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1 Introduction

Detailed knowledge of HEPCAL-prime is a prerequisite for reading this document.

1.1 Things to add

Things on which we should spend more time thinking

1. Do we need private metadata attributes (individual/group) in the DMC [the answer is yes, so put them in! But it should not be impossible to read other users metadata, include use case?]
2. Environment – analysis, execution. More thinking of requirements for analysis… In particular we need to address Juerg’s point about how the user should see the same environment from laptop level (on airplane even!) all the way to massive reconstruction level worldwide.  The two obvious extremes are to make the grid visible at the command shell level (like slashgrid), or to make ‘grid-on-a-box’ where one could have a UI/CE/WN/SE all installed on your laptop.

3. Analysis end to end – hypothesis, formulation, analysis activities, validation, results…

4. Requirements on application middleware and applications themselves… paratrooper paradigm

2 Basic Concepts

Here we need to put enough background information so that the next section is readable by mere mortals.

3 The Analysis activity

We felt important to start this work with a definition of the analysis activity. "Physics data analysis" refers to the iterative, exploratory activity during the later stages of a physics experiment in which the physicist attempts to transform via a set of algorithms reconstructed event data into publishable scientific results. These results are quantities derived from the experimental data that are accumulated in histograms, tables or other statistical entities to provide evidence for the subject of the investigation.

We start by defining the general flow of a data analysis activity, which could be batch or interactive by starting with a very high level scenario.

An experiment collaboration has reconstructed raw data and MonteCarlo data generating a set of DSs that contain the events to be analysed. This is done according to the experiment policy by the production process. This process is explained in the HEPCAL document.

A member of an experiment collaboration wishes to become involved in physics analysis activities. As a pre-requisite he needs to:

1. Register as a user of the computing environment of experiment.

2. Make sure that the analysis activity he intends to do is compatible with the resources (computational, network or storage) he is entitled to use. Physics analysis often happens within the context of an analysis working group, so one way for the user to gain resource access is for her to become a member of one or more working groups, or to create a new one.

After this, the analysis activity consists of some subset:

1. Perform queries on the Metadata Catalogue(s) to determine which DS(s) meet their broad criteria (physics channels, processing runs, type of event data, etc.) Note that this set of input DSs may be already known from a previous query, and in this case this step is not performed every time. Current experience of the experiments indicates that it may be beneficial if the middleware could optionally cache the results of the query on behalf of the user (see <interactive analysis section>.

2. Query the input set of DSs, selecting the event components of interest and the events of interest, using event-level metadata. The result of such a selection is a list of event component identifiers (experiment-dependent) that allow retrieving the relative event subset within the associated DSs.

3. Optionally save for further use the results of 2 as defined in step 5.

4. Perform iterative analysis activity, looping over the event components selected by step 2 above. This activity may involve additional filtering (selecting a subset of the original event set from step 3), reprocessing (augmenting or replacing components of the selected events), generation of new calibration and statistical information. The analysis code is in general some combination of “official” experimental code and new user code being developed for end user analysis.

5. Optionally save the results of 4 and publish them. The role the physicist is playing for this session will determine whether this publication is at the individual level, or is associated with a particular PWG. There are three modes of making the results persistent:

a. “Create TAG DS”. The new DS consists only of references to event components, with no copying of the event data being performed. This is equivalent to 3 above. This is sometimes called “shallow copy”, i.e. pointers are copied and not what they address.

b. “Make new reclustered DS” The selected subset of input event components is copied to a new DS so that they are available more efficiently to further processing. This is called “deep copy” because not the references but the information they point to is copied.

c. “Create new DS”. If components of the events are modified (or new components are generated), these can only be saved to a new DS. 

Jobs could be submitted for any internally consistent sequence of the above steps and the whole procedure may loop over these steps. Input files may not be known for step 4, e.g. recursive studies will need files to be opened dynamically. However the user should be able to evaluate in some way the cost of this step, to be able to allocate Grid resources to the job.

When the analysis is complete, the user may wish to inspect the provenance of the output for verification purposes.

Since the analysis is iterative, there may be lots of datasets left as by-products of the intermediate steps. This may places extra requirements dataset-deletion functionality. If an “analysis logbook” is implemented, it will be useful to be able to mark a group of analysis steps for deletion, which will delete in turn all the output datasets associated with these steps.

3.1 Peculiarities of the analysis activity

The process described above looks very much like a production use case, but the following differences have been identified:

1. Frequent use of “non-standard algorithms” and user- or PWG-code together with “official” experiment software release.

2. Input DSs not necessarily known a priori.

3. A high probability to have a very sparse data access pattern. 

4. Larger number of people submitting jobs concurrently and in an uncoordinated fashion. The consequence is a chaotic workload leading to more need to manage resource usage.

5. A wide range of user expertise and familiarity with the system.

6. A significant proportion of “interactive” jobs (see Sec. 5.3).

7. In general strategy/metrics may differ. Ordered production tends to value total system throughput while response time is more important for end user analysis.

8. Many more "roles" involved in analysis.

9. Need for detailed provenance information. Overlooked in HEPCAL-I, chain of steps longer, and more chaotic activity.

10. Need for a resource estimator and for a way to limit resource consumption or elapsed time.

As explained above, the result of event selection / transformation during the analysis activity may be new DSs. These DSs will be created per node, physicist, physics channel, giving rise to a potentially large number of small files that can be an issue for efficient access to the data (of this more later in 4).

4 analysis scenarios

We present now a more detailed description of the analysis activity via a number of scenarios, before defining more precisely some use case. The scenarios described in the following assume that the reconstruction of the raw data (“RECO”) is already done and has created ESD data with their associated experiment-specific Metadata (“Experiment MetaData” or “EMD”) and possibly also an initial set of “Reconstruction TAGs”.

The policies of the experiment will determine which information will be stored in the provenance for the various stages of analysis scenarios. It could for example be foreseen that every dataset that is going to be replicated has this information available for everybody in the experiment.

