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SUMMARY

A two-phase subgrid combustion model has been formulated for large-eddy

simulations (LES). This approach includes a more fundamental treatment of the effects of

the final stages of droplet vaporization, molecular diffusion, chemical reactions and small

scale turbulent mixing than other LES closure techniques. In this thesis, the liquid

droplets are tracked using the Lagrangian approach up to a pre-specified cut-off size. The

phase change of the droplets both larger and smaller than the cut-off size and the

subsequent mixing of the evaporated fuel with the oxidizer are modeled within the

subgrid using an Eulerian two-phase model. 

Two-way coupling between the gas-phase and dispersed-phase quantities (both

mean and fluctuating) have been extensively studied in isotropic turbulence.

Comparisons between the DNS and LES have yielded better closures for the turbulence

equations in presence of dispersed phase. Finally, the new model has been implemented

into the LES code to simulate temporal and spatial shear layers, which are some of the

basic building blocks in understanding the complex flow-phenomena in a realistic

combustor. Studies on temporal mixing layers have shown that the droplets of Stokes

number of order one disperse the most. These studies also suggest that the droplets

generate substantial baroclinic torque and inhibit large scale vortical motions. It is shown

here that the new subgrid approach works consistently better for both infinite and finite-
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rate kinetics in turbulent mixing layer even when the cut-off is increased. In contrast,

conventional LES under similar conditions results in significant error when the cut-off

size is increased. The spatial shear layers studied also suggest that the droplets rearrange

energy from large scale vortical structures to smaller scales and this process is closely

related to the transfer of energy from large scales to the small scales as observed in

isotropic turbulence. The spatial mixing layer simulations were compared to earlier

experiments of Hishida et al. and very good agreement has been obtained. The sensitivity

of the new subgrid two-phase approach to droplet cut-off size has also been evaluated in

the spatial mixing layers.
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CHAPTER  I

INTRODUCTION

Combustion efficiency, reduced emissions and stable combustion in the lean limit

are some of the desirable features in the next generation gas turbine engines. To achieve

these capabilities, current research is focussing on improving the liquid fuel atomization

process and to increase fuel-air mixing downstream of the fuel injector. To characterize

the mixing process, the details at the small scales are needed. Experimental non-intrusive

techniques have some inherent limitations in terms of resolving these small-scale details.

For example, the near field of a liquid fuel injector has never been properly investigated

due to difficulties in carrying out measurements in dense droplet regimes. Structure of

complex three-dimensional, swirling fuel-air mixing layers is also very difficult to

resolve using current experimental methods. 

There are some characteristics of fuel atomization and fuel-air mixing in two-

phase flows that makes numerical modeling very difficult. Some of them include the

unsteadiness and the highly non-linear interactions at a wide range of time and spatial

scales between the two phases. Conventional steady state methods cannot be used to

elucidate the finer details of fuel atomization and fuel-air mixing because these processes

are highly unsteady. On the other hand, although unsteady mixing process can be studied
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quite accurately using direct numerical simulation (DNS) (e.g., [1]), application of DNS

is limited to low to moderate Reynolds numbers (Re) due to resolution requirements. This

restriction limits the extension of conclusions drawn from DNS results to high Reynolds

number complex flows typical in gas turbine combustors. 

An alternative approach called large-eddy simulation (LES) has the potential for

application to high Re flows. In LES, the scales larger than the grid size are computed

using a time- and space-accurate scheme, while the unresolved smaller scales, which are

mostly isotropic, are modeled using an eddy viscosity based subgrid model. Closure of

the momentum and kinetic energy transport equations can be achieved using this method

since the small scales primarily provide a dissipative mechanism for the energy

transferred from the large scales. However, for combustion to occur, the species must

first undergo mixing and come into molecular contact. These processes occur at the small

scales which are not resolved in conventional LES approach. As a result, conventional

subgrid eddy diffusivity models cannot be used to model these features. Thus, the

application of LES to reacting flows requires models that can capture accurately the

effects of turbulent small-scale mixing and chemical reactions. 

To address these issues, a subgrid combustion model was developed and

implemented within the LES formulation recently [2] [3] [4] [5]. This model separately

and simultaneously treats the physical processes of molecular diffusion and small scale

turbulent convective stirring. This is in contrast to probability density function closure [6]

[7] which phenomenologically treats these two processes by a single model, thereby

removing experimentally observed [8] [9] [10] Schmidt number variation of the flow.
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The capabilities of this model have been demonstrated in the above noted studies by

carrying out quantitative comparison with high-Re experimental data obtained in reacting

shear layers. Application of this method to premixed combustion has also been recently

demonstrated [11] [12] [13]. Results show that this method can capture thin, high-Re

turbulent flames without any numerical dissipation. The predicted turbulent flame speed

was also shown to be in reasonable agreement with high-Re data. 

LES has been used extensively for both reacting [14] [15] [16] [17] and non-

reacting flows [18] [19] [20] [21] from its first introduction by Smagorinsky [22].

However only limited work has been done in terms of its applicability to two-phase flows

[23] [24]. On the other hand, the steady state methods have been used to study two-phase

flows (e.g. [25] [26]). Broadly speaking, spray modeling is classified into two categories

as detailed in an excellent review on sprays by Faeth [27]:

1 Locally homogenous flow (LHF) models: In these models, the gas and the liquid

phases are assumed to be in dynamic and thermodynamic equilibrium. This is a

limiting case and can only represent spray containing infinitely small droplets.

This is because at each point in the flow field, both phases are assumed to have

the same velocity and temperature and be in phase equilibrium. The basic premise

here is that the rates of transport between the phases are fast compared to the

characteristics flow times. The use of this model implies that the process under

consideration is mixing controlled. Usually this model is a good candidate for

cases in which gas or vapor is the dispersed phase like in bubbly flows and is not

generally used for spray modeling where the dispersed phase is liquid.
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2 Separated flow (SF) models: The effects of finite rates of transport between the

phases are considered in SF models. Most of the present day studies (e.g. [23]

[24]) use these models, as they are generally needed for quantitative predictions

of realistic sprays. Use of these methods requires accurate treatment of the finite

rate exchange of mass, momentum and energy between the phases. Current

models generally average over processes which occur on scales comparable to the

drop size, i.e., no attempt is made to accurately model the details of the flow field

around or within individual drops due to resource (CPU as well as memory)

constraints. Usually these details are incorporated through empirical expressions

for droplet drag, heat and mass transfer. 

The separated flow models described above are further broadly divided into

“discrete droplet model” (DDM), “continuous droplet model” (CDM) [29] and

“continuous formulation method” (CFM). The DDM and CFM are most commonly used

to model two-phase flows and are also popularly referred to as Lagrangian and Eulerian

formulations for dispersed-phase respectively. 

In the Eulerian formulation, the motion of drops and gas is treated as though they

are inter-penetrating continua. Here, the governing equations for both the media are

similar and very easy to model but it is very difficult to incorporate the effects of a range

of droplet sizes. Also there are several issues concerning the implementation of boundary

conditions and coupling terms that are difficult to resolve [30]. 

Eulerian and Lagrangian formulations have been used to simulate two-phase

flows in the past (e.g., [24] [31]). Both methods have their own merits and drawbacks
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[32]; however, most state-of-the-art codes employ the Lagrangian form to capture the

droplet dynamics, while the gas phase is still computed in the Eulerian form (e.g., [33]).

As mentioned before, in this formulation, the effects of finite rates of transport between

the phases are explicitly included and thus it yields more accurate results as required for

spray combustion applications. In this formulation, the droplets are tracked explicitly

using Lagrangian equations of motion, and, heat and mass transfer are computed for each

droplet. The mass, momentum and heat exchange terms are then calculated and explictly

included in the gas-phase equations as source terms. Due to resource constraints

(computer time and memory), only a limited range of droplet sizes are computed.

Droplets below an ad hoc prespecified cut-off size are assumed to vaporize

instantaneously and become fully mixed in the gas phase. For example, KIVA [33] is one

of the most popular spray combustion code and the droplets in this code are assumed to

instantaneously disappear if the droplet mass reduces by three orders of magnitude from

the initial state. In ALLSPD3D [34], a general purpose spray combustion code, the

droplets are assumed to instantaneously vaporize if the droplet size falls below 5 microns. 

This is a critical assumption and flawed. It will be shown here that the small-scale

mixing process is very important for quantitative predictions. The final stages of droplet

vaporization and the subsequent mixing needs to be properly resolved for accurate

prediction of the combustion process. In this thesis, the gas-phase subgrid combustion

methodology has been extended to allow proper simulation of the final stages of droplet

evaporation and turbulent mixing. 

 Successful application of LES to model two-phase flows involves including the
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effects of turbulence on droplet properties and also the reverse effect of droplet drag and

vaporization on turbulence. Also, how the two phases interact when heat

release/absorption and chemical reactions occur, is equally important and much more

difficult to model. The past LES studies of Oefelein and Yang [23] have included the

effect of turbulence on droplet characteristics, but the opposite was neglected. Several

studies (e.g., recent ones by Mashayek [35], Boivin et al. [36], Miller and Bellan [37])

have showed that droplet drag and vaporization can have significant effect in modifying

some of the characteristics of turbulence. These studies and the earlier efforts [38]-[42]

have shown that the presence of droplets increases the turbulent kinetic energy at the

small scales which in turn can increase the dissipation rate. Since the small scales are not

resolved in a typical LES, it is of interest to determine whether the important features of

the droplet-turbulence interaction must be taken into account for accurate simulations. In

light of these studies, additional effort is still required to characterize these interactions in

order to develop closures for LES equations. 

In order to address this problem, several DNS studies are carried out to

characterize the effects of vaporizing sprays on gas-phase flows. The interaction between

the droplets and gas-phase turbulence is analyzed using energy and dissipation spectra,

particle-particle and fluid-particle Lagrangian correlations, and dispersion statistics.

Large eddy simulations were then carried out and compared to DNS data to determine the

important features of the interaction between the phases. The new two-phase subgrid

model developed in this study has been extensively validated/evaluated and then used to

study two-phase temporal and spatially evolving shear layers. 
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1.1 Objectives of the Current Study

The focus of the present research is to develop tools for LES of unsteady two-

phase flows. Special emphasis is on developing subgrid scale models that accurately

capture the complex physical processes such as droplet vaporization, fuel-air mixing etc.,

that occur prior to actual combustion process. These models developed to account for

droplet-effects on the turbulent flow, result in a fully coupled approach to simulate two-

phase turbulent reacting flows. 

To summarize, the present thesis has the following objectives:

1 Develop an accurate and relatively “inexpensive” two-phase LES model for

spray combustion. 

Towards this extent a new model is developed here in which the droplets above

the cut-off are tracked in the Lagrangian fashion in the supergrid while the

droplets below the cut-off are modeled in the subgrid. New subgrid models are

developed here to achieve this goal and are described in this thesis.

2 Characterize the effect of small scale turbulence on droplet dispersion. 

DNS studies of two-phase flow in isotropic turbulence are carried out to analyze

the effect of small scale turbulence on droplet properties such as particle

dispersion, particle-particle correlations, particle-fluid correlations and relative

velocities.

3 Characterize turbulence modulation in the presence of both non-vaporizing

and vaporizing droplets. 
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Both DNS and LES studies of the isotropic turbulence is used to analyze the role

of droplets on modulating turbulence. Closures and new scaling laws for subgrid

modeling are arrived at from this study. The laws obtained are then implemented

in the final numerical model to simulate the problems described below.

4 Simulate typical flow problems.

Mixing Layers  - For the last decade or so, 2-D mixing layers have served as the

standard experiment for understanding the dispersion of particles (e.g., [43] [44]

and [45]). The present study not only supplements these studies by addressing

three-dimensional issues but also deals with both vaporization, two-way

momentum coupling and scalar mixing.

Spatial shear layers - These flows are essential building blocks in most practical

combustors. Even though spatial shear layers are more physical, there are inherent

problems in simulating these flows such as prescribing the complete inflow

conditions, Sommerfeld [26]. The problem is magnified in case of two-phase

flows, where, in addition to the gas-phase information, droplet size, droplet

velocity, droplet velocity-size correlations etc., have to be prescribed.

1.2 Thesis Outline

The thesis begins with the development of LES models for two-phase flows in

Chapter II. It is followed by details of the subgrid models in Chapter III. Specific

emphasis is given to the liquid-phase formulations as the focus of this research is to



9 

supplement the gas-phase LES research. In Chapter IV, the numerical implementation of

the LES models is discussed. The modeling approach discussed in Chapter IV is then

applied to both stationary and decaying isotropic turbulence and discussed in Chapter V.

The results from the simulations of temporal mixing layers are given in Chapter VI where

the new subgrid two-phase flow model is compared and contrasted with conventional

modeling. Finally, a series of two-phase shear layer problems are simulated and discussed

in chapter VII. This thesis ends with conclusions and recommendations in Chapter VIII.
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CHAPTER  II

LARGE EDDY SIMULATIONS

In LES, the scales larger than the grid size are computed using a time- and space-

accurate scheme, while the unresolved smaller scales, which are mostly isotropic, are

modeled using an eddy viscosity based subgrid model. LES has been used for both

reacting [14] [15] [16] [17] and non-reacting flows [18] [21] since its first introduction by

Smagorinsky [22].

