Shining the Light on Ultra-Thin Films

Jiufeng J. Tu

Physics Department

The City College of New York

Thin Films Workshop II (BNL), January 6, 2005

Insulator to Superconductor (I/S) Transition

M. Strongin *et al.* Phys. Rev. B **1**, 1078 (1970).

Collaborations

- → Myron Strongin (BNL)
- → Chris Homes (BNL)
- → Larry Carr (NSLS, BNL)
- ➔ Yosef Imry (Weizmann)
- Ultra-thin films have a similar phase diagram as high-T_c cuprates;

 Ultra-thin films are also model nano-systems showing dimensional crossovers from zero to 2D to 3D;

• Optical spectroscopy, particularly FTIR, can shed new light on ultrathin films and other nano-systems.

FTIR Experimental Setups

FTIR Spectroscopy

National Synchrotron Light Source

2.8 GeV (x-ray) and 800 MeV (VUV) electron storage rings.6 beamlines on VUV ring dedicated to infrared measurements.

Infrared Synchrotron Radiation

Bruker 113 with the Thin Film Deposition Rig

Infrared Transmittance of Ultra Thin Films: Au Films

Experimental Details:

- Ultra-thin Metal films are deposited on Ge-coated (~ 10Å) Si<111> substrates held at 10K;
- The metal films are deposited *In situ* in ultrahigh vacuum (<10⁻⁸ torr);
- A similar Si<111> substrate is used as the reference at all times.

J.J. Tu et al. Phys. Rev. Lett. 90, 017402 (2003).

Infrared Transmittance of Ultra Thin Films: Pb Films

Data Analysis:

Optical transmission of thin films is given by the Tinkham formula:

$$\Gamma = 1 / \left| 1 + \widetilde{\sigma}_{\Box} \frac{Z_0}{n+1} \right|^2$$

• For most cases, σ_{\Box} " is neglected since σ_Π"<<(n+1)/Ζ₀:

$$T = \frac{1}{1 + \sigma_{\Box}'} \frac{Z_0}{n+1} \Big|^2$$

Frequency Dependence of Optical Conductivity

Frequency Dependence of Optical Conductivity

2-D weak localization theory predicts a slope of 1.24x10⁻⁵.

Anomalous Transmittance of Ultra Thin Films

The anomalous transmittance is due to **interference** effects of the film and substrate; This effect is caused by the dielectric anomaly near the **insulator-metal (I/M)** transition at ~ 20 Å or between ~ 3 k Ω .

DC Conductivity of Ultra Thin Films

Is There A "Josephson" Phase ?

Josephson Phase Near the (Super) Conductor-Insulator Transition", cond-mat/0405625 (2004).

Bruker 66 Spectrometer Coupled with a Magnet

• Bruker 66 v/S spectrometer has a wide dynamic range (1meV – 6 eV) and superb long term stability;

• Oxford Spectromag is a very compact superconducting split magnet with easy optical access that can go up to 10T.

- Anomalous transmittance is observed at critical thickness of about 20 Å for both Au and Pb films; and this is due to the insulator-metal (I/M) transition;
- Ultra thin metal films could be used as model systems for the study of high temperature superconductivity;
- Optical spectroscopy reveals rich information on the nature of ultra thin metal films and can be used as a contactless probe for nano-systems in general.