The connection between the various scenarios is done by using the feedback (in the form of new and/or updated algorithms, condition databases and selections) from the “later” stages in refining the “earlier” stages of the scenarios.

4.1 Definitions

In all of the discussion, we use the following definitions:

Event. The word “event” in general refers to the raw data associated with a specific trigger, as well as all the entities derived from them. In the case of real data the derived data products can be associated with a single primary entity to be identified in the original trigger. For simulation the situation is still the same in theory. In practice due to the artefacts of the simulation technique, several primary entities can be at the origin of the same event, and some of them can be common to more than one event. However we may consider that, at a certain level of detail, our definition is valid. We indicate with the name of “event component” or “data objects” the raw data and any derived quantity. In general the event components may also contain metadata, describing e.g. the provenance of the data object (see sec. 6.1). 

Metadata. “Metadata” refers to information such as:
1. Information on event components, contained in a TAG collection, such as which subdetector or physics channel the component belongs to.

2. Provenance information of datasets or data objects, describing the process of creating the object.

3. Bookkeeping information on data objects (date created, size).

Input dataset. “Input datasets” (in the context of analysis) generally refer to any pre-existing combination of ESD, RAW, EMD, AOD, or TAGs from RECO (or re-RECO) needed by the job. Of course there may be other required input datasets containing objects besides these (such as calibration information). Additional input is needed like the versions of the s/w and configuration used for the “PA”. The provenance information needs to be included; depending on the implementation this information could be recorded in the DMC, in some system-provided provenance archival service, or recorded in the EMD.

Output dataset. “Output datasets” refer to AOD, TAGs, new or updated EMD information, histograms or statistical information produced by the job. There may be multiple output streams (representing different kinds of output information from the same job, e.g. a histogram stream plus one or more AOD streams). 
Job. The definition of job is given in the HEPCAL document to which we refer.

4.2 Scenarios

We present three scenarios from the one of the single user to the “experiment-organised” analysis. We begin with the scenario “End-User Analysis”, since this scenario will be the one most frequently executed.   [C.Tull gives us something on resources here]
End-User Analysis (“EUA”) 

The user executes the analysis steps defined above in 3. She may apply a private algorithm to the input data. The user may be using a private dataset as input, and this dataset might not even be in the Grid DMS. The interval between consecutive iterations of this activity probably ranges from a few hours to a few days (or as frequently as resources permit!) The analysed information may then be published back to the experiment in the form of new selections/cuts/algorithms and be used in a subsequent MGA or PA (see below). Alternatively the output might be a new (grid or non-grid) DS.

Group-Level Analysis (“MGA”)

A PWG gives to the Group Production Manager a set of input DSs (based on a selection on the EMD, AOD or TAG from the reconstruction step). These input DSs are selected by queries against EMD or TAGs from the experiment, including the information from the (previous) PA's. Depending on the policies of the experiment, the group might initiate replication of the output data to other sites, or this might happen automatically for “official” data products. We expect this scenario to be executed about every month (per group). Usually all DS are on the Grid and the results are also made available on the Grid.

This analysis is often a refinement of the preceding PA in preparation for the following PA.

Production Analysis (“PA”)

The various analysis groups of an experiment each suggest to the Experiment Production Manager a set of input DSs (based on a selection on the EMD or AOD/TAGs from the reconstruction step) and the algorithms of a given version of software and configuration information. After the experiment management endorses these algorithms and configuration data, the Experiment Production Manager starts the “Production Analysis” running the software on the selected (from the Reconstruction TAGs) events from the input data sets. This program will produce a set of output DSs and EMD, potentially creating multiple output streams that will be published on the Grid (with “deep” or “shallow” copies) of the relevant event components. Running the whole collection of “Physics groups algorithms” is an experiment-wide centrally managed “production”. All DS are on the Grid and the results are also made available on the Grid.

The three examples given before try to capture different aspects of what is really a continuum. We are aware that the difference between the “RECO” and “PA” as described may be mainly sociological and concerning Quality Assurance and resource allocation. However in the context of this document, going from “ESD” to “ESD-prime” for a subset of “RAW” is defined not to be in the scope of a “PA”.

4.3 metrics

[ This section needs considerable reworking, still looking for brilliant ideas. ] It is expected to have about 10-15 physics analysis groups in each experiment with probably 10-20 active people in each extracting the data from the earlier scenarios above (PA or MGA). For the later stages (scenario MGA or EUA) [quote upper limits, refer to ATLAS?] the produced data may not necessarily be registered on the Grid. In addition, it is expected to have about 30(?) people per subdetector in each experiment (total of 300-500? per experiment) accessing the data for detector studies and/or calibration purposes. So a total of 400-600 people in each experiment are expected to do the extraction of (possibly private) results. This number is representative; depending on the stage of the experiment the profile might be quite different.

5 ANALYSIS EXECUTION MODELS

The scenarios described above for an analysis job can lead to a number of execution models. These execution models in turn result in different conclusions on what services and capabilities are expected from the middleware layer and from the application layer. This is further complicated by the situation where different communities have different definitions of the boundary between “middleware” and “application” or “experiment framework”. In this section, we try to explore some of the issues regarding the execution model.

The high-level statement of the problem derived from the above scenarios is: 

· We have an algorithm that we would like to apply to a set of input data in a given environment.

· These input data may be explicitly specified as a set of DS’s or selected by the job itself. In most cases this selection is done via a query: the set of data to be processed is the set of data that matches the query. 

· The user provides an algorithm and a query to the workload management system.

· “Something happens” and at the end the user receives the output of the algorithm.

Our task here is to identify ways in which “something happens”, and to explore how much of this “something” is handled by the middleware and application layers, respectively. The discussions so far have identified three areas in which it seems necessary to explore the division of labour between the middleware and the application.

· Query execution.

· Workload distribution and execution.

· Data access.

It is clear that we need all three to efficiently support the range of analysis activities for the LHC experiments.