In the present LES formulation, the two-phase approach is implemented within an

Eulerian-Lagrangian approach. The gas or continuous phase equations are solved on an

Eulerian grid while the droplets are tracked in a Lagrangian framework. The Lagrangian

approach for dispersed phase is most suitable for very dilute flows (void fractions of

dispersed phase less than few percent) and this is the case with most of the liquid-fueled

combustors except for the near-injector region. In the conventional Lagrangian approach,

the droplets below an ad hoc cut-off size are assumed to instantaneously vaporize and

contribute to the gas-phase equations. In the present approach, droplets larger than the

cut-off size are tracked as in the usual Lagrangian approach and therefore, heat and mass

transfer are explicitly computed for each droplet (or group). Here, a droplet group

represents a group of droplets with a representative size, temperature, spatial location and
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velocity. The range of these droplet properties depends on the computational/accuracy

requirements. In the rest of this thesis, the term “droplets” refers to “droplet groups” for

convenience. However, once the droplets are smaller than the cut-off, a two-phase

subgrid Eulerian model is employed to include the effects of the small droplets within the

LES cells. In the present study, this new approach is implemented in a zero-Mach number

LES code for application to low-speed (i.e., incompressible) flows. Also, this LES

methodology has been extended to compressible flows [47] [48] for eventual application

to combustion problems in realistic gas turbine combustors where acoustic wave motion

strongly interacts with the shear flow and the unsteady combustion process.

2.1 Gas Phase LES Equations

The incompressible Navier Stokes equations in the zero-Mach number limit are

employed for most of the studies in this thesis. Zero-Mach number approach uses a series

expansion in terms of Mach number to remove the acoustic component from the

equations and is a well established method ([12], [49]) and more details are given in

appendix A. The important advantage using this approach is the ability to model most

reactive flows with varying density with reasonably large time-steps. Since the acoustic

component is decoupled, the time-step requirements are not governed by the speed of

sound. The methods developed here are not however restricted to low compressibility.

The zero-Mach number numerical framework was chosen to evaluate/validate the new

model in an efficient manner. In this thesis, the zero-Mach number equations are
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modified by the presence of the droplets and the detailed derivation is given in appendix

A.

To summarize, LES mass, momentum, energy and species equations in the zero-

Mach number limit in dimensional form are:

(2.1)

(2.2)

(2.3)

(2.4)

In the above equations, the source terms , and  represent,

respectively, the volume-averaged rate of exchange of mass, momentum, energy and
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species between the gas and the liquid phase. These terms are computed as follows [23]

[27] . 

(2.5)

Here,  stands for averaging over all the LES cell volume.  and 

are, respectively, the density, i-th velocity component, -th species mass fraction and the

kinematic pressure, and, p0 is the thermodynamic pressure which varies from time-step to

time-step while remaining constant over space. Also,  and R are, respectively, the

kinematic viscosity, the thermal conductivity, the mass diffusion (assumed constant and

same for all species here but can be generalized) and the gas constant. , , , ,
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 is the LES filtered species production/destruction term.

The above system of equations is supplemented by the equation of state for the

thermodynamic pressure  which can be used to obtain the temperature .

Furthermore, note that Eq. 2.3 is the equivalent energy equation in the zero-Mach number

limit. In the absence of heat release and no phase change, this equation and Eq. 2.1 will

be identical.

In the above equations, the subgrid stress tensor  and the

species-velocity correlations  require modeling. In the present

LES approach, the subgrid stress term  is modeled as  where  is the

subgrid eddy viscosity and  is the resolved rate-of-strain tensor defined as

. The subgrid eddy viscosity is obtained in terms of the grid scale 

and the subgrid kinetic energy,  as: . Here,  is

obtained by solving a transport equation as described in chapter III and  is a

coefficient that needs to be determined.
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Dũj–� �–=

W ij
sgs W ij

sgs
2QtSij

˜= Qt

Sij
˜

Sij
˜ 1

2
---

xjw
wũi
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2.2 Liquid-phase LES Equations

Both Eulerian and Lagrangian formulations have been used to simulate two-phase

flows in the past [23][31]. However, most state-of-the-art codes employ the Lagrangian

form to capture the droplet dynamics, while the gas phase is computed in the Eulerian

form (e.g., KIVA [33]). In this formulation, the droplets are tracked explicitly using

Lagrangian equations of motion, and heat and mass transfer are computed for each

droplet. The DDM introduced in chapter I has two different implementations based on the

velocity field experienced by the droplets. In the DSF [28], the droplets encounter the

mean gas-phase velocities. While in SSF [23][27] the instantaneous gas-phase velocities

are used in calculating the droplet properties. In the DSF approach, the droplet-turbulence

interaction is neglected as only the averaged gas-phase quantities are used. In the present

study in order to include the droplet-turbulence interaction, the SSF formulation is used

to track the droplets using Lagrangian equations of motion. The general equations for

spherical droplets reduce to the form shown in Eq. 2.6 and Eq. 2.7. In arriving at these

equations, effects of static pressure gradient , virtual-mass

, Basset force  and external

body-forces  have been neglected as they have negligible effects when the

dispersed phase density is orders of magnitude large than the gas phase [50]. Here, mf

stands for the mass displaced by the droplet. Further, the inclusion of these terms is not
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expected to change the current approach.

(2.6)

(2.7)

where the droplet properties are denoted by subscript p,  is the droplet diameter and 

is the instantaneous gas phase velocity computed at the droplet location. Here, the droplet

Reynolds number is: . This gas phase velocity field

is obtained using both the filtered LES velocity field  and the subgrid kinetic energy

. 

The approach adopted for calculating the instantaneous gas phase velocities is

described in this section. This approach is an off-shoot of the original methodology
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variance) multiplied by the fluctuating velocity obtained from . The droplet is

assumed to interact with this eddy as long as the droplet is within this eddy of

characteristic length (grid size), or the time elapsed has not exceeded the eddy life-time

(based on the grid size and the velocity scale obtained through ). After that time,

fluctuating velocities are recomputed based on the next sequence of Gaussian random

variables, to represent the interaction with the new eddy. This approach incorporates

stochastic turbulent dispersion into the formulation via the subgrid kinetic energy. As

detailed later, this is not possible using the standard algebraic eddy viscosity subgrid

closure. 

The drag relation is arrived at empirically to match the correlations for

evaporating droplets assuming they retain sphericity [52][53]. This results in the

following expression for CD.

(2.8)

The droplet mass conservation is given by:  where the mass
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transfer rate for a droplet in a convective flow field is given as: 

(2.9)

Here, Sc is the Schmidt number and the subscript  indicates quiescent

conditions where no velocity difference exists between the gas and the liquid phases. This

relationship was proposed by Faeth and Lazar [54] and has been extensively used in the

past (for e.g. [23]). The governing equation for mass transfer rate under quiescent media

for spherically symmetric and quasi-steady conditions reduces [29] to

 (2.10)

where,  and  are, respectively, the gas mixture density and the mixture diffusion

coefficient at the droplet surface. Also,  is the Spalding number which is given as

. Here,  is the fuel mass fraction at the droplet

surface computed as described in [55], while  is the fuel mass fraction in the

ambient gas.
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The conservation of energy of the drop (assuming uniform temperature in the

droplet or equivalently infinite conductivity in the droplet) reduces to the following

expression [27]:

(2.11)

The heat transfer coefficient for a droplet in a convective flow field with mass transfer is

modeled following the proposed correlation by Faeth and Lazar [54] as:

(2.12)

Here, Pr is the gas phase Prandtl number and the governing equation for heat transfer rate

under quiescent medium for spherically symmetric and quasi-steady conditions reduces

[29] to: 

 (2.13)

mpC
p p�

dTp

dt
--------- hpSdp

2
T
˜

Tp–� � m· p'hv–=

hp

hRep 0=
------------------ 1

0.278Rep

1
2
---

Pr

1
3
---

1 1.232 RepPr

2
3
---

e+

1
2
---

-----------------------------------------------------+=

hRep 0= NNuRep 0= dpe=



20 

where the Nusselt number is obtained from the relation:

(2.14)

Thus, droplets above the pre-specified cut-off size are tracked using the

Lagrangian approach, and their properties are determined using the above equations.

Theoretically, the droplet equations have to be integrated till the mass of the droplet

reduces to really insignificant value (less than fractions of a micron so that the mass and

heat transfer by vaporizing such droplets instantaneously does not alter the solution). As

the droplet size reduces, the particle relaxation time (governed by Eq. 2.7 and given by

), the droplet evaporation/life time (governed by Eq. 2.10 and

given by ) and the droplet heat-up time (governed by Eq. 2.11

and is approximately equal to ), reduce approximately as the square of the

droplet size. The time-step of integration of these equations has to be less than these

characteristic times for accuracy. This increases the computational cost to integrate the

droplet equations in addition to carrying more number (since a larger range of droplets

have to be tracked) of droplet groups. In order to have computationally feasible solutions,

most of the research codes such as KIVA [33] and ALLSPD3D [34] have used an ad hoc

basis for determining the cut-off size of the droplets. Droplets below this size are
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assumed to vaporize instantaneously and contribute to the continuous phase. This

assumption can lead to erroneous results. The present approach overcomes this problem,

as described in Chapters II and III.

In summary, the present LES approach solves only for the momentum and energy

gas-phase equations on the LES grid. Closure for the subgrid terms in these equations is

achieved by using a localized dynamic model for the subgrid kinetic energy (described in

Chapter III). Concurrently, the liquid phase droplet equations for a range of droplet

groups are solved using the Lagrangian technique. Stochastic turbulent dispersion of the

droplets is included in the present approach using the subgrid turbulent kinetic energy.

This capability is not directly available in closures based on the algebraic eddy viscosity

model. The phase change, the subsequent fuel-air mixing and the scalar reaction-

diffusion processes are modeled within the subgrid as described in chapter III.
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CHAPTER  III

SUBGRID MODELS

Closure of the large eddy simulation equations for both gas and liquid phases

requires interaction terms to model the effect of the subgrid terms on the resolved motion.

Two types of closure are needed: a closure for momentum transport and a closure for the

scalar transport (both gas and liquid phases), and both are discussed in the following

sections.

3.1 The Subgrid Momentum Closure

The closure for the momentum transport is achieved by using an eddy viscosity

model, which is physically reasonable since the small scales are assumed to provide

dissipation for the energy transferred from the large scales. The specification of the eddy

viscosity requires a length and a velocity (or a time) scale. 

Many past LES studies have employed an algebraic eddy viscosity model which

uses the grid size as the length scale and the resolved rate-of-strain tensor as the time

scale (e.g., [21]). However, the algebraic eddy viscosity model has some serious

limitations. For example, this approach requires equilibrium between turbulent kinetic
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energy production and dissipation in the small scales, which is possible only if a very

high resolution LES grid is employed such that only the dissipation scales are unresolved.

Such high resolution simulations are not feasible in practice due to resource constraints.

By solving for the subgrid kinetic energy (which also gives an appropriate velocity scale

for subgrid closure), the equilibrium requirement can be relaxed and coarser grid LES is

possible. Furthermore, to model turbulent dispersion of particles, the subgrid kinetic

energy provides the required information that is absent in the algebraic model closure. In

earlier LES studies by Wang and Squires [56], subgrid kinetic energy equation was

explicitly carried to provide additional information to supply velocity variations for the

Lagrangian tracking scheme of the particles.

The subgrid closure of the unresolved stresses and energy flux is achieved in the

present approach by solving a transport model for the subgrid kinetic energy, .

Details have been reported elsewhere [18] [19]. Here, the extension of the earlier gas

phase model to two-phase flows has been carried out. The general form of subgrid kinetic

energy equation for two-phase flows can be written as:

(3.1)

where,  is the transport term and  is a constant. The other
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terms,  and  are respectively, production and dissipation of . The last term 

is unique to two-phase flows and represents the work done due to the two-phase coupling

force term . This term (similar to terms in the LES equations, 2.2) provides the

coupling between the turbulent motion of the droplets and the evolution of the subgrid

kinetic energy. The closure of Eq. 3.1 is obtained by using  and

 where,  is another coefficient that must be obtained (along with

) using the dynamic procedure or specifying the values. The dynamic procedure of

Kim and Menon [19] is employed in the current study and briefly described here.

Dynamic models are based on the assumption of scale similarity in the inertial

subrange. Provided that enough of the inertial subrange is resolved, stresses at the

spectral cut-off (corresponding to the grid size) can be related to the stresses at say twice

the cut-off point, called the test grid level. This then defines a scale where explicit

filtering is required. The coefficients  and  are dynamically determined

dynamically from the following expressions:

(3.2)
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and

(3.3)

Test level filtered quantities are defined by:

(3.4)

(3.5)

and

(3.6)
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(3.8)

where  denote explicit filtering at the test grid level.

The following expression

(3.9)

represents the direct effect of two-phase coupling on  and requires modeling. This

term is due to the contribution of the unresolved component of the particle drag term

appearing in the resolved scale momentum equation (Eq. 2.2). Note that,  is

indirectly modified due to particle motion and vaporization since the force term  will

change the resolved velocity field (via Eq. 2.2), which in turn will change the resolved

subgrid kinetic energy. Inclusion of the term  allows for an additional (direct)

modification of the subgrid kinetic energy due to interaction between the particles and the
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unresolved small scale motion. Here, the term in Eq. 3.9 is modeled as follows:

(3.10)

Here,  represents an average over all the droplet trajectories crossing the cell and cell

volume. Note that  is replaced by  as the source terms given in Eq. 2.5 are

already averaged over the droplets and the cell volume. This closure is very similar to

that of Chen and Pereira [25], where it was applied in a k-H Reynolds-averaged

formulation. Since all the necessary information for closure is available, this is a

complete representation and no tunable constants are required. 

Thus, the presence of the droplets can have a two-fold effect. The first effect is

directly on the LES resolved momentum transport due to the coupling force term, .

The second effect is the modification to the subgrid kinetic energy due to the term, Eq.

3.10, which accounts for the work done due to interaction between the particles and the

small-scale unresolved turbulent field. This term is positive on average when there is

transfer of energy from large scales to the small scales through droplet interaction. 

3.2 The Subgrid Species Closure

The principle difficulty in reacting LES simulations is the proper modeling of the
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combustion related terms involving temperature and species, for example, the convective

species fluxes such as  due to subgrid fluctuations and the filtered species mass

production rate . Probability density function methods when applied within LES

either using assumed shape [57] or evolution equation [58] may be used to close ,

and, in principle, any scalar correlations. However, the treatment of molecular mixing

and small scale stirring using phenomenological models as in probability density function

(pdf) methods have been only partially successful in predicting the mixing effects.

Problems have also been noted when a gradient diffusion assumption/eddy viscosity

model is used to approximate the species transport terms. Use of these type of

assumptions for reactive species is dubious, as noted earlier [59] [60]. Frankel et al. [57]

attributed the use of this assumption as the source of errors in the comparison of reacting

LES simulations with DNS data.

The linear eddy mixing (LEM) model [61] treats molecular diffusion and

turbulent mixing processes independently at all relevant length scales of the flow. The

scalar fields are simulated within a 1-D domain which, in the context of LES, represents a

1-D slice of the subgrid flame brush. The subgrid model simulates only the effect of the

small unresolved scales on the scalar fields while the larger resolved turbulent scales of

the flow are simulated by the LES equations. The subgrid LEM has several advantages

over conventional LES of reacting flows. In addition to providing an accurate treatment

of the small-scale turbulent mixing and molecular diffusion processes, this method avoids

gradient diffusion modeling of scalar transport. Thus, both co-gradient and counter-
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gradient diffusion can be simulated. More details of this approach are given in the

following sections.

3.2.1 The single phase model

In the baseline model, the exact reaction-diffusion equations (described in Menon

[2]) are numerically solved using a finite-difference scheme in the local subgrid 1D

domain using a grid fine enough to resolve the Kolmogorov ( ) and/or the

Batchelor ( , respectively for thermal and diffusion layers)

microscales. Consequently, the production rate, , can be specified in the subgrid

without any modeling. Simultaneous to the deterministic evolution of the reaction-

diffusion processes, turbulent convective stirring within the 1D domain is modeled by a

stochastic mapping process [62]. This procedure models the effect of turbulent eddies on

the scalar fields and is implemented as an instantaneous rearrangement of the scalar fields

without changing the magnitudes of the individual fluid elements, consistent with the

concept of turbulent stirring. 

The implementation of the stirring process requires (randomly) determining the

eddy size  from a length scale pdf  in the range  where  is the

Kolmogorov scale and  is the characteristic subgrid length scale which is currently

assumed to be the local grid resolution . A key feature of the stirring approach is that

this range of scales is determined from inertial range scaling as in 3D turbulence for a
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given subgrid Reynolds number:  where,  is obtained from 

as . Thus, the range of eddy sizes and the stirring frequency (or event

time) incorporates the fact that the small scales are 3D. This feature is one of the major

reasons for the past successes of LEM in gas phase diffusion flame studies [3] [4] [5] and

premixed flame studies [2] [13]. 

 A new feature for two-phase flows needs to be considered in this formulation.

The above noted stirring process uses inertial range scaling laws that do not account for

the presence of droplets. If, however, droplet motion and vaporization changes the

turbulent spectra in the inertial range from the well known -5/3 law of Kolmogorov, then

this information needs to be incorporated. The following modifications to  and the

event frequency have to be made to account for effect of droplets on the turbulent field. If

the scaling law of the inertial range of the kinetic energy spectra is p-3 (for the standard

Kolmogorov scaling law, -5/3rd law - p would be 4/3), then the distribution  and

event frequency parameter (/) are given as:

(3.11)
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and

 (3.12)

The reader is referred to Kerstein [63] for details of the above formulation. The

exact value of the exponent p might be modified in the presence of droplets. In the

isotropic turbulence studies (Chapter V) it is found that the results are not sensitive to the

value of p and it suggests that for low subgrid Reynolds numbers, using 5/3 scaling law is

sufficient to model subgrid scales accurately.

3.2.2 The two-phase model

For two-phase flows, the LEM reaction-diffusion equations have been modified to

include two new features: (a) the vaporization of the droplets tracked by the Lagrangian

method, and (b) the vaporization of droplets below the cut-off so that the final stages of

droplet vaporization and mixing is included. However, some changes are required since

droplet vaporization will change the subgrid mass of the gas (primarily the fuel). Thus, in

addition to the scalar reaction-diffusion equations, the two-phase mass conservation

equations must be solved in the subgrid. 

The droplets below the cut-off have been included by assuming that the droplets

(below the cut-off) act as a psuedo-fluid and therefore, the overall effect of the droplets
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within each LES cell can be modeled in an Eulerian formulation using a void fraction

(volume of the liquid phase to the overall volume of the cell). This approach is valid only

when the droplets carried in the subgrid sum to only a small fraction of the total volume

(or void fraction is small) and the size of the droplets carried in the subgrid are

reasonably small such that drag effects are negligible. However, this is an acceptable

assumption here since all droplets larger than the cut-off are still tracked using the

Lagrangian approach. The present Eulerian two-phase approach is also preferred in terms

of accuracy, when compared to the Lagrangian approach, since, as the droplets become

very small they begin to behave more like a continuum fluid. 

Mass conservation in both the phases in the LEM is given

by: , where subscript g represents gas phase,  the liquid phase

and M is the volume fraction of the gas phase (1 - void fraction of the liquid (O)). The

void fraction O or M evolve during the subgrid evolution. Although, the liquid density is a

constant, the gas density  changes and needs to be determined. The mass conservation

of each phase is imposed in the subgrid scales and are obtained from the following

equations:

(3.13)
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and

(3.14)

Here, the source term  is the contribution of the supergrid droplets (i.e., the LES-

resolved Lagrangian droplets) to the subgrid liquid phase when the droplet size falls

below the cut-off. These terms are given in Eq. 2.5, except that the volume change is

equal to the entire volume of the droplets below the cut-off or equivalently correspond to

the volume averaged mass of all the droplets below the cut-off size at that time instant.

 is due to vaporization of the droplets tracked in the supergrid and is same as given

in Eq. 2.5.  represents vaporization of liquid in the subgrid and is computed by

carrying Eq. 2.10 in the subgrid. In order to determine the droplet temperature, Eqs. 2.11

and 2.13 are solved in the subgrid. 

The gas phase species equation for any scalar mass fraction  in the subgrid can

be written as

(3.15)
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Here, “s” indicates the 1D domain of LEM. Also,  is the source term (only in the fuel

species equation and is equal to  as the liquid phase consists of a single species in the

present case but the approach is general to have multi-species in the liquid phase) for

production due to vaporization of the liquid phase from the Lagrangian tracking. In the

above equations each of the mass fractions are functions of the LEM 1D domain within

each LES cell. For any species k, the supergrid mass density ( ) will be equal to

the average of ( ) over the subgrid LEM cells. Note that the

 is equal to  and average of  over the

subgrid LEM cells is equal to .

An equation for gas phase temperature is also solved with the above equations

since vaporization requires heat absorption and is followed by a drop in temperature. This

equation is as follows:

(3.16)

 Here,  is the specific heat at constant pressure, T is the gas phase temperature in each

of the subgrid cells,  is the heat release term due to chemical reactions,  is the heat

source term from the Lagrangian tracking scheme and  is the heat source term due to

S\

S2

UYk
˜ x t�� �

Ug s t�� �M s t�� �\ s t�� �

Ug s t�� �M s t�� �\ s t�� �
k
¦ Ug s t�� �M s t�� � Ug s t�� �M s t�� �

U

Cv

wUgMT

w t
-----------

sw
w

N
w UgMT� �

ws
---------------- E

·
Q
·

L Q
·

sgs+ + +=

Cp

E
·

Q
·

L

Q
·

sgs



35 

the dispersed phase in the subgrid and it is calculated using the relation given in Eq. 2.5,

just as it is computed for the supergrid equations for the conventional case.

Note that, in Eq. 3.13, Eq. 3.14 & Eq. 3.15 the convective terms

 are missing. This is consistent with the earlier

implementation of LEM in LES [2], whereby, the convection of the scalar fields is

modeled using two distinct and concurrent processes: the small-scale turbulent stirring

which accounts for convection in the small scales and the splicing process which

accounts for convection of scalars by the LES-resolved large-scale motion. The

implementation of the small-scale turbulent stirring process and the large-scale

convection process is discussed in Chapter IV.

The subgrid closures for two-phase flows discussed in this chapter are

implemented and tested in isotropic turbulence, temporal/spatial mixing layers and are

reported in Chapters V, VI and VII. The implementation details are given in Chapter IV.
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CHAPTER  IV

NUMERICAL IMPLEMENTATION

4.1 Gas-Phase Solver

The two-phase subgrid model as discussed in Chapter III has been implemented

into a zero-Mach number code. The zero-Mach number incompressible code used here is

developed and implemented for a variety of problems by Chakravarthy and Menon [12]

[13]. This code [64] is a finite-difference semi-implicit solver that is second-order

accurate in time, and uses a fifth-order upwind biased stencil for the convective terms, a

fourth-order central scheme for the viscous terms and a second-order scheme for the

solution of the Poisson equation for pressure.The time-integration is conducted using a

two-step, semi-implicit, second order accurate, fractional step method. A collocated grid

system is used for the finite-difference spatial discretization of the governing equations.

In this solver, the fractional step method has been implemented on non-staggered grids

for improved accuracy and simplicity on skewed grids. The volumetric dilatation is

explicitly obtained from Eq. 2.3. Conservation (divergence) forms can not be used in

solving zero-Mach number equations and hence the solver is based on finite differences

rather than finite volumes. More details of this scheme are available in Appendix B.
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4.2 Dispersed Phase Solver

 The Lagrangian tracking of the droplets is carried out using a fourth-order

Runge-Kutta scheme and the gas phase velocity at the droplet location is obtained using a

fourth-order Lagrangian interpolation scheme.

Equations 2.6, 2.7 and 2.11 are time integrated using a fourth order Runge-Kutta

scheme. Here, y(x,t) denotes the velocities and temperatures of the droplets and the time

step h is chosen such that it is minimum of the droplet relaxation time, droplet life time,

droplet translation time, eddy interaction time and the time step of the LES solver. This is

similar to the procedure followed by Oefelein and Yang [23]. Runge-Kutta algorithm

computes the solution of the initial value problem y = f(t,y), y(t0) = y0 at equidistant

points t1 = t0 + h, t2 = t1 + 2h,...............,tN = t0 + Nh, where f is such that this problem has

a unique solution on the interval [t0, tN]. The new solution at a new time step is given by

where yn+1 is the approximation to the solution y(tn+1) at tn+1 = t0 + (n+1)h where

n = 0,1,...., N-1. 

yn 1+ yn
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k1, k2, k3, k4 are defined as follows

(4.1)

Thus, the solution of the Lagrangian equations for the droplets are time-stepped

till the LES time-step is attained. This is the standard leap-frog scheme for solving two-

phase flows using Eulerian solvers for gas-phase and Lagrangian solvers for the droplets.

The coupling between the two phases is very weak if there are huge disparities between

the time-steps of both the solvers. These disparities can lead to inaccuracies. This

imposes additional restrictions (in the present case the time-step was reduced till

numerical convergence was assured) on the gas-phase time-stepping in addition to the

usual CFL conditions.

4.2.1 Interpolation schemes

In the simplest form the gas-phase properties at the location of the droplet/particle

are obtained by averaging the properties at the eight corners of the gas-phase cell
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surrounding the droplet. This type of interpolation can be inaccurate and hence, higher

order interpolation is needed to calculate the velocities and is implemented in the

incompressible solver. In this thesis, a fourth-order, three-dimensional Lagrangian

interpolation scheme has been used. Fluid velocities on the 4x4x4 grid lattice surrounding

the particle have been used to evaluate the gas-phase velocities at the location of the

particle. The interpolated gas velocity at the particle location is given as follows:

(4.2)

where x, y and z are the surrounding grid points. The Lagrangian basis function to

determine the above is obtained by constructing a polynomial through the surrounding

nodes where the function values are available:

(4.3)

and similarly for . In each direction, the interpolated velocities are

polynomials of degree three and thus the error approximates to O(h4).

In addition to the above interpolation, appropriate extrapolation has to be used to
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project the source terms due to the dispersed phase onto the grid location for

implementing the two-way coupling between the two-phases. Two methods of source

term extrapolation onto the surrounding grid were investigated. In the first case, all the

weights were assumed to be the same and thus the source term is equally distributed to

the surrounding nodes. In the second case, the weights were calculated based on the

droplet distance to the nodes and thus the nodes closer to the droplet position have more

contribution of the source term when compared to the farther nodes. Both cases gave

statistically similar results and therefore, the equal-weights method is used in all the

simulations reported in this thesis. 

Particles in a decaying vortex
Using the exact solution of a decaying vortex, the dispersion of the droplets is

first investigated. Five different sized particles are injected in the core of the vortex in the

x-direction with a specified velocity. The subsequent trajectories of these particles are

tracked. Figure 4.1a shows the velocity vector field and Fig. 4.1b shows the trajectories

of the injected droplets. It can be seen that the smaller particles follow the vortex

streamlines closely as the particles equilibrate with the local fluid motion quickly because

of their lower inertia. The larger particles retain their initial inertia for a longer time and

thus have very little influence due to the fluid motion. The particles of intermediate size

have in-between behavior. This qualitatively confirms the validity of the Lagrangian

particle tracking model in the LES code.
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4.3 Subgrid Implementation

Since the filtered species  and the mixture density  are calculated

directly by ensemble averaging the subgrid  and  fields, there is no need

to solve the equivalent LES filtered mixture mass and species conservation equations

(i.e., Eq. 2.1 & Eq. 2.4). As mentioned in Chapter III, both  and  subgrid

fields are influenced by small-scale and large-scale convection (due to the velocity field

 and the subgrid turbulent fluctuation estimated from ). The small-scale convection

is achieved by the mapping events while the latter is implemented by a Lagrangian

transport model, as discussed below.

Turbulent convection or stirring is modeled as stochastic rearrangements events

that interrupt the deterministic diffusion, vaporization and reaction mechanism (Eqs.

3.13, 3.14 & 3.15). Each rearrangement event is interpreted as the action of a single eddy

on the scalar field and is numerically implemented as a mapping process called the triplet

map [65]. This mapping first creates three copies of the chosen segment and then

increases the spatial gradients of the copies by compressing each segment by a factor of

three and reversing the middle segment. The original segment is then replaced by this

mapping. Mathematically, the triplet map transforms the scalar 
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according to:

(4.4)

where l is the size of the mapping event, x0 is the location of the mapping event and t0 is

the time of the event. An illustration of the mapping event is shown in Fig. 4.2. The

mapping event has several attributes similar to turbulent convection [16]. First, it is

known that the flame surface normal aligns with the most compressive strain-rate

direction, which is mimicked by the compressive nature of the triplet mapping. Second,

mapping increases the number of crossings of a single scalar value, which may be

interpreted as an increase in surface area caused by flame wrinkling. Finally, turbulent

scaling laws are built into the model in order to get the correct rate of strain [63]. 

The three quantities required to describe the mapping event are: the segment

(eddy) size to be mapped (or stirred), the location of the event, and the rate (or frequency)

of the event. These are calculated as described in Chapter III.

The convection of the scalar fields by the LES field across LES cell faces is

modeled by two different methods and the details of the choice are described below while

enumerating both the schemes. The first method used is the “splicing” algorithm [2] [3]

[4] and the second method is based on convection as in finite volume methods as
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described below. In the first method, given the initial subgrid scalar fields and void

fraction, droplet vaporization, reaction-diffusion, turbulent stirring, and large scale

convection processes are implemented as discrete events within each LES cell. The

epochs of these processes are determined by their respective time scales. 

The splicing algorithm transports subgrid fluid elements from one LES cell to

another based on the local velocity field. The local velocity consists of the resolved

velocity  plus a fluctuating component estimated from the subgrid kinetic energy. The

splicing events are implemented discretely on the convective time scale. Each splicing

event involves (1) the determination of volume transfer between adjacent LES grid cells,

(2) the identification of the subgrid elements to be transferred, and (3) the actual transport

of the identified fluid elements. The number of cells spliced across an LES x-face (i, j, k)

is the flux across the cell surface multiplied by the number of LEM cells and is given by,

(4.5)

where  is at the x-face of the cell constructed around point (i, j, k) using the

centers of the finite difference grid,  is the area vector of the face, NLEM is the

number of LEM cells and  is the volume of the LES cell. The resulting splicing

algorithm is illustrated in Fig. 4.3. Here, schematically the transfer of subgrid elements
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from LES cells “left” and “below” to the “self” cell is shown. The representative shape of

the resulting scalar is also shown.

An important property of the splicing algorithm is that the species convection is

treated as in Lagrangian schemes as it is advected across LES cells based on velocities.

Thus, convection is independent of the magnitude or gradient of the species which are

transported and depends only on the velocity field. This property allows this algorithm to

avoid false diffusion associated with numerical approximation of convective terms in

differential equations. By avoiding both numerical and gradient diffusion, the splicing

algorithm allows an accurate picture of the small scale effects of molecular diffusion to

be captured, including counter-gradient and differential diffusion effects [11].

Some of the disadvantages of the splicing algorithm in this implementation are:

• Number of cells obtained by using Eq. 4.5, in general, is not an integer value.

Thus, partial cell transport can occur and must be accounted for. Here, the partial

cells are accumulated until an integer value is reached and then the whole cell is

transported. In flows, where there is no mean convection velocities and very low

Reynolds numbers (implying very less number of LEM cells) errors due to partial

cell transport can accumulate. This is the case with isotropic turbulence where

there is no mean convection and subgrid Reynolds numbers are low. Hence, the

modified splicing algorithm described below is used in this case.

• In grids where the volume of LES cells is not a constant, expansion and compres-

sion of LEM cells has to be carried out making the algorithm more complicated.



45 

This is the case in the spatial mixing layer simulation and thus the alternate splic-

ing algorithm suggested below is used.

• As seen in Fig. 4.3, the splicing algorithm can create artificial gradients at the

interface of subgrid elements of different cells. This gradients can introduce errors

if the stirring processes are not frequent enough. This creation of artificial gradi-

ents did not play any role in the results obtained in the temporal mixing layer sim-

ulations detailed in Chapter VI.

In order to simplify the convection algorithm and eliminate any ad hoc

implementation, in the second method, the following procedure has been adopted for the

isotropic turbulence cases (where there is no mean convection direction) and also for the

spatial mixing layers (where there is stretching in both x and y directions). The scalars are

convected across the cells in a finite-volume sense based on the convective fluxes (as

calculated in Eq. 4.5)   across the cell surfaces. For example if the flux coming in from

‘left’ cell is 0.3, flux coming in from ‘below’ cell is 0.2 and flux leaving ‘self’ cell is 0.5,

retain 0.5 fraction of the scalar field of the current cell and add 0.3 fraction and 0.2

fraction of the scalar fields from ‘left’ and ‘below’ cells, respectively, to get the new

scalar field in the ‘self’ cell. This convection retains the essential properties like mean,

variance and all higher order moments of the scalar and is accurate if the CFL is one and

is illustrated in Fig. 4.3. This can be easily seen in Fig. 4.4 where the circle convects in

the x direction retaining its initial shape. The flattening of the edges is due to the

initialization of circle on a cartesian grid of coarse resolution. It is interesting to note that

all the geometric properties of the scalar are accurately retained through the convection
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process. In cases where the CFL is less than one or when the scalar field is propagated at

an arbitrary direction, any cell through which a scalar gradient is advected retains that

information for considerable time even though it might be small. This will cause the

history effect and can lead to spurious diffusion.

If the convection problem is looked at mathematically, there are inherent

limitations as one is trying to map a field that is inherently three dimensional onto one

dimension and doing the inverse map to get the 3D information. This process can only be

approximate and modifications have to be made case by case to counter some of the

inaccuracies. This approach is still expected to be more accurate than other approaches as

the rich subgrid field is constructed by resolving all scales of interest apart from the fact

that DNS of realistic high-Re flows can not be performed to resolve all scales of interest.

The coupled two-phase LES/LEM solver is illustrated using the block diagram in

Fig. 4.5. As shown in the block diagram, the solver can be broken into three main

components. The first one involves the solution of the filtered equations in the gas-phase

solver (Eqs. 2.2 & 2.3) along with the subgrid kinetic energy equation (Eq. 3.1) to close

the momentum equation. The second one involves the solution of the particles/droplets at

the supergrid using the Lagrangian tracking scheme (Eqs. 2.6-2.14). The third one

involves the solution of liquid/gas phase in the subgrid on the LEM line within each LES

cell (Eqs. 3.13-3.16). 

To summarize, in this approach, the resolved scale mass, momentum, and energy

transport are simulated on a conventional grid using a conventional LES method.

However, no scalar transport is simulated on the LES grid. Rather, within each LES cell,
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a subgrid one-dimensional (1D) domain is defined and within this 1D domain, turbulent

small-scale mixing, molecular transport, chemical kinetics and vaporization are explicitly

modeled. The local 1D domain can be visualized as a stochastic instantaneous slice of the

local 3D flame brush and the resolution in this domain is chosen to resolve all relevant

length scales. As a result, the chemical reaction-diffusion equations along with

vaporization can be solved without any assumptions (i.e., as a direct simulation). 

Figure 4.6 illustrates how the subgrid void fraction of the droplets, the reactants

and products vary as the droplet traverses through the flame and reduces in size. As the

droplets vaporize, they contribute to the gas-phase fuel. The droplets below the cut-off

also contribute to the subgrid void fraction. Reaction-diffusion mechanisms take place

concurrent to vaporization and the fuel reacts with oxidizer to form product. Far away

from the flame, the subgrid essentially contains product and sometimes with unreacted

fuel and possibly unvaporized liquid.

4.3.1 Stand alone implementation of the new LEM model

Since there is no data to validate the subgrid vaporization model discussed here

the current predictions were first compared with results obtained earlier by Mc. Murtry et

al. [66] who employed the LEM in a stand-alone mode to study decay of a non-reactive

scalar field. Here, using very similar initialization, the decay of a scalar was investigated

in the presence of droplet vaporization. A range of initial values of the void fraction

(0.0001, 0.001 and 0.005) was used for these simulations. These are typical of void

fractions occurring in physical combustors. The mass of the injected fuel is typically of
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the order of the inflow gas. Since the density of the liquid fuel is three orders of

magnitude larger than the gas, the void fractions used here cover the range experienced in

the dilute phase regime of most combustors. As shown in Fig. 4.7, as the droplet

evaporates and the void fraction tends to zero (or ), the scalar variance approaches

the value predicted by [49] in the absence of droplets. This asymptotic behavior is

expected as the scalar variance in the absence of the liquid phase should be same as that

of a pure gas phase.

In Fig. 4.8a, the product mass fraction evolution in time, which is the time

between two LES time steps in coupled LEM/LES implementation, is shown for a range

of initial values of void fraction under otherwise identical conditions. Product formation

increases in time and with increase in the initial void fraction of fuel. However, since the

vaporization process is endothermic and non-linear (initially very high but levels off in

time as temperature fall), the product increase is also non-linear. The product formation

and vaporization have a direct correspondence. Figure 4.8b shows that the product mass

fraction increases with initial liquid and gas temperature. An increase of 100 K in the

temperature increases the initial vaporization rate considerably and this results in much

larger amount of product formed. At present, it is assumed that both gas and liquid are at

the same temperature or in other words, there is infinite conductivity in the subgrid.

However, this assumption can be relaxed.

M 1o
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Figure 4.1 (a) The velocity vector field around the core of a decaying vortex. (b) Trajecto-
ries of the particles injected into decaying vortex.
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Figure 4.2 Schematic diagram of an LEM triplet mapping event.
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Figure 4.4 Translation of a circle in x-direction using the flux-based convection algorithm.
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Figure 4.7 Time evolution of a passive scalar rms for different initial void fraction for 
Resgs = u’'�Q = 90 and T= 400K.
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Figure 4.8 Time evolution of product mass fraction at Resgs = u’'�Q = 90 (a) variation of 
void fraction for T= 350 K and (b) Variation in temperatures and void fractions.
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CHAPTER  V 

DNS AND LES OF TWO-PHASE ISOTROPIC TURBULENCE

In chapter I, the basic objectives of this thesis were introduced. They included

studying and developing models for coupling dispersed phase and the continuum phase at

all scales of interest. Experiments are very limited in their ability to provide information

at all the relevant scales. In this respect, DNS has been a valuable tool to obtain detail

understanding of interactions between the two phases (e.g. Boivin et al. [36]). In this

chapter, both decaying and stationary turbulence are simulated using both DNS and LES.

Here, the specific objective is to use DNS as a validation tool for two-phase LES

modeling.

5.1 Decaying Isotropic Turbulence

Some of the early work as part of this thesis was based on the following

assumptions:

a) The effect of droplets is ignored in the subgrid k-equation.

b) Scaling laws arrived at for subgrid scalar calculations are based on the 5/3rd 

    law. 
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In order to address the above issues, both DNS and LES of isotropic turbulence is

carried out under similar conditions to that of Elgobashi and Truesdell [40]. DNS is

carried out using a 1283 grid for an initial Taylor’s Reynolds number (ReO = u’O�Q� where

O is the Taylor’s length scale) of 50 and 323 particles. LES is carried out for the same

conditions but using a resolution of 643. For the uncoupled case, particle Lagrangian

velocity autocorrelations in all the three directions for LES and DNS are plotted in Fig.

5.1a. The autocorrelation coefficient is computed using the following relation:

(5.1)

 LES and DNS results show very good agreement with each other, as well as the

results of Elgobashi and Truesdell [40]. The same kind of results are obtained for particle

mean-square displacements (square of displacements from initial locations averaged over

all the particles) and are shown in Fig. 5.1b. Here, there are some differences in the

displacements in all the three directions and might be due to the fact that the initial

conditions are not perfectly isotropic. Unlike stationary isotropic turbulence, where on

the average an isotropic field is obtained, here the results are sensitive to the initial

conditions.

One of the objectives of this thesis is to extend the earlier LES studies [23] [24] to

incorporate turbulence modification due to the presence of droplets. For the uncoupled
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case, droplet dispersion by turbulence is well captured by the Stochastic Separated Flow

model (SSF). The effects of droplet coupling on turbulent kinetic energy can be deduced

from the kinetic energy spectra plotted for momentum coupled and uncoupled case in

Fig. 5.2a. As noted in all the other studies (e.g. Squires and Eaton [38]) with momentum

coupling, there is increase in energy at high wave numbers and corresponding decrease in

energy for low wave numbers. This is due to the fact that the droplets drain the energy

from the energetic mean flow and later interact closely with scales comparable to its size.

The same is evident in the dissipation spectra (Fig. 5.2b). Similar trends are captured by

both LES and DNS and are in accord with the earlier DNS studies of decaying isotropic

turbulence [38] [40]. The negligible differences between the coupled and uncoupled cases

are due to the low mass loading of the particles and relatively lower Reynolds number.

The lack of stationarity coupled with the fact that the Reynolds number is low makes

decaying isotropic turbulence an unsuitable test bed for model development and

validation. For the reasons stated above, stationary isotropic turbulence was simulated at

higher Reynolds number as described in following section. 

5.2 Stationary Isotropic Turbulence

The simulations were started from a stationary state of 643 pseudo-spectral

simulation of isotropic turbulence (Yeung and Pope, [67]). The simulations were forced

using an integrated stochastic forcing scheme with parameters given in Table 5.1. These

are the same conditions used by Yeung and Pope [67]. The integrated stochastic forcing
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is an improvement by Yeung and Pope [67] over the stochastic forcing scheme

introduced by Eswaran and Pope [68]. Most commonly used forcing schemes, often

referred as “frozen-amplitude” method, freezes the anisotropy in the large-scales. This

anisotropy stipulates averaging over several computations to get time-averaged quantities

with reasonably small statistical errors. Other techniques such as rate-of-strain-modeling

method and Euler-forcing also have similar drawbacks [68]. The stochastic forcing is

refined for better differentiable properties by Yeung and Pope [67]. The basic forcing

scheme is used to maintain sufficient generation of the turbulence energy to balance the

energy loss due to viscous dissipation. For each non-zero wavenumber ‘k’ lying within

the spherical shell of radius KF, an artificial random acceleration term aF(k,t) is added to

the momentum equation in the Fourier space. In the integrated stochastic forcing

approach, aF(k,t) is specified as a complex vector-valued ‘integrated’ Uhlenbeck-Ornstein

(IUO) process. The forcing accelerations are calculated in the spectral space. These

accelerations modify the velocities in the spectral space which are later transformed to

physical space for computations. The forcing for the LES cases is also carried out at the

1283 resolution and filtered down to 643 to preserve similarity and to remove uncertainty

associated with variations in the forcing characteristics such as the forcing radius. The

simulations were advanced in time for several flow-through times till a statistically

stationary state evolved. Statistics were collected over 15 eddy-turn over times (based on

the velocity and longitudinal integral length scale) and all the flow characteristics

corresponding to this state are given in Table 5.1. Droplets were then added to this field

and the two-phase simulations evolved in time for another 3-4 eddy-turn over times
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before statistics were collected for 3-4 eddy-turn over times. Boivin et. al [36] used 6

eddy-turn over times to average the statistics. In this study it has been found that 3-4

eddy-turn over times was sufficient to reach stationarity. The differences in the

requirements, might be due to slight differences in the forcing scheme used and possible

differences in the numerical algorithms and resolution.

 In the following section, the discussion focuses on the validation of the gas-phase

and two-phase finite-difference code in the light of earlier work [36] [67]. The effect of

vaporization is then addressed.

5.2.1 DNS of single-phase isotropic turbulence

Before simulating the two-phase flows, the base-line gas-phase code has to be

validated for applicability to isotropic turbulence. Isotropic turbulence in a domain with

dimension 2S� and ReO ~ 62 is simulated using a 1283 grid. Normalized energy spectra

and dissipation spectra are compared to the experiments (ReO=65) of Comte-Bellot &

Corrsin [69] and the DNS (ReO=63) using 1283 grid of Yeung and Pope [67]. Good

agreement with experiments and earlier simulations at high wave numbers is evident

from Fig. 5.3. In addition the present simulation also predicts the dissipation peak and its

location very well. Yeung and Pope [67] use kmaxK to characterize the resolution of the

simulations (kmax is the maximum wave number and K is the Kolmogorov length scale).

In pseudo-spectral codes this has to be > 1.5 for adequate resolution. The resolution

requirements for a finite-difference code are more severe. The current simulations are
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carried out with kmaxK ~ 2.3 and it seems that the resolution is sufficient to resolve the

small scales. To verify this, another higher-order measure of small-scale behavior, the

dissipation skewness (SH) and is defined (Kerr [70]) as:

(5.2)

is computed. Here, E(k) is the energy spectrum function at the scalar wave number

, kmax is the highest wave number, Q is the kinematic viscosity and <H> is

the volume-averaged dissipation obtained by integration of dissipation spectrum D(k),

defined by 2Qk2E(k). From Table. 5.1 it can be seen that the value of this function is 0.53,

very close to asymptotic value of 0.5 for high-Re. This value also compares very well to

the values as reported in Eswaran and Pope [68] and Yeung and Pope [67]. 

Other parameters are also computed, for example the two-point velocity

correlation tensor (with separation vector r)
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and the integral length scales (with no sum over Greek indices):

(5.4)

are computed. Here, eE is the unit vector in the E-direction. The integration limit is taken

to be 1/2L0 because the domain is spatially periodic over the domain length, L0.

In order to apply periodic boundary conditions, Eswaran and Pope [68] have

ensured that the integral length-scale (defined to be the same as the longitudinal integral

length-scale) did not exceed 0.3 times L0. This is very much true in the present

simulations. The, longitudinal (L1) and transverse (L2) integral length scales are

computed using the procedure described in Yeung and Pope [67], i. e. when  and

 in Eq. 5.4, respectively. Here, the ratio of L1 to L2 is 2.3, which is very close to

the theoretical value of 2.0 for isotropic turbulence and is in very reasonable agreement

with the values predicted (1.87-2.50) by Yeung and Pope [67].

The above study gives confidence that the baseline finite-difference scheme has

all the features to accurately capture the small-scale dynamics of isotropic turbulence at

moderate Re. Given that background, DNS of two-phase isotropic box and LES are

discussed in the following sub-sections.
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5.2.2 DNS of momentum coupled two-phase isotropic turbulence

In order to study the two-way coupling between the gas-phase and liquid-phase,

the momentum source terms appearing in Eq. 2.2 are included. The grid used for gas-

phase computations and other parameters are same as in Section 5.2.1. These simulations

were carried out with 323 droplet groups, with actual number of particles dictated by the

mass-loading (I), density of the particle (Up) and droplet diameter (dp). The statistical

error (which varies as  from central limit theorem [40]), is less than 1% for the

current number of droplets. The statistics were computed as described in Section 5.2.1. 

Figure 5.4a shows the effect of droplets on the normalized energy spectrum. In

accord with earlier studies (e.g. Squires and Eaton [38]) there is an increase in energy in

high wave numbers compared to that of low wave numbers. This is due to the transfer of

energy from the large scales by the particles and subsequent transfer to the small scales.

Here, the variation with mass loading agrees very well with previous studies [36] [38]

and as the mass loading increases, the effect of momentum coupling is more pronounced.

Figure 5.4b shows the corresponding dissipation spectrum. Similar to the energy

spectrum, there is more dissipation at the small-scales (high wave numbers) compared to

the large-scales (low wave numbers). In pure gas phase flows the energy cascades from

the large scales to the small scales through the triadic interactions. In two-phase flows

this transfer is augmented by the alternate transfer mechanism through droplet

interactions with the gas phase, causing additional energy at the small scales which is

dissipated as the viscous forces dominate at the small scales.

The increased dissipation of energy is evident in Fig. 5.5a, where the equilibrium

1 N� �e
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values of the kinetic energy (1/2q2) and mean dissipation (�H!) are plotted for various

mass loadings. These values are normalized by respective quantities for the uncoupled

case. It is very evident that kinetic energy of the system decreases because of the

dissipation by the droplets. The equilibrium values are thus lower than the corresponding

uncoupled case and decrease with increased mass loading. These results are in good

agreement with those of Boivin et al. [36] and Squires and Eaton [38].

The dissipation skewness which represents the small scale processes, is plotted for

various mass loadings in Fig. 5.5b. Here, this higher-order, small-scale parameter

increases with increasing mass-loading. This reflects the increased high wave number

dissipation and increased activity at the small-scales. 

Figure 5.6 plots the transfer energy spectra for various mass loadings. Transfer

energy spectrum is calculated using the procedure detailed by Van Atta and Chen [71]

using FFT’s of triple order velocity correlations. As observed in earlier studies [36] [41]

there is a decrease in transfer of energy from large scales to small scales as the mass

loading increases. The plot indicates that there is very negligible transfer of energy from

low wave numbers to high wave numbers for a mass loading of 2.0. Boivin et al. [36]

suggested that there is a possibility of ‘backscatter’ of energy from the small scales to

large scales as the small scales are more energetic in the presence of droplets. From the

trends noticed in the transfer energy spectrum, beyond this mass loading of 2, there might

be backscatter of energy from the small scales to the large scales. These simulations were

not carried out in the present study as the particle mass loading increases, particle-particle

collisions become important and they are not accounted for in the current formulation.
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One of the parameters which characterizes the particle response, is the particle

Stokes Number (St). It is defined as St = Wp/We for the present simulations. Here,  Wp is the

particle response time given by  and We is the eddy turn over time calculated

using integral length scale and u’. For lower mass loading case (I=0.1), Fig. 5.7a shows

the energy spectrum for two-different St values. It is seen that particle response time has

negligible effect on the fluid properties. This is also true in the dissipation spectrum

plotted in Fig. 5.7b. These results are in very close agreement with those of Boivin et al.

[36]. In the present case, the particle sizes are still small comparable to Kolmogorov

length scales and thus expected to play similar roles in the energy transfer mechanism in

the low mass loading cases. Thus, there is very little difference in the kinetic energy and

dissipation spectrums.

Isotropic turbulence has energetic eddies traversing at random directions to ensure

isotropy in a stationary sense. The droplets interact with these vortex structures and

experience forces due to the drag interaction. Droplets with St ~ 1, where the particle

response time is of the order of the characteristic eddy time, the interaction between the

droplets and fluid is maximum. Centrifugal forces acting on these droplets under these

circumstances are strongest, thus leading to accumulation of droplets in the regions of

low vorticity. This feature has been observed in isotropic turbulence (e.g. Squires and

Eaton [38]) and in forced shear layers (e.g. Lazaro and Lasheras [44]; Martin and

Meiburg [45]). Some of the present studies on shear layers has been reported in Chapters

VI and VII. The same phenomena has been observed here in Fig. 5.8b, where the droplet

Updp
2

18Pe
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distribution is plotted. This leads to preferential concentration of the particles and the

particles thus have a very localized effect instead of a global uniform effect. These effects

might cause instantaneous preferential concentration but as the basic flow field itself is

statistically isotropic, the evolved two-phase flow is also statistically isotropic. The

corresponding vorticity is plotted in Fig. 5.8a. Comparing the two figures one can note

the direct correspondence between the flow structures and the droplet concentrations. 

In this section, momentum coupling between gas phase and particles has been

examined. It has been found that the particles transfer the energy from the large scales to

the small scales augmenting the energy cascade in single-phase turbulence. The energy

transfer spectrum suggests that as the particle mass loading increases, there is less

transfer of energy from the large scales to small scales. 

5.2.3 DNS of isotropic turbulence with vaporizing droplets

Starting from an equilibrium solution of the isotropic turbulence with suspended

droplets, simulation is carried out with droplet vaporization. The equations governing the

droplet heat and mass transfer (Eqs. 2.9 & 2.11) are solved for. This leads to additional

source terms in the continuity and species equations, as described in Chapter II and

Chapter III. The flow and droplet properties are the same as described in previous

section. Since this is a time evolving process and there is continual addition of mass,

exchange of momentum and energy (kinetic and thermal), no stationary state can be

reached. Furthermore, in a periodic domain, high rates of mass addition and heat transfer

are numerically impermissible. Therefore, the present study is limited to a relatively low
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vaporization rate. 

Fig. 5.9a shows the time variation of normalized kinetic energy spectrum from the

time the droplet vaporization is turned on. At the first instant shown there is a rapid

accumulation of energy in the small scales. The corresponding increase in dissipation can

also be seen in Fig. 5.9b, where the dissipation spectrum is plotted. This state is followed

by intermediate states tending to the baseline case of isotropic turbulence with

momentum-coupled droplets. This suggests that droplets vaporize at a faster rate, when

the temperature of the droplets is higher and there is constant heat transfer from the gas-

phase. With time, the gas-phase loses energy and has more concentration of the fuel in

the gas-phase. These two factors reduce the heat and mass transfer rates and this is very

similar to what is observed by Miller and Bellan [37] in mixing layers. This equilibration

might not occur in flows with inflow/outflow conditions and where there is high mass

and heat transfer between the phases.

Figure 5.10 shows the vorticity contours and product mass-fraction contours for

two different instants. Here, the droplets vaporize and react with the surrounding oxidizer

at infinite rate to form the product. The product mass fraction distribution is an outcome

of complex droplet-flow, scalar-flow and droplet-scalar interactions. As mentioned in the

previous section, droplets of St number of order 1 preferentially concentrate in regions of

low vorticity. This is due to the centrifugal forces acting on the droplets. The preferential

concentration inturn modifies the vorticity (which is a representation of energy at various

scales) since the droplets transfer the energy from the large scales to the small scales. The

droplets are also responsible for local mass and heat transfer. These processes lead to
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instantaneous non-uniformity of the flow and thus overall preferential concentration of

flow variables at any given time. Figure 5.10 reflects this preferential concentration of the

droplets in the form of flow variables like vorticity and product mass fraction.

In summary, in this section the effects of vaporizing droplets on the kinetic energy

and dissipation energy spectrum are studied. It is found that when the heat and mass

transfer rates are considerable, there is sharp increase in the energy of the small scales. It

is also found that the product formed through infinite reaction rates between the gaseous

fuel and the oxidizer exhibit preferential concentration. The DNS of isotropic turbulence

for the various cases has provided valuable information to proceed to the next step of

validating LES. The LES of isotropic turbulence are carried out for a wide range of cases

and are compared with the DNS results in the next section.

5.3 LES of Isotropic Turbulence

LES of isotropic turbulence for all the cases discussed before are carried out using

a dynamic subgrid kinetic energy equation for momentum closures. 

Figure 5.11 compares the kinetic energy spectra predicted by the coupled and un-

coupled DNS and LES. E(k) is scaled by the average kinetic energy (1/2q2). For

uncoupled case (I=0), LES captures the DNS spectra very well at all the resolved wave

numbers. For the momentum coupled case (I=0.5), DNS shows an increase of kinetic

energy at the high wave numbers. The right trend and magnitude is captured by the LES. 

In figure 5.12a, the resolved turbulent kinetic energy normalized by the initial
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kinetic energy is plotted for LES. By comparing it to Fig. 5.5a, one can see that the

variation of dissipation of energy with increasing mass loading agrees qualitatively. The

magnitudes are slightly lower and can be due to the fact that the unresolved energy (ksgs)

is not included in the calculation of the kinetic energy. Similar to Fig. 5.5b, Fig. 5.12b

illustrates the variation of dissipation skewness with mass loading. Since, dissipation

skewness is primarily a small-scale feature, it is not surprising that the magnitude is

under predicted since the small-scale energy is not included in the computation of

dissipation skewness.

Figure 5.13 shows the transfer energy spectra for various mass loadings for the

LES. As observed in the DNS, there is decrease in transfer of energy from large scales to

small scales as the mass loading increases. This plot indicates that the LES is

qualitatively predicting all the features captured by the DNS.

The vaporization cases have been studied with and without the subgrid model

(LEM) for the species closure. Since the vaporization is very low, droplets do not fall

below the cut-off diameter. All the droplets are tracked using the Lagrangian tracking

scheme and thus the terms S1 and S2 in Eq. 3.14 are zero. As a consequence, the void

fraction in the subgrid implementation is zero. However, in the new methodology’ all the

scalar information is still carried in the subgrid. Furthermore, for the cases reported here

the subgrid turbulence is low and so both conventional and LEM based LES approaches

are expected to give similar results. Figure 5.14 confirms that no appreciable difference

can be seen between the energy spectra predicted by these two LES approaches. As in the

momentum coupled case discussed earlier, resolved scale kinetic energy agrees very well
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with the DNS. Here, both the LES methods show very good agreement and this indicates

that all the scales are accounted for in both procedures. 

To evaluate the impact of turbulence modification due to particles, the exponent

‘p’ appearing in Eqs. 3.11 & 3.12 for computation of length distribution and event

frequency has been varied. By changing ‘p’ from 4/3 (corresponding to -5/3 inertial

scaling law) to 1 (corresponding to -2 inertial scaling law) hardly changed the results.

This value was chosen arbitrarily to perform the sensitivity analysis and also to reflect the

fact that mass addition and presence of particles has made the turbulence spectra at high

wave numbers less steeper. This result indicates that the present case is insensitive to

slight changes in the spectral characteristics of inertial range in the presence of droplets.

In general, this would not be true for high Reynolds number flows where there are larger

number of scales spanning the inertial range. 

Figure 5.15 shows the normalized product mass fraction spectra for the two

different LES methods contrasted with the DNS. As seen in the kinetic energy spectrum,

both the LES methods agree reasonably well. The spectrum is under predicted at

intermediate to high wave numbers while agrees very well for the low wavenumbers. 

Finally, to characterize the particle energy in both DNS and LES, Lagrangian

autocorrelation coefficient (Eq. 5.1) of the particle velocities is calculated. Here, the

vaporization case is shown where t0 is the start time for evaporation to begin. Figure 5.16

shows the autocorrelation coefficient for the DNS and LES for St=0.4 and I=0.5. From

the figure it is observed that the two LES methods agree well with each other but show

lower correlation between the particle velocities in the initial stages reaching the DNS
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values at later times. 

In summary, DNS using the zero-Mach number incompressible code agrees well

with most of the features observed in experiments (for single-phase) and past calculations

(for single-phase and two-phases). LES in the current implementation has the capability

to model the physics as predicted by DNS both qualitatively and quantitatively to a

reasonable extent. The scope of the work is limited to low vaporization and low-Re due

to numerical and computational requirements. Within that scope the main feature of the

subgrid mixing and vaporization model (LEM) has not been extensively studied. Based

on these isotropic turbulence simulations, more extensive studies of high-Re two-phase

mixing layers are reported in Chapters VI and VII. Further high-Re studies have to be

performed, to prove that LES is a viable tool for high-Re simulations.
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Table 5.1: Flow and Computational Parameters

Parameter Description or Formula Value

Q Kinematic Viscosity 0.0125

L Integral Length Scale (= L1) 1.226

1/2q2 Turbulent Kinetic energy

= 3/2u’ 2
2.995

K Kolmogorov Length Scale

(Q3/�H!)1/4
0.0035

O Taylor’s Length Scale

= �H!/15Qu’ 2
0.55

L0 Domain Length �S

Kmax*K Grid Resolution Parameter 2.3

ReO u’O/Q 62

ReL u’L/Q 133

SH Dissipation Skewness 0.53

S Skewness of Velocity Derivatives 0.46

N Number of Droplet Groups 323

DNS Reso-
lution

- 1283

LES Resolu-
tion

- 643

KF/K0 Forcing Wavenumber Radius

TF Forcing integral timescale 0.6369

H
* Forcing amplitude rate parameter 0.01306

TM
* Ratio of forcing microscale to TF 0.4
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Figure 5.1 Comparison of particle properties in LES and DNS (a) Variation of Lagrangian 
velocity particle correlations and (b) Variation of mean-square displacements.
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Figure 5.2 Comparison of spectra for LES and DNS with and without coupling. (a) Turbu-
lent kinetic energy spectra and (b) Dissipation spectra.
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Figure 5.3 Normalized kinetic energy and dissipation spectra compared with experiments 
and computations of Yeung and Pope [67].
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Figure 5.4 Effect of two-way momentum coupling with mass-loading of the droplets (a) 
Kinetic energy spectrum and (b) Dissipation spectrum.
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Figure 5.5 Variation of gas-phase properties with mass loading (a) Total kinetic energy 
and dissipation rate and (b) Dissipation skewness.
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Figure 5.6 Effect of mass loading on the evolution of the transfer energy spectra.
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Figure 5.7 Effect of two-way momentum coupling with Stokes number of the droplets (a) 
Kinetic energy spectrum and (b) Dissipation spectrum.
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Figure 5.8 Preferential concentration of droplets in low-vorticity region (St = 0.4) (a) 
Spanwise vorticity and (b) Spatial distribution of droplets in the spanwise direction.
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Figure 5.9 Time variation of effect of two-way coupling with vaporizing droplets (a) 
Kinetic energy spectrum and (b) Dissipation spectrum.
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Figure 5.10 Snapshots of span-wise vorticity (left) and product-mass fraction distribution 
(right) at two different time instants for St=0.4 and II=0.5.
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Figure 5.11 Comparison of kinetic energy spectrum of LES with DNS for two-way 
momentum coupling for St=0.4.
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Figure 5.12 Variation of gas-phase properties with mass loading as predicted by LES (a) 
Resolved total kinetic energy and dissipation rate and (b) Dissipation skewness computed 

using resolved scale field.
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Figure 5.13 Effect of mass loading on the evolution of the transfer energy spectra.
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Figure 5.14 Comparison of kinetic energy spectrum of LES with DNS for two-way cou-
pling for vaporizing droplets of St=0.4 
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Figure 5.15 Normalized product mass fraction spectra of LES is compared with DNS for 
two-way coupling for vaporizing droplets of St=0.4.
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Figure 5.16 Time evolution of particle velocity autocorrelations for St=0.4 and II=0.5 with 
vaporizing droplets.
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CHAPTER  VI

TEMPORAL MIXING LAYERS

In this chapter, particle dispersion in presence of strong coherent vortices is

studied using temporal mixing layers. The effect of both vaporizing and momentum

coupling due to droplets on the large scale structures is explored at length as this gives

further understanding into the physics of two-phase flows. The sensitivity of the

conventional LES is evaluated against current approach for different droplet cut-offs. 

6.1 Non-vaporizing Particle Dispersion in Mixing Layers

The Lagrangian approach of particle tracking is qualitatively/semi-quantitatively

validated through the use of temporal mixing layers before simulating reacting flows.

Although quantitative comparison with earlier studies is difficult due to differences in the

set up and/or initial conditions, qualitative comparison can be carried out. For this

purpose, simulations of the mixing layers studied by Lazaro and Lasheras [43] [44] and

simulated by Martin and Meiburg [45] using a 2D vortex method, are carried out here.

Here, a 3D approach was employed and a temporal mixing layer was simulated. The

mixing layer is initialized by a tangent hyperbolic mean velocity along with the most
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unstable 2D (of dimensional wavelength 2S) mode and random 3D turbulence (similar to

that described in [72]). Simulations for relatively low Reynolds number (G
Z
'u�Q� based

on vorticity thickness and velocity difference) of approximately 200 are carried out using

a grid resolution of 64x64x64. The particles were injected in every cell of the upper

stream with velocities equal to the local cell values. The total number of particles tracked

is 110,000. This case is very similar (except for the high resolution both in grid and

number of particles, the differences in the initial forcing and use of a simplified particle

drag in the earlier case [45] using Stokes law) to the direct simulation of [45]. Using the

0.9-0.1 level thickness  (defined as the distance between the cross-stream locations

where the particle concentrations are 90% and 10% of the reference value, respectively

[44]), particle dispersion was computed for a range of Stokes numbers. Here, Stokes

number is defined as:

 (6.1)

where  is the vorticity thickness and  is the velocity difference between the upper

and lower stream.

Figure 6.1 shows the dispersion of particles (in terms of the dispersion thickness)

with time for a range of Stokes numbers. It can be seen that the dispersion of particles of

order St=1 exceeds that of droplets with St<1 (i.e., smaller droplets). The results obtained

by Martin and Meiburg [45] are also plotted in filled symbols along with the present
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simulations in Fig. 6.1. The same trends are qualitatively captured by the present

simulations. Note that the variations between the two results are possibly due to the

differences in the initial forcing parameter and the Stokes drag (neglecting the particle

Reynolds number correction assumed in [45]). The increased dispersion of particles of St

~ 1, is similar to the phenomena observed earlier in both experimental [44] and numerical

[45] studies and was attributed to the increased lateral dispersion of the particles when the

aerodynamic response time is of the order of the characteristic flow time. This is due to

the centrifugal forces acting on the droplets acting on this range of droplets leading to

increased dispersion. The increased particle dispersion leads to the formation of narrow

band of particles on the vortex peripheral on the lower side for St=5 as shown in Fig.

6.2a. These results also agree qualitatively with earlier experiments [44] shown in Fig.

6.2b.

6.2 Droplet Vaporization in a Mixing Layer

Droplets were injected into the core of a temporal mixing layer (described in

section 6.1) to eliminate any interference from the walls at time t=0 for the study of

droplet vaporization. The mixing layer is simulated using a grid resolution of 32x32x32

and 64x64x64. The results with these two grid resolution numbers showed good

agreement thus indicating grid independence.

 The mixing layer is initialized with the oxidizer in both the upper and lower

streams at 350o K. A range of droplets from 10-50 micron radius with an initial
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temperature of 300 K was used for all simulations with the droplet cut-off radius set at 5

micron. A total of 2100 droplet groups were tracked. The results using relatively higher

number of groups (~10,000) were very similar and thus the lower resolution case was

used for all the simulations reported here. In any case, lower resolutions is preferred to

demonstrate the capability of LES. For simplicity, the droplet groups were uniformly

distributed and the number of droplets in each group was prescribed such that the overall

mass loading is 0.5 which corresponds to a volume loading of 0.0005. The mass loading

chosen here corresponds to typical mass loadings in the dilute phase regime of liquid fuel

based combustors.

Figure 6.3a shows the spanwise vorticity contours in the mixing layer at the roll-

up stage for a case in which the particles are passively transported upon insertion (i.e., no

vaporization included and hence, there is no coupling between the two phases). It can be

seen that the shear layer rolls into coherent structures as seen in pure gas phase flows.

However, when droplet vaporization is included (Fig. 6.3b), the associated heat

absorption results in major changes in the shear layer. The formation of the coherent

spanwise vortices is inhibited due to vaporization and mass addition to gas phase.

Although the extent of the mixing layer appears to be large, the peak value of the

spanwise vorticity is substantially lower for the vaporizing case. Analysis shows that, in

the vaporization case, significant 3D vorticity is generated and this plays a major role in

inhibiting the spanwise coherence. 

The enhancement of streamwise vorticity can be visualized by comparing Figs.

6.4a and 6.4b which show, respectively, the streamwise vorticity for the non-vaporizing
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and vaporizing cases. Here, the same contour interval was used for direct comparison.

The 3D nature of the shear layer can be clearly seen in these figures. The comparison also

indicates that the droplets generate additional streamwise vorticity in the vicinity of

droplets. Further insight can be obtained by looking at various terms in a vorticity

transport equation. The generalized vorticity equation in 3-D can be written as:

(6.2)

Four different mechanisms [49] can modulate vorticity. The terms on the right

hand side of Eq. 6.2 are respectively the vortex stretching, the thermal expansion, the

baroclinic torque and the viscous diffusion.

The spanwise component of the baroclinic torque is shown in Fig. 6.5a. This

indicates that vaporization produces significant baroclinic torque. This production plays a

major role in redistributing the vorticity in the mixing layer. This can be confirmed by

calculating the various terms in the 3D vorticity transport equation. For example, the

expansion term  in vorticity equation Eq. 6.2 is shown in Fig. 6.5b. Comparison

with Fig. 6.5a indicates that baroclinic term dominates in this case. Interestingly, this

behavior is quite similar to the case when heat is released [49] except that, in the present

case, heat is absorbed and the temperature is decreasing.

The droplet distribution for the above two cases is shown in Figs. 6.6a and 6.6b,

respectively. The Stokes number for all the droplets tracked is in the range of 0.0004 to
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0.01. As expected, the droplets follow the fluid motion and this behavior qualitatively

agrees with the results described in [73]. The droplet distribution between the two cases

is slightly different due to the modulation of the vortex structures as a result of

vaporization as discussed in the above paragraph. The effect of the decrease in the

strength of the vortex structures and the formation of new smaller vortex structures leads

to further dispersion of the droplets and a thickening of the braid region.

In the simulations described above, the continuity, species and energy equations

are solved in the supergrid in addition to the momentum equations. The droplets are

tracked by the Lagrangian tracking scheme. In conventional schemes all the droplets are

tracked by the Lagrangian tracking scheme till they reach the cut-off size and below

which they are assumed to vaporize instantaneously. In these studies, as the subgrid Re is

very low, the subgrid resolution necessary for capturing all the scales was less than 30

cells. Grid independence tests with as many as 100 cells have resulted in similar results.

In order to evaluate the convection algorithms, both the splicing algorithms (one based on

transfer of cells and the other based on transfer of scalar field properties) are used. Fig.

6.8 plots the variation of product mass fraction across the mixing layer for the two-cases.

It has been found that in this case with uniform grid and in the presence of a mean flow

direction, both the convection algorithms give near identical results. In all the cases

reported below, the former convection algorithm based on cell transfer is used.

Note that if the droplet cut-off size is chosen such that no droplet falls below the

cutoff, then the void fraction is zero. In this case, the present LES and the conventional

LES approaches should agree reasonably well. The only difference between the two
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approaches is that the new approach simulates the scalar fields in the subgrid and

therefore, the phase change of the Lagrangian droplets will appear as a source term ( )

in the subgrid gas density and the subgrid fuel species equations (Eq. 3.13 & Eq. 3.14). In

contrast, the conventional LES will solve the species conservation equations along with

the other LES equations and phase change source term will be used in Eq. 2.4.

The spanwise and streamwise vorticity for the conventional and subgrid approach

are shown in Figs. 6.7a and 6.7b, respectively, and correspond to Figs. 6.3b and 6.4b for

the conventional case. The effect of vaporization on shear layer is qualitatively similar in

nature but the magnitude is much higher for the subgrid approach. This can be due to the

fact that in LEM approach phase change occurs in the subgrid and small scales not

directly accounted for in the conventional simulations are resolved within the subgrid.

Calculations using infinite rate kinetics, i.e., when the vaporized fuel mixes with

the oxidizer and instantaneously reacts, were carried out for the case when all drops are

larger than the cut-off size. The product mass fraction, which is the ratio of the product

density to the overall gas density, predicted by the conventional and the new LES

approaches is compared in Fig. 6.9a. It can be seen that there is very good agreement

between the two methods. This is expected considering the fact that the subgrid Reynolds

numbers are very low and the mean quantities are compared here. The predicted

temperature of the gas phase (Fig. 6.9b) also shows good agreement. Within the scope of

the conditions used in this study, these results confirm the validity of the new LES

approach.

The conventional LES assumes that as droplets fall below the cut-off size they

SL
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instantaneously vaporize and mix. This can result in significant error especially if the cut-

off size is large. As a result, to maintain good accuracy, conventional LES requires a very

small cut-off size. This, in turn, increases the computational cost considerably. Since the

new subgrid approach is supposed to take care of the vaporization process even in the

subgrid, it should be able to deal with an increased cut-off size without adversely

affecting the accuracy. This is demonstrated below by simulating identical problems but

with different cut-off sizes of 10 and 20 microns. 

The subgrid void fraction models, Eqs. 3.9 & 3.13, have no explicit droplet size

information other than in the source terms. The source term  represents the

vaporization of the liquid in the subgrid and is generally a function of the droplet size.

The expression for    is same as in Eq. 2.9. It was determined that as the droplet cut-off

size is increased, the subgrid vaporization model for  needs to represent the droplet

distribution from the cut-off to the smallest possible size. This requirement is

qualitatively similar to the need to characterize (and pick) the eddy size that causes the

turbulent mixing process in the subgrid as described in section 3.2.1. To account for this

droplet size distribution, the  term (Eq. 2.9) picks a representative droplet size from a

distribution within the subgrid. In general, the droplet size should be picked at random

from the distribution similar to the manner the eddy size is picked for turbulent stirring.

However, at present, the droplet sizes are picked using representative drop sizes. The

simple formula which is used to randomly pick the droplet size is based on the fact that

the droplet life time drastically reduces as the droplets become smaller and smaller. If the

S2

S2

S2

S2
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droplet cut-off diameter is dc, minimum droplet size is dmin and the range of droplet

groups is drange, then droplet size picked is (dc+drange/2.0) with probability 0.667 and (dc-

drange/2.0-dmin) with probability 0.333. This is just a representative distribution to mimic

the actual exponential decay observed in the experiments. It is found here that the results

are not very sensitive to slight variations in the chosen distribution as long the decay

nature is preserved. The number of bins have to be increased if we go for higher cut-off

size to represent the characteristics of the droplets more precisely. For example three bins

have been used for cut-off radius of 30 microns. This distribution can be an input from

the experimental data against which the comparisons are made or for the type of liquid

fuel being used.

The new approach shows significant advantage over the conventional approach

even using the assumptions stated earlier. For example, the product mass fraction

obtained by the two LES methods are compared in Figs. 6.10a and 6.10b, respectively,

for the various cut-off sizes. The results predicted by the conventional LES are in gross

error for cut-off radius of 10 and 20 microns. This error is due to the fact that there is

unphysical addition of mass and energy into the gas-phase instantaneously. This leads to

unrealistic flow and reactions. In contrast, the present methodology agrees very well over

the cut-off range and predicts nearly identical results for a range of cut-off sizes upto 30

microns cut-off size. The observed differences in the spread are due to slightly higher

vaporization rates in the peripherals of the mixing layer. This may be related to the fact

that there is some error introduced as even the droplets below the cut-off have drag,

which can not be handled in the subgrid domain as the momentum equation is not solved.
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The same results have been obtained for the temporal mixing layers under different set of

conditions (lower forcing of the fundamental mode and higher initial random turbulence).

The product mass fraction for this case is plotted in Fig. 6.11. This plot clearly

demonstrates the insensitivity of cut-off size on the results with the LEM/LES model.

The above results clearly suggest that with the new approach a larger cut-off size

can be used without losing any accuracy. This has important implications for the

computational effort since the present subgrid approach is much more expensive when

compared to the conventional method for the same cut-off size. Thus, increasing the cut-

off size should offset the increased cost of the subgrid model. The increased cost

associated with tracking small droplets is two-fold. First the number of droplets to be

tracked increases and thus the computational expense associated with it. Second, as the

droplet size drops the characteristic times of the droplet (relaxation time, life time, etc.,)

reduce considerably resulting in decrease in the time-step of integration. In fact, a

conventional LES using 15,000 particles and a cut-off size of 2.5 micron is nearly 4-5

times more expensive than the subgrid LES approach which used a 10 micron cut-off.

This result provides confidence that the new approach will be both more cost effective

and more accurate than the conventional approach. This result also has other implications

in large-scale parallel computations of two-phase flows. The variation of the droplet sizes

dictates the time-step for integration of the Lagrangian transport equations for the

droplets. The droplet relaxation times and the droplet life-times vary as the square of the

droplet size. This creates a huge imbalance between the time-steps between the various

groups and thus can lead to severe load-imbalance on massively parallel computers. This
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can lead to degradation of parallel performance. The present approach reduces this

imbalance by using a subgrid process which is efficiently parallelizable.

Finite-rate Damkohler number (Da) effects without heat release were also

investigated. It was seen that as the chemical time scale decreases (Da increases), the

product mass fraction increases, in agreement with earlier results and physics. Due to

finite-rate effects, there is a considerable amount of unreacted fuel in the gaseous form. In

addition to the droplet temperature and the surrounding oxidizer concentration, the

amount of fuel present in the gaseous form dictates the liquid to gaseous fuel phase

change. Thus, the vaporization rate is coupled to the rate of chemical kinetics, heat

release and the other processes such as convection.

The new approach is able to capture the Da effects without error when the cut-off

size is increased. For example, the product mass fractions for a Da=100 case computed

using the conventional approach are shown for various cut-off sizes in Fig. 6.12a and the

corresponding results obtained using the new LES approach are shown in Fig. 6.12b. As

seen earlier for the infinite-rate kinetics, increasing the cut-off does not adversely affect

the predictions by the present LES whereas, the conventional LES results in significant

errors. Furthermore, since the present method can deal with differential diffusion quite

easily, Schmidt number effects can also be studied. 

In summary, temporal mixing layers are simulated with vaporizing and non-

vaporizing droplets. The effects of coupling on mixing layers dynamics indicate that

baroclinic torque redistributes the energy and the vortex roll-up is considerably inhibited.

The new feature of the hybrid Eulerian-Lagrangian model is quite insensitive to droplet
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cut-off size unlike the conventional Lagrangian model. This work is extended for spatial

shear layers in Chapter VII.
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Figure 6.1 Evolution of the 0.9-0.1 particle concentration level thickness for various St.
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Figure 6.2 Droplet distribution in the X-Y plane (a) Simulation with St. = 5.0 at t=18 and 
(b) Flash pulse visualization of Lazaro and Lasheras (1992).
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Figure 6.3 Spanwise vorticity in the mixing layer (a) Without liquid-gas coupling from 
droplets and (b) With liquid-gas coupling. Note: Contour interval level = 0.0374.
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Figure 6.4 Streamwise vorticity in the mixing layer (a) without liquid-gas coupling and (b) 
with liquid-gas coupling. Note: Contour interval level = 0.03
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Figure 6.5 Instantaneous value of spanwise component of terms in vorticity equation in 
mid-span plane (a) Baroclinic Torque (Contour interval level = 0.0018) (b) Expansion 

term (Contour interval level = 0.0005).



107 

Figure 6.6 Droplet distribution in the X-Y midplane (a) Without coupling and (b) With 
coupling (LES)
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Figure 6.7 Variation across mixing layer using 2-phase LES/LEM methodology (a) Span-
wise vorticity (contour interval = 0.0374), (b) Streamwise vorticity (contour interval = 

0.03)
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Figure 6.8 Variation of product mass fraction across the mixing layer with new and the old 
convection algorithms.

0.0 0.2 0.4 0.6 0.8 1.0
Y/Ylen

0.00

0.10

0.20

0.30

0.40

0.50
P

ro
du

ct
 M

as
s 

F
ra

ct
io

n

LEM/LES
LEM/LES (New Convection Scheme)



110 

Figure 6.9 Comparison of conventional and current methodology (a) Variation of product 
mass fraction across the mixing layer and (b) Variation of temperature across the mixing 

layer.
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Figure 6.10 Comparison of the two methods in predicting product density (for infinite rate 
with Damkohler number Da = f) across the mixing layer for different cut-offs (a) Con-

ventional LES and (b) LEM/LES.
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Figure 6.11 Comparison of the LES/LEM and conventional methods in predicting product 
density (for infinite rate with Damkohler number Da = f) across the mixing layer for dif-

ferent cut-offs under higher turbulence and lower forcing.
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Figure 6.12 Comparison of the two methods in predicting product density (for finite rate 
with Damkohler number Da = 100) across the mixing layer for different cut-offs (a) Con-

ventional LES and (b) LEM/LES.
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CHAPTER  VII

SPATIAL SHEAR LAYERS

The mixed Eulerian-Lagrangian approach for two-phase flows as discussed in

Chapters 2 & 3 has some significant advantages over the conventional LES approach.

However, to fully demonstrate this method, detailed validation against experimental data

is important. Unfortunately, controlled experiments where all the required information is

available is almost non-existent. 

In this chapter, the present LES model has been tested in two experimental spatial

shear flow configurations. The first one is a NIST combustor and the second one is a

spatial mixing of Hishida et al. [46]. This study involves validating the basic LES solver

for spatial flows with non-vaporizing and vaporizing droplets. Spatial flows are of

interest, since they approximate most of the features of modeling actual combustors.

7.1 NIST Swirling Spray Combustor

In continuation to the validation process, an experimental configuration from

National Institute of Standards and Technology (NIST) was chosen to be simulated as it

was designed for detailed CFD validation of sprays in highly swirling flows. This
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exercise of validating spray simulations against experiments clearly shows that the

limitations experienced during experiments cripple one’s ability to simulate and validate

spray models. 

The schematic of the experiment is given in Fig. 7.1. In the experiments, only the

secondary air velocities were measured as seeding of the primary air was not possible.

With the absence of the fluid velocities in the primary zone, the velocities in the

secondary zone were patched in different ways, of which two cases are reported here. The

profiles of the axial and radial velocities for these two cases at the inlet are given in Figs.

7.2a and 7.2b. At first, the axial and radial gas-phase velocities were chosen to exactly

match the measured droplet velocities at the inlet. The rationale behind the criterion was

that the droplets are small enough to be in local equilibrium with the fluid and represent

the fluid velocities to reasonable accuracy. Profiles based on such an assumption lead to

large recirculation regions at the inflow and do not correspond to anything similar to the

downstream evolution of the flow. In an attempt to match the downstream fluid and

droplet velocity profiles, the inflow velocities were tweaked from this baseline reference

values to arrive at the two cases in Figs. 7.2a and b. 

Figs. 7.3a and b show the droplet distributions for the two cases corresponding to

the inlet velocities as shown in Figs. 7.2a and b. The distributions clearly indicate that

droplet and flow characteristics are extremely sensitive to the assumed profiles of the

primary air. Figs. 7.4a, b and c strengthen the same fact, as the downstream velocities and

variation of SMD of the droplets are drastically different. It can be concluded that

primary air has tremendous influence on the droplet characteristics and since this is a
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highly non-linear behavior, determining a proper inflow through reverse engineering is

almost impossible. This reiterates the need for detailed experiments with all the required

data to be able to successfully validate two-phase codes.

7.2 Spatial Mixing Layers

Extensive study of the temporal mixing layers has been reported in Chapter 6.

Temporal mixing layer is a great tool to study and evaluate different physical problems in

a simplified manner. The simplicity comes in several different ways. Due to the periodic

conditions in the axial direction, the problem of specifying inflow and outflow conditions

as well as the appropriate boundary conditions can be avoided. This leads to an ideal

situation of having much less resolution in the axial direction. The mathematical problem

posed ensures that the centerline of the mixing layer always corresponds to the centerline

of the grid, thus ensuring enough resolution at the center of the vortical structures and the

mixing layer interface. The simplicity in solving temporal mixing layers comes at an

expense and these simulations cannot capture some of the essential features of spatial

mixing layers due to the following reasons:

• Spatial mixing layers exhibit asymmetry and mean centerline shifts to the slower

stream side.

• Mixing layers are very sensitive to time variation of inflow and outflow

conditions. In addition, there is also a strong coupling between the inflow and

outflow conditions. To make things worse, previous experiments [74] suggest that

there is history effect.
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• Spatial and temporal mixing layers correspond to different problems in the

presence of heat release and mass addition. Unlike spatial mixing layers, in

temporal mixing layers the energy and mass is fed back into the domain through

the periodic conditions. This can lead to distortion of the solution. 

• Inclusion of effects that control the growth of the mixing layer like splitter plate

thickness and boundary layer characteristics into temporal simulations is very

difficult. 

Considering the above limitations of temporal mixing layers, there is a need to

simulate spatial mixing layers in order to have a direct correspondence with experiments.

Here, extensive validation of the simulations against the experiments of Hishida et al.

[46] is carried out. In the available literature, the same problem was numerically

simulated using two different approaches. Wang and Squires [56] simulated the problem

using LES of temporal mixing layer while Chen and Pereira [75] solved the problem

using a time-averaged k-H formulation. Temporal mixing layers as used in [56] do not

mimic the spatial mixing layers for results noted above and result in differences between

the experiments and simulations. On the other hand in k-H formulations, where the

equations are obtained by time/ensemble averaging, the prediction of the fluctuating

quantities is quite inaccurate since this is essentially an unsteady problem. 

The problem in the k-H simulations is two-fold. First, the model co-efficients have

to be tuned to the problem at hand. Second, a complicated stochastic dispersion model

has to be used in order to accurately model the particle dispersion characteristics. In the

present study, the simulation results have been analyzed and compared with the

experiment results and appropriate reference to other mixing layer studies (both
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experimental and numerical) are made to draw any similarities or analogies wherever

relevant. 

Some of the difficulties encountered during the simulations of spatial mixing

layers are:

• Sensitivity of the mixing layer characteristics to inflow conditions such as

disturbance strength and modes, type of boundary layers on the splitter plates,

thickness of the splitter plates etc.

• Several factors (including initial and operating conditions) influence the mixing

layer properties as indicated in the experimental results (Bell and Mehta [74] and

Oster and Wygnanski [76]). Since these factors can vary from one to another

setup, drastically different results were found. 

• The above experimental observations translate into numerics such as resolution,

grid variation, inflow-outflow conditions, initial conditions, grid stretching,

assumed boundary layer shape and thickness, etc.

7.2.1 Spatial mixing layer with particles

In this study, the spatial mixing layer as depicted in Fig. 7.5 was simulated using

the zero-mach number incompressible code using a resolution of 197x197x5. Three

different particle sizes used in the experiments (Hishida, et al., [46]) were tracked. This

problem is essentially 2-dimensional, but the relaxation in the third direction changes the

transverse velocities and in turn the axial fluctuations. Since, the spanwise direction is

periodic in nature we can assume that it emulates the third direction to some degree. LES

also requires the third direction as the turbulence is only correct in the presence of the

vortex stretching term. The justification in using 5 points in the spanwise direction is the
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fact that the problem is otherwise very expensive to solve. The boundary layer on the

1.17 mm thick splitter plate has to be captured in addition to capturing the entire flow

field in the 600 mm long mixing layer. This brings about a wide range of both spatial and

temporal scales into the picture, thus restricting the time step. These make the simulations

very expensive and takes several days on a 8 processor SGI O2K. The problem is

aggravated due to the fact that the current solver is not parallelized for distributed

memory architectures and the wall clock times cannot be reduced as the shared memory

parallelization does not scale well at higher number of processors. A laminar boundary

layer profile was assumed on the splitter plate and the flow is simulated from the end of

the splitter plate. Even with this resolution, the splitter plate and the two boundary layers

are captured only with 10 grid points. The grid is stretched out slowly in both stream-

wise and cross-stream directions. The grid is also skewed (non-cartesian) as the grid has

been coarsened at the centerline and appropriately stretched in the cross-stream direction

to capture the growing mixing layer more accurately. These impositions further increase

the stiffness and thus reduction of the time step.

When the experiments were carried out, the particles were injected at the end of

the splitter plate. The present methodology developed works for dilute spray regime only,

as particle-particle collisions, etc., have not been incorporated. In addition, sufficient data

is not available to specify the particle properties accurately. Therefore, here the particles

are injected at a location 100 mm downstream where the evolution of the simulated

mixing layer is very close to that of the experiments. The particle velocities were based

on the mean and fluctuating quantities, assuming that the fluctuations are Gaussian. The
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first three test-cases studied are exactly same as those of the experiments with 42 Pm, 72

Pm, and 135 Pm particle sizes. On an average, around 15,000 to 20,000 particle groups

are simulated after the steady-state is reached. In the experiments, it has been observed

that the variation of the gas-phase properties in the presence of the particles was less than

3%. The effect of coupling on particle characteristics cannot be evaluated in the

experiments, as they cannot have an uncoupled case in reality. To account for the

coupling in the experiments, momentum coupling was turned on for the 42 Pm case in

this study. As expected, it has been found the results with coupling are more closer to the

experiments than an uncoupled case. 

In Fig. 7.6, the spatial evolution of the momentum thickness is plotted against

downstream axial distance. The momentum thickness by definition is:

(7.1)

where u1 is faster stream velocity, u2 is the slower stream velocity, um = (u1 +

u2)/2 is the mean velocity of the mixing layer,  'u is the velocity difference and u is

spanwise time-averaged velocity.

The mean velocity was plotted (Fig. 7.7) for four downstream locations and

compared to the experiments. Like in the experiments [46], [74], [76] and previous

studies [56], there is very good self-similarity in the mean velocities. The fluctuating
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quantities  are plotted in Fig. 7.8 for the first downstream location at

100 mm. There has been reasonably good agreement with the experiments for the first

two downstream locations (only the first location is shown here). The increased velocity

fluctuations in the tails are due to lower resolution. This is because the rapid changes in

the velocities at a coarse grid location amount to increased fluctuations. The downstream

development of the mixing layer is lot more stronger than that has been found in the

experiments. This is also reflected in the droplet distributions, discussed later in this

section. This can be due to a variety of reasons including the following:

• A near 2-D approximation. Earlier studies [77] found that 2-D simulations lead to

almost 40% increase in the transverse fluctuating velocities due to the lack of

relaxation effect. The periodicity in the spanwise direction has alleviated the

relaxation effect to some degree, but the simulation is not entirely 3-D.

• Simulating naturally developing mixing layers (like the one in this experiment)

without any dominant modes is extremely difficult as it is not known how to

excite the same modes as in the experiments. Due to this difficulty, Wilson and

Demuren [77] have used randomly generated fluctuations with a broad spectrum

of modes to force the inflow. Schwer et al. [78] have done extensive simulations

on spatial mixing layers but they have not simulated naturally growing mixing

layers citing the difficulties to do the same. This iterates the fact that it is very

difficult to validate computational results without precise specification of the

inflow conditions.

• Bell and Mehta [74] found that the mixing layer characteristics are highly

dependent on the boundary layer characteristics and the wake of the splitter plate.

In the present simulations, a laminar boundary layer was chosen based on

experimental evidence. The layer used was resolved by few grid points in order to
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make the simulation feasible. The coarser resolution could trigger instabilities at

different modes which is not the case with the experiments. These modes might

be weak to start with, but eventually could lead to additional growth of the shear

layer. 

• The grid is stretched both in streamwise and cross-stream direction downstream

of the splitter plate. This coarsening of the grid and associated numerics could

affect the quality of results. In order to address some of these issues, Schwer [79]

in his thesis has used extensive sets of complicated grids (in addition to overlap

grids) to study the various effects of grid resolutions. Schwer has indicated that

the splitter plate has to adequately resolved to capture all the instabilities

accurately.

Continuing with the present study, particle properties are plotted in Fig. 7.9 for a

particle size of 42 Pm. As expected the mean velocities match very well with the

experiments. The mean cross-stream velocities tend to differ at the farthest downstream

location on the slower stream side. This might be a consequence of the increase in gas-

phase transverse fluctuations downstream or the influence of the complex interaction

with the slip wall and outflow boundary conditions. The transverse fluctuating velocities

and the particle shear stress are captured very well at first two locations. It has been found

that the coupled case (solid line) is closer to the experiments (open circles) when

compared to uncoupled case (dashed lines). This might be due to the slight dampening of

the vortex rollers in the presence of the particles. This may be the same effect observed

earlier which is related to mechanism of energy transfer by the particles from the large

scales to small scales resulting in the large-scale vortex structures losing energy. 

The particle properties corresponding to 72 Pm and 135 Pm are shown in Figs.
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7.10 and 7.11 respectively. The results are very similar to the earlier case. As found in

experiments, the particle velocity fluctuations decrease with increasing particle sizes.

This is a direct consequence of the inertia of the particles and this is reflected in the mean

velocity profiles. 

Figure 7.12 shows the droplet distribution for the three different particle sizes. It

has been found in the experiments that the Stokes numbers range fall into three

categories:

a) 42 Pm - Stokes numbers - 0.5 < St < 2.5

b) 72 Pm - Stokes numbers - 2.5< St < 4.0

c) 135 Pm - Stokes numbers - St > 4.0

As observed in the temporal mixing layer simulations, the particles with St ~ 1

disperse the most. This can be clearly seen in Fig. 7.12a, where the particles disperse

throughout the mixing layer. The initial region downstream of the particle injection is

reasonably void of large scale vortical structures. The instabilities become visible further

downstream where the fundamental mode dominates resulting in formation of strong

vortical structures. Further downstream the growth of the subharmonic mode results in

pairing of adjacent vortices. The particles of St ~ 1 respond to the centrifugal forces the

most manifesting in their concentration in the regions of low vorticity as seen in Fig.

7.12a. For the medium sized particles in Fig. 7.12b where the particle inertia is more

dominant, the dispersion of the particles is more contained. In the case of the large

droplets (Fig. 7.12c), the particle dispersion is very limited due to relative passiveness

caused by the large inertial forces of the particles.
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7.2.2 Spatial mixing layers with vaporizing droplets

In this study the spatial mixing layer as depicted in Fig. 7.5 was simulated using

the zero-mach number incompressible code using a resolution of 97x97x5. In this case,

the 1.17 mm thick splitter plate has been neglected to capture all the features of the

mixing layer at this coarser resolution. Five different droplet sizes from 10Pm to 50Pm

were tracked using a Lagrangian Tracking scheme. A laminar boundary layer profile was

assumed on the zero-thickness splitter plate and the flow is simulated from the end of the

splitter plate. Two different cases are simulated here. One in which all the droplets are

carried in the Lagrangian tracking scheme while in the other case all the droplets below

cut-off radius of 5 Pm are carried in the subgrid with the procedure described in Chapters

3 and 4. In the first case all the scalars are carried in the subgrid and the droplets are

tracked in the Lagrangian tracking scheme. Here, the conditions are such that the droplets

don’t fall below the chosen small cut-off size. In the second case, everything is same

except that the cut-off radius was chosen to be 5 Pm so that some of the droplets are

tracked in the subgrid in the Eulerian fashion.

Figure 7.13 shows the evolution of the mixing layer momentum thickness as

defined by Eq. 7.1. This is the equivalent of Fig. 7.6 for the splitter plate of zero-

thickness. Here, the growth rate of uncoupled (with passive, non-vaporizing droplets)

mixing layer increases at first rapidly than the one with vaporizing droplets. Beyond 70

mm downstream, the growth rate of the coupled mixing layer exceeds that of the

uncoupled one. This may be due to transfer of energy from large scales to small scales

which results in faster equilibration. It is interesting to note that the growth rate between
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the two vaporizