SLI arithmetic: Representation,
algorithms and analysis, in Proceedings, 11th Symposium on
Computer Arithmetic, IEEE Computer Society Press (1993)
pp. 18–25.

6.9 Extensions of Floating–Point Arithmetic

[80] H. Hamada, URR: Universal representation of real numbers,
New Gener. Comput.1, 205–209 (1983).

[81] H. Hamada, A new real number representation and its opera-
tion, in Proceedings, 8th Symposium on Computer Arith-
metic, IEEE Computer Society Press (1987) pp. 153–157.

[82] T. E. Hull, M. S. Cohen, and C. B. Hall, Specifications for a
variable–precision arithmetic coprocessor, in Proceedings,
10th Symposium on Computer Arithmetic, IEEE Computer
Society Press (1991) pp. 127–131.

[83] S. Matsui and M. Iri, An overflow/underflow free floating–
point representation of numbers, J. Inform. Process.4,
123–133 (1981). Reprinted in [7].

[84] R. Morris, Tapered floating–point: A new floating–point
representation, IEEE Trans. Comput.20, 1578–1579 (1971).

[85] H. Yokoo, Overflow/underflow–free floating–point number
representations with self–delimiting variable–length exponent
field, IEEE Trans. Comput.41, 1033–1039 (1992).

About the authors: Michael A. Anuta is a sales ana-
lyst with Cray Research, Inc. Daniel W. Lozier is a
mathematician in the Applied and Computational Math-
ematics Division at NIST. Peter R. Turner is a professor
of mathematics at the U.S. Naval Academy in Annapolis,
Maryland. The National Institute of Standards and
Technology is an agency of the Technology Administra-
tion, U.S. Department of Commerce.

174