5.1 SUPPORT FOR QUERIES BY common layers

As we said above, the input data may be the result of a query. The query can invoke middleware services and experiment dependent services. As we said in 3.1 it would be very useful to submit the query and get an estimate of the cost for the data access. If this is too high the user may change the query until its cost is acceptable or obtain permission to use the resources required and then submit the job. We do not discuss here the question that the query itself may have a cost in term of resources. An English-language representation of a typical query might look like this:

All the data (or perhaps instead “at least 10,000 events” or “retrievable within 2 days”) from first quarter 2007, taken in trigger configuration EFG, reconstructed with reco version 7.4 and calibration set 21.d3, for which pT>150 GeV and a J/( was observed.

It will not be difficult to generate a query result that represents a very large dataset. This needs attention.  Users need to be encouraged to think about the amount of resources that might be needed to process the query results. The system may set some upper limit on the size of the acceptable return; alternately this may be affected by user resource allocation policies elsewhere in the system. 

The most naïve and straightforward way to implement such a query is for each experiment to have a gigantic table (like a classical DBMS) which has a structure similar to the following one:

	evID
	date
	Trigconf
	type
	algversion
	calibv
	pT
	Tag particle
	LDN
	Object reference

	1231
	31/12/2006
	EFG
	AOD
	7.3
	21.d2
	120
	J/(
	A1
	Ccdfe

	1232
	01/01/2007
	EFG
	AOD
	7.3
	21.d2
	121
	KL
	B1
	C45ea

	1233
	01/01/2007
	EFA
	AOD
	7.4
	21.d3
	164
	Bs
	A2
	E43fe

	1234
	01/01/2007
	EFG
	ESD
	7.4
	21.d3
	79
	None
	C4
	Ae236

	1234
	01/01/2007
	EFG
	AOD
	7.4
	21.d3
	160
	J/(
	B3
	910e3

	1235
	01/01/2007
	EFG
	AOD
	7.4
	21.d3
	141
	(
	Fred
	F3e12


This example is vastly oversimplified. If such a table were to exist, it would likely at least need many more columns, and even more likely would need to have a richer structure. We hope it suffices for illustration purposes.

The query described above will match only the next-to-last entry in this table. The last two fields are needed to enable the user program (in cooperation with the middleware) to access the matched event. The LDN is needed to supply to an “open” call, and here we explicitly assume that the middleware will provide a Gridified open such that we provide an LDN to an open call, and get back a file handle or object from which we can read the bytes just as if the file were on a disk local to the worker node. The “object reference” is something the experiment software can understand and use to find the selected event inside the dataset referred to by the LDN. Examples might be a simple event number, a byte offset into the dataset plus the size to read, or a sort of object pointer – this is completely up to the experiment. The execution model for the job, at this level, would be:

1. Apply the query to the event table.

2. Take the list of object references so generated as input

3. Generate job(s) that access these objects and run the algorithm on them

4. Return the output.

Experiments are in general not enthusiastic about the use of such a table. First the table would be very large. Such tables would typically have on the order of 1012 entries per year. Furthermore the experiments were not planning to construct such a single flat table themselves, nor were they prepared to let a middleware layer provide and manage such a table on their behalf.

There was some interest in various hybrid approaches. Part of the query example above can be handled by facilities of the Dataset Metadata Catalogue as described in HEPCAL. Columns two (date) through six (calibration version) could be part of the dataset metadata, since within a single dataset the events will almost certainly have the same value for each of those columns. Therefore we decided it was interesting to consider a “split” query – one part that acts on a dataset-level catalogue, and another that operates essentially at the experiment-framework level. The split can be at an arbitrary level, which is advantageous since the various experiments have different plans for the Dataset Metadata Catalogue usage. There is no explicit requirement on the ordering of events returned back from a query.

The experiments also were very interested in a hierarchical metadata space or, more generally, a clustered metadata space. Such a hierarchy can be an efficient way to cut down the search space compared to the flat-table order of 1012 mentioned.

The experiments agreed that however the list of event objects is returned, these event “identifiers” or “references” should be suitable for handing to the experiment framework, which can essentially just “open” them to get the bytes.

The conclusion is that the support for queries will be split between the Dataset Metadata Catalogue (provided by the middleware layer) and the experiment framework layer. The contents of the DMC will be experiment specific, but the way in which these queries are executed will be the same across all experiments.  Typically this DMC-level query will result in a list of LDNs. Since the complete query is a logical AND of the DMC and the experiment dependent part, all DSs containing objects that match the complete query will be in this list, but there may be more. We do not require (since it appears impossible to guarantee) that all DSs matching this middleware-level query will contain events matching the complete query. The approach requires that a set of matching DSs will not contain duplicate copies of events, or that the experiment software will have to have some sort of guard against inclusion of duplicate events in a single pass. In some of the scenarios below, this second case is still not sufficient.

5.2 Support for Analysis Job Execution by a Common Layer 

In HEPCAL, the middleware does not provide any special support for this type of analysis job. At first glance this seems undesirable, since such a job has the potential to access many datasets and consume a considerable amount of computing resources. For David: here a problem is being identified! If there is no special middleware support, the job may not benefit from being run in the Grid environment, and analysis may even take a step backward from pre-Grid days. We describe here several scenarios for how the Workload Management System (WMS) - experiment-independent middleware - might support execution of analysis jobs as described above. [replace DAG everywhere by workflow representation] [add here publication on the fly of the software??]
There are several options for running analysis jobs as have been specified in the previous sections:

a) "User program does it all": the user submits the job that is sent all the way to the WN where the execution starts. The query is executed from the worker node. Input data is accessed via standard mechanisms as described in HEPCAL – relying on local access is not possible since the WMS does not know the list of LDNs to be accessed and hence cannot submit the job to a computing resource from which local copies are accessible.

b) "WMS queries DMC and then submits job”: the user submits the job, the WMS performs the query to the DMC to optimise the CE selection, the job is sent all the way to WN with the experiment dependent query and the list of LDNs, job execution starts (see previous case)

The following items (c) and d)) are implemented making use of the DAG mechanism. Experiment dependent tools that can be invoked by the WMS (plugins) are required.
c) "WMS queries DMC, submits multi-jobs and merges output": the user submits the job, and the WMS performs the DMC query as in b). The WMS generates several sub-jobs, one for each CE close to at least one of the input DSs. Each of the sub-jobs (experiment-level query plus algorithm) runs the algorithm on its local data. Some experiment-dependent merging of the sub-job outputs must take place at the end. 

d) “WMS queries DMC, performs multi-queries and merges input”: the user submits the job, and the WMS performs the DMC query as in b). The WMS generates several sub-jobs as in c). Each of these sub-jobs selects the events matching the experiment-dependent part of the query and places these on its output. This output is merged at a final job in the pipeline, where it forms the input of the user-specified algorithm.

Below we will describe these cases in greater detail.
5.2.1 No special support by WMS

The job description is prepared, which includes a specification of the program to run, any required environment specification, and as input the job receives the query parameters in some format that the specified program can understand. The workload management system executes the job on a site based on the job requirements (e.g. software environment or available resources). Data access is not considered by the WMS since it has no idea which data will be accessed, as they will be determined by the query when the job is already in execution.

1. The job starts, and if there is a “dataset level” piece of the query, the job can execute the “DS Metadata Access” use case of HEPCAL to get a list of LDNs

2. The job accesses each of these DS’s in turn. For each DS it applies the rest of the query as a filter to pick out only the selected event components. How the job does this (as a pipeline, or as an “if” statement in an event loop) is not considered – we simply say, “the job does it”. The job will make use of the middleware layer data access tools as described in HEPCAL (see sec. 5.2.4 for more discussion).

3. The job returns the data by uploading it to the grid, or arranging for transfer back to the user.

5.2.2 Support at the Dataset Level

In this scenario, we suppose that the WMS has the capability to execute queries to the Dataset Metadata Catalog (as defined in HEPCAL) on behalf of the user. As an example, in the EDG middleware at the moment we can tell the WMS 

InputData = "LF:stanlib.3"

This tells the WMS that the job will require access to the DS with the logical name “stanlib.3”.  We suppose in the current scenario that we can replace this input data specification with a query. In the example above, the query would be:

Return all (or perhaps “at least N”) datasets from first quarter 2007, taken in trigger configuration EFG, reconstructed with reco version 7.4 and calibration set 21.d3.

Of course we expect this query would have to be presented in some format understood by the DMC instead of in plain English. The WMS would execute this query and formally replace the query by the list of LDNs that match it. At this point the job would execute as in HEPCAL:

1. The WMS will optimize the selection of the computing resource according to the program selection, environment requirements, computing power availability, as well as optimization with respect to the list of LDNs generated by the query (as described in HEPCAL).
2. The job is executed at the remote site, and receives as input the list of LDNs and the experiment-dependent part of the query.
3. The job itself is responsible (as in the previous section) to select the objects from the supplied datasets, according to the experiment-dependent part of the query, and to apply the algorithm to these objects. Furthermore the job will have optimal access to the specified set of input data, but in most cases at least some of the DSs will need to be access remotely as in 5.2.1 
4. The job returns the data by uploading it to the grid, or arranging for transfer back to the user.

5.2.3 Support via job pipelines

A higher level of support can be provided if the WMS implements job pipelines or DAGs as described in HEPCAL. Given this mechanism, a job can supply its output as input to one or more subsequent jobs. We suppose the existence of plug-in tools provided by the experiments (or possibly end users) that would be used by the grid in these pipelines. In the following, we call these tools: dump, query, input merge, output merge, and select. It needs to be clear that these are tools provided by the experiment.
select
takes as input an experiment-dependent query and returns list of object references
dump
takes as input a list of object references, and returns as an output stream the bytes of those objects, it is a “deep copy” tool.

qdump
query+dump

input merge
query and dump event components into an single input file

output merge
merge the output of several copies of the same job run on different input DSs.

There are several ways in which such a construct could be used to effectively implement an analysis job. Here we will list some.

5.2.3.1 Distributed Execution with no special analysis facility support

This mechanism is illustrated in the following figure.
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The flow for this is as follows:

1. The first node in the pipeline is a “dataset metadata select” job. The input is the dataset part of the query. The job to be run is either a “DS Metadata Access” use case of HEPCAL, or it could be an experiment-dependent tool that knows how to access an experiment’s private DS Metadata Catalogue. In either case, the output of this node is a list of matching LDNs.

2. The next stage in the pipeline is a set of jobs, each one will have as input a subset of the LDNs generated by the first node. The input to each job is 

a. The LDNs for the job. The WMS may optimize by executing a single job at a computing site with good access to physical copies of several matching datasets.

b. The experiment-dependent (event component level) part of the query.

c. The specification of the algorithm to run (executable, environment, input parameters and so on). This will be “inherited” from the original job submitted by the user.

3. Each of these jobs can proceed as in the previous case, except that now the DS access has been optimized by the WMS.

4. The output of each of these jobs is collected together at the last job of the pipeline, which runs an experiment-dependent or even user-specific tool that knows how to merge the results together into a single meaningful dataset.

5. The job returns the data by uploading it to the Grid, or arranging for direct transfer back to the user (e.g. sandbox).

5.2.3.2 Distributed Data mining with experiment plugin support

The original HEPCAL team identified many problems with the concept of merging partial output files. Another DAG construct can avoid this problem if it turns out that merging of partial input files is simpler. The disadvantage of this solution is that it can be very inefficient (with regard to data movement) if the query selects a significant fraction of all the events, or in other words if the “merged input file” is nearly as large as the sum of the sizes of all the DSs matching the DMC part of the query.

The mechanism is illustrated in the following figure.
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The flow of work in this case is as follows.

1. The first node in the pipeline is a “dataset metadata select” job. The input is the DS part of the query. The job to be run is either a “DS Metadata Access” use case of HEPCAL, or it could be a tool that knows how to access an experiment’s private DS Metadata Catalogue. In either case, the output of this node is a list of matching LDNs.

2. The next stage in the pipeline is a set of jobs, one for each group of DS matched by the first node. The input to each job is 

a. The LDNs for this job. It might be several LDNs since the WMS can optimize by executing a single job at a computing element with good access to physical copies of several matching datasets.

b. The experiment-dependent part of the query.

c. An experiment-dependent tool called “qdump” loops over all events in a DS (or list of DSs) and applies a query to them. For matching objects, it dumps a copy of the object as output. The input of these jobs has been optimized by the WMS. The output of each of these jobs is a stream of bytes corresponding to the objects, contained in the input DS(s) for the job, which match the experiment-dependent part of the query
. 

3. The output of each of these jobs is collected at the following (single) node of the pipeline, which is an “input merge” job. It takes all the byte streams as input, and generates an output DS that has the same format as a normal DS for that experiment. “input merge” also must be provided by the experiment.

4. This DS is passed to the last node of the pipeline, which runs the algorithm. It doesn’t need the query as input, since the dataset it receives contains all the events matching the query, and none other.

This output is either registered via DS Upload or else returned to the user. Note that we could stop at step 3 and register the output – this is essentially a “recluster” pipeline scenario.

5.2.3.3 Middleware Support for Dataset Queries

The previous two pipeline scenarios could be combined with the dataset query mechanism described in section 5.2.2. This replaces the first node in the pipeline (the metadata select) by a direct query initiated by the WMS, but otherwise it is the same.

5.2.4 Support for Data Access by A Common Layer (or mechanism)

The issues regarding DS access in support of analysis jobs are largely addressed in HEPCAL, which assumed that the data management system would transparently optimize data access on the user’s behalf. HEPCAL anticipated that at least the following options would be considered by the DMS:

1. access (possibly via remote protocol) to an existing physical copy of the DS;

2. making a new replica to an SE – because this SE has filesystems mountable from the chosen worker node, or perhaps it supports the protocol requested by the application – and arranging for the user program to access this new one;

3. making a local copy to temporary storage at the worker node where the job is running;

4. if a virtual definition of the dataset exists, materializing the DS to either a suitable SE or local temporary storage at the node where the job will run.

The user will in general not be aware of this; her program will just “open the DS”.  Subsequent reads on the returned handle will “get the bytes”.

For analysis jobs, this may not be enough. In many cases the dataset access may be very sparse, meaning for example that a thousand-event analysis may attempt to access one thousand separate datasets. The previous sections discuss how the Workload Management System might support such access.

The application itself can support such access via intelligent use of the DMS. An example mechanism is an experiment-specific program (or servlet) that dispenses events. This servlet would receive the results of the query, e.g. as a list of (LDN, objref)-tuples as input, and as output would dispense event data objects in a manner compatible with the experiment software. In the background, we expect the event dispenser to contact the Data Management System to discover access costs for the various DSs, and then start accessing them in an advantageous order, queuing the events for consumption as the bytes arrive. From the application’s viewpoint, the servlet object provides data on demand, and the application need not be concerned with access optimization.
5.3 interactive vs batch grid activity

We now propose a distinction between those tasks that are typically viewed by end-users (physicists) as interactive versus those that are considered batch. The utility of defining the distinction comes from establishing a common vocabulary between physicists and middleware developers, and from associating distinct user requirements on middleware and services with the different categories.

The single, most obvious characteristic of an interactive job (relative to a batch job) is the presence of a human interacting with the job during execution. A batch job involves no significant human interaction between job submission and completion verification. However, the amount of human interaction with the job and feedback to the human can vary considerably both quantitatively and qualitatively.

In Figure 1 we try to capture the gradual transition between batch an interactive work.
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Figure 1: Characterisation of batch and interactive jobs

The vertical axis we label as "Influence" and it denotes the amount of control over job execution/job behaviour that the user exerts (N.B. The user will typically have more influence than she exerts, but it is the upper-limit of influence which she may wish to exert which defines the requirements on the system.).

We define 4 general categories of Influence (Regions A, B, C, D). They are described from more batch-like to more interactive:

Region A. This region contains traditional Batch and Standard Scheduled Jobs. These jobs are usually considered indisputably batch. They are typically submitted to a batch queue or Grid job scheduler for execution. The user can effectively ignore the job until it finishes. These are also called “black box” according to the definition of PPDG-CS11.

· User Input:

· Only lifecycle commands (eg. start, stop, suspend, resume)

· Communicated to the job scheduler, not to the running application.

· User Feedback:

· Only high-level job status and job health monitoring, once again via the job scheduler, not directly from the running application.

· Examples:

· All modern batch systems.

Region B. Jobs that are submitted to a batch queue or Grid job scheduler, but with a communication channel available for minor influence on job behaviour and some ability to examine intermediate results before job completion. Fundamental flow of job (ie. algorithmic code run, input parameters used) is fixed. These are also called Real-Time Batch in the terminology of PPDG-CS11.

· User Input:

· Uni-directional/asynchronous, pre-defined commands to the application that only change the behaviour of the job in predictable, and relatively minor ways (e.g. turn on/off monitoring, end execution gracefully, etc.).

· User Feedback:

· Partial results (e.g. streamed, or incremental) available to user during job execution. (Can for instance be used as input to decisions for job termination.)

· Examples:

· Many modern batch systems (allow examination of stdout/stderr).

· LSF/BOSS

· GMA-Instrumented Athena

· Job control via semaphore termination

Region C. Jobs that use a batch queue or Grid job scheduler to schedule, place, and execute part of the job, but which have many aspects and capabilities of a traditional interactive job, including direct and strong control of program execution. These are also called “Interactive Batch” (PPDG-CS11)

· User Input:

· Bi-directional/synchronous control of the application at a level similar (identical?) to that of a traditional interactive job.

· Usage of the communication channel is optional and it can be opened and closed as desired.

· Default behaviour of job (e.g. when no new user input is being received) is defined. Similar to Region B/A if little or no influence is exerted.

· Ability to change control flow of job and algorithm, and input/control parameters.

· Restart of a job step does not necessarily require re-init of environment/application (e.g. re-open the DSs). This requirement is sometimes expressed as support for same level of <Ctrl-C>-like handling.

· User Feedback:

· Can be through dedicated, distributed service (eg. distributed DB).

· If done manually, is typically chunked for efficiency.

· Examples:

· DB I/O

· AliEn + ROOT session.

Region D. These corresponds to the common definition of fully interactive jobs. They are also called Dedicated Interactive by PPDG-CS11.

· Jobs that meet most the layman idea of interactivity.

· User Input:

· User has full control (at level defined by application) of application during execution.

· Provides a <Ctrl-C>-like interrupt facility.

· Use of the control channel is mandatory. Closing the control channel is tantamount to ending the application.

· Default behaviour of job is to wait for user input and display a prompt.

· User Feedback:

· Immediate and finely grained.

· May be chunked for efficiency, but at a much smaller granularity than Region C.

· Examples:

· LSRUN

· PROOF

· Distributed JAS

· Interactive applications such as PAW, ROOT, JAS, interactive event displays, etc.

· Most commercial desktop applications.

The horizontal axis of Figure 1 we label as "Response Time”. By response time we mean the wall clock time elapsed from the issuing of a command to the completion of the action that this command entails. This applies to different situations such as job start-up time, request execution latency, user feedback update period, and job completion time.

The horizontal axis can be divided into general regions (though we do not do so on the figure), based largely on human time-scales:

· < 1 sec: Instantaneous. User's attention is continually focused upon the job.

· < 1 min: Fast. Time periods spent waiting for response or results is short enough that user will not start another task in the interim.

· < 1 hour: Slow. User will likely devote attention to another task while waiting for response/results, but will return to task in same working day.

· > 1 day: Glacial. User will likely release and forget. Will return to task after an extended period or only upon notification that task has completed.

To clarify different regions of the interactivity phase space, we draw contours associated with different analysis scenarios. These scenarios are intentionally vague and the contours are completely qualitative. We have had extensive discussions on where various contours belong and stress that the answer depends upon the perspective one is taking and/or the point one is trying to illustrate.

The scenarios identified in FIGURE 3.1 are:

· Interactive Event Display

· Demands instantaneous response to all commands/actions

· Histogramming/Plotting/Browsing

· Human-time scale response to all commands/actions

· Can be orders of magnitude different than instantaneous

· Users are used to waiting a reasonable time period for feedback

· Continuous Tuning/Optimisation

· Redoing calculation with different properties (e.g. control parameters, algorithm code, etc)

· Human-time scale processing time

· Sporadic Tuning/Optimisation

· Redoing calculation w/ different properties (e.g. control parameters, algorithm, etc)

· Human needs to be prompted when input required or check-in occasionally

· Reconstruction, other Production Jobs

· long (> 24 hours), large scale jobs with no human interaction except monitoring

· Useless

· This region is useless in any practical sense as the response latency of system incapacitates any human-time-scale interactivity

· Irrelevant/Impractical

· This region is irrelevant to any Grid discussion, but is identified for completeness.

· For instance if completion time is much faster than time for interacting or if the sum of initialisation, startup, scheduling and so on is much larger than the execution time.

· Client/Server or bi-modal

· Some tasks in which a user engages may span multiple domains.

· For instance an interactive client being fed by autonomous, batch-like servers.

We have focused primarily on the distinction from the users' perspective at this point.  There are some aspects of the problem that we have not addressed in detail but are corollaries of interactivity.

· Is predictability inversely proportional to influence?

· Not in principle, but probably in practice. Batch jobs can specify sparse data sets as well as dense data sets, or can use navigational aspects of the event data model, or can use complex criteria for determining resources used. However, in practice most batch-like jobs will have a higher level of predictability than more interactive jobs.

· How interactive-job “influence” will work with typical middleware job optimisation and allocation strategies? Influence may change unpredictably the algorithm flow and the DSs accessed.

· Does interactivity impose special requirements on software

· Portability/Distributability? No more than for any other kind of Grid activity. Portable, distributable control technologies like Java byte-code, Python scripts, CINT macros, etc. are already used by many HENP systems

· Does interactivity impose special requirements on communication and security protocols?

· Probably yes. Both control and feedback imply communication one way or the other between a CE node and a user's desktop or laptop.

· We do not here try to address the technical issues, but are aware that they exist and are significant.

6 system requirements

6.1 Provenance and Job Traceability

Provenance at the event level is a requirement for data analysis.  Consider the following scenario. A rare physics channel is analysed and results in a set of candidate events. After some years time, a sceptical physicist revisits the analysis and, in so doing, wants to examine those candidate events and how they were selected.

A very useful notion in provenance is that of a Directed Acyclic Graph (DAG) where the nodes are “datasets” and the edges are “jobs” which transform one data set into another.  A common vocabulary was agreed upon to describe the basic building blocks of provenance DAGs:

Transformation: A schema that defines a particular Grid executable or function. A transformation is similar to a function definition with formal parameters in a programming language.  A transformation defines the input and output types along with the name of the executable and the required execution environment

Derivation: A particular invocation (or instantiation) of a transformation.  A derivation is similar to a function call with actual parameters in a programming language.  A derivation is called with actual input parameters, input datasets, and output datasets.

The history of any particular dataset (be it a set of files, a set of plots, etc), is then reduced to its derivation history which, if one traces back to the original dataset, forms a DAG. As a result, Provenance becomes useful at the derivation level and it was agreed that, for each derivation, provenance metadata should be recorded for:

· Transformation information

· Executable name, and possibly shared libraries and so on

· Instantiation parameters (input dataset names, output dataset names, etc)

· Actual execution environment

· Job log

Provenance metadata for the actual execution environment for the job should be recorded.  For each derivation, there are three decoupled environment categories: the local Grid environment, the site/machine environment, and the experiment software environment. It is not clear at this moment how this will be done, but “extreme” solutions such as a “dump of the RPM database” should be avoided, even if a rather complete capture of the local Grid environment is probably necessary. Along that line, the complete environment on the execution site may be described by the following:

· The software release version 

· Any patch versions applied

· The test suite version last used to certify a site

· and the date of the last LCG certification performed

The grid middleware should provide mechanisms to record these metadata at job execution time.

Further, it is recommended that the middleware provide mechanisms for gathering local site/machine information, including: 

· Site (CE) name

· Machine hostname

· Machine parameters (including OS, OS patches, Linux kernel version, machine memory, machine CPU, machine disk space, etc)

· Job execution start and end date

Finally, the experiment software environment may consist of two components: a common environment as well as a specific environment. We did not yet address a possible common application environment.  However, recording the metadata which describes the experiment specific software environment is the responsibility of the experiment and includes:

· The version of the experiment software installed on the execution machine

· The experiment test suite version last used to certify the site

· The date of the last certification

Further, users must have the flexibility to modify the machine’s experiment software environment to suit individual analysis applications, including, for example, replacing shared object libraries. Responsibility for recording such perturbations away from the base software environment may lie with the individual user however, in such a case, there need to be mechanisms allowing the user to easily record such information for provenance.

We are aware of the existence of several unresolved issues related to recording provenance metadata. One such issue is related to automating the gathering of provenance information corresponding to sub-job creation. In addition, there may be complications related to tracking provenance on machines that support multiple VOs. For example, different experiments may require different versions of the same application library to be installed on the same machine.

Finally, there is an intriguing possibility of branching and merging provenance graphs creating new datasets in the process. Such a possibility would be somewhat analogous to CVS, which is used as a collaborative software development environment, and could be a powerful mechanism for creating a collaborative analysis/dataset development environment.

6.2 INTERACTIVE ENVIRONMENT support

6.2.1 Log books and reports

For the following discussion, we define a task as an activity that produces a set of output data based on an algorithm and a (possibly empty) set of input data. A typical example is a single (batch) job, but a task may consist of several such jobs, may involve interactive analysis sessions, and may include sub-tasks. On the other hand several tasks can be included in the same job.

In the course of a given physics analysis, many such tasks will be executed. Some of them will depend on the output of previously executed tasks. The output of some tasks may partially or completely supersede the output of previously executed tasks, e.g. when the algorithm used by the task has been improved or the input data used by a previous task has been revised. As physics analyses are often performed by groups of people, tasks may depend on other tasks that have been executed by different people. A typical physics analysis will involve a large number of such tasks that one will have to keep track off.

We would therefore like to have an electronic bookkeeping tool (called “logbook” in the following) with the following features:

· A record should be kept of every task whose output is not immediately discarded as useless. This record should reference the input data, algorithms, scripts (or log files from interactive sessions), and all output data. The information stored should be sufficient to understand what happened during the task and to possibly repeat it. It should be possible to attach user comments and explanations to this record, including particular plots and intermediate results of interest.

· The logbook should be tightly coupled with the WMS, so that the current status of a task can be queried, or a list of all pending tasks can be obtained. The recording of jobs submitted should be automatic and should not require the user to enter the job information manually.

· The logbook should be able to provide provenance information at the task level, like e.g. for which tasks a given dataset was used as input.

· The logbook should make it easy to repeat a set of tasks under different conditions. For example, one may want to rerun a set of tasks with a slightly changed algorithm.

· The logbook should have some reporting capabilities, like the number of failed jobs, CPU time and other resources consumed, etc.

· The logbook should be usable by individuals as well as by larger groups, with the possibility to import and export subsets of the information.

· The logbook should be usable concurrently by several physicists working together on the same analysis, and each one of them should be able to add information and query the informatoin on tasks entered by everybody else.
6.2.2 Persistent interactive environment

Here more work is needed. [fca to do this]
For each analysis session user should be able to assign a name (in user’s private namespace) to which he/she can subsequently refer in order to 

· get additional information about analysis status, estimated time to completion,…

· find and retrieve partial results of his/her analysis

· re-establish complete analysis environment at later stage

Here is an example of pseudo-code that illustrates the analysis session:

// create a new analysis Object ( <unique ID>)

Analysis* analysis = new Analysis("MyAnalysis"); 
// set the program, which executes the Analysis Macro/Script 

analysis->Command("MyCommand.sh","file:/home/user/test.C"); 

// submit query

analysis->Query("200210/V3.08.Rev.04/00110/%galice.root?pt>150.0");

// split the task in at most 10 subjobs
analysis->Split(10); 

// submit subjobs 

analysis->Submit(); 

// display job information

analysis->GetInfo(); 

// download partial/final results and merge them

analysis->GetResults(); 

6.3 Deviant Flows and Errors

7 SERvice models

7.1 analysis software deployment

[Introduce software installation on the fly?]

8 Collaborative work

9 Recommendations

These are the recommendations of the RTAG

1. Need to say something about pools of resources that can be linked to groups of users (group-level policies, roles, quotas).

2. From Chapter 3 – Current experience of the experiments indicates that it may be beneficial if the middleware could transparently save the results of the query on behalf of the user (see <interactive analysis section>. We need to think about and discuss what happens here, since in some situations this would be fine, but in some situations the user will want the up-to-date latest version of the query every time it is executed, and the full set of data matching the query may be changing rapidly. Example: how does you web browser check cached pages (every time, once per session, never).  Probably need to be able to specify this on a per-query basis, with some reasonable user-settable default. Also – do we want the cache to really be transparent (suppose the user didn’t know!)?
3. Garbage collection – “Since the analysis is iterative, there may be lots of datasets left as by-products of the intermediate steps. This may places extra requirements dataset-deletion functionality. If an “analysis logbook” is implemented, it will be useful to be able to mark a group of analysis steps for deletion, which will delete in turn all the output datasets associated with these steps.” Another possible way to handle it is to specify “expiration dates” for this type of dataset.

The question of output datasets is probably linked closely to the issue of namespaces in the DMS.  If we do not have namespaces, the requirements on uniqueness and synchronization for the LDNs in the DMS are much tougher.

10 Conclusions

11 References and glossary

11.1 Applicable documents and reference documents

Applicable documents

	R1
	DataGrid-08-TEN-0201-1-11

	
	

	
	

	
	

	
	


11.2 Terminology

Glossary

	Analysis Object Data (AOD)
	Event information containing the kinematics of the interaction reconstructed final state and additional information about the event. The exact content of the AOD is experiment dependent. AOD are the data with which most of the physical analysis is done with and are obtained from ESD.

	Deep Copy
	

	File fragmentation
	

	“history tree” (provenance)
	

	; multiple streams where an “event” may go to more than one stream (as “shallow” or “deep” copy)
	; multiple streams where an “event” may go to more than one stream (as “shallow” or “deep” copy)


12 Description of use cases

Use Case: Production ANAlysis (PA)

	Identifier
	UC#prodanalysis

	Goals in Context
	Create AOD/TAG data from input for physics analysis groups

	Actors
	Experiment Production Manager

	Triggers
	Need input for “individual” analysis

	Services needed
	job submission (from GridMiddleware (GMW))

access to exptMetaData to select (GMW)

access to calibration/conditions data (GMW)

access to input data based on the selection (GMW)

selection of s/w to be used for PA (from expt infrastructure) [or installation on the flight?]

storing and registration of output data (GMW)

storing and registration of updated exptMetaData (GMW)

trigger the creation of replicas of (part or all of) output data and updated exptMetaData (GMW)

	Specialised Use Cases
	

	Pre-conditions
	The experiment management has endorsed the input data and s/w for the analysis.

	Post-conditions
	“Ad-hoc groups” can analyse the output data from this step.

The next iteration of Production Analysis can be performed.

	Basic Flow
	User specifies job information including

Selection criteria;

Metadata DS (input);

Information about s/w (library) and configuration versions 

Output TAG and/or AOD DS (typical);

Program to be run;

User submits job;

Program is run;

Selection Criteria are used for a query on the Metadata DS;

Event ID satisfying the selection criteria and LDN of corresponding DSs are retrieved;

Input DSs are accessed;

Events are read;

Algorithm (program) is applied to the events;

Output DS are uploaded;

exptMetaData is updated;

Report summarizing the output of the jobs is prepared for the experiment (mgt) (eg. how many evts to which stream, ...) extracting the information from the application and GridMW

	Devious Flow(s)
	

	Importance and Frequency
	High importance. Frequency  about a few times per year.

	Additional Requirements
	Input will probably be of the order 10^9 events

Will have order of tens of output streams, each dealing with 10^7 (??) events. 

Latency for data access: low ?

Latency for access to calibration/condition data: low ??

	Example
	


Use Case: Managed (Sub-)Group ANAlysis (MGA)

	Identifier
	UC#mgrpanalysis

	Goals in Context
	Refine AOD/TAG data from a previous analysis step

	Actors
	Analysis-Group Production Manager

	Triggers
	Need input for refined “individual” analysis

	Services needed
	job submission (from GridMiddleware (GMW))

access to exptMetaData  and groupMetaData to select (GMW)

access to calibration/conditions data (GMW)

access to input DataSets based on the selection (GMW)

selection of s/w to be used for MGA (group specific info from expt infrastructure; e.g., from config mgt tool)

storing and registration of output DataSet (GMW)

storing and registration of updated exptMetaData and groupMetaData (GMW)

trigger the creation of replicas of (part or all of) output data and updated exptMetaData (GMW)

	Specializing Use Cases
	Production Analysis

	Pre-conditions
	The physics group  management has endorsed the input data and s/w for the analysis.

	Post-conditions
	“Individuals” can analyse the output data from this step.

The next iteration of Production Analysis can be performed.

	Basic Flow
	User specifies job information including

Selection criteria;

Metadata DS (input);

Information about s/w (library) and configuration versions 

Output AOD and/or TAG DS (typical);

Program to be run;

User submits job;

Program is run;

Selection Criteria are used for a query on the Metadata DS;

Event ID satisfying the selection criteria and LDN of corresponding DSs are retrieved;

Input DSs are accessed;

Events are read;

Algorithm (program) is applied to the events;

Output DS are uploaded;

exptMetaData is updated;

Report summarizing the output of the jobs is prepared for the group (eg. how many evts to which stream, ...) extracting the information from the application and GridMW

	Devious Flow(s)
	

	Importance and Frequency
	High importance. Frequency  about a few times per year.

	Additional Requirements
	Input will be of the size of the output streams of “PA” (and can  consist of several of the output streams from “PA”

Will have order of ten of output streams 

Latency for data access: low ?

Latency for access to calibration/condition data: low ??

	Example
	


Use Case: End user  ANAlysis (EUA)

	Identifier
	UC#enduseranalysis

	Goals in Context
	Find “the” physics signal

	Actors
	End User 

	Triggers
	Publish data andget the Nobel Prize :-)

	Services needed
	job submission (from GridMiddleware (GMW))

access to exptMetaData  and groupMetaData to select (GMW)

access to calibration/conditions data (GMW)

access to input DataSets based on the selection (GMW)

	Specializing Use Cases
	Production Analysis

	Pre-conditions
	The user has defined a selection and an algorithm to extract the data 

	Post-conditions
	Local data analysis can be done

	Basic Flow
	User specifies job information including

Selection criteria;

Metadata DS (input);

Output DataSet (optional);

Program to be run;

User submits job;

Program is run;

Selection Criteria are used for a query on the Metadata DS;

Event ID satisfying the selection criteria and LDN of corresponding DSs are retrieved;

Input DSs are accessed;

Events are read;

Algorithm (program) is applied to the events;

Output DS are uploaded to user's local store;

	Devious Flow(s)
	

	Importance and Frequency
	High importance. Frequency  a few times per week.

	Additional Requirements
	Input will be of the size of the output streams of “PA” (and can  consist of several of the output streams from “PA”

Will produce (several) output  files which will be copied to “local storage”

Latency for data access: low ???

Latency for access to calibration/condition data: low ??

	Example
	
























































































































































































































































































































































































































































































































































































































































� Depending on how the experiment structures its metadata, it might be better to implement this in two stages: “query” and “dump”. This scheme may be better in case the experiment keeps a metadata table separate from the dataset itself. 
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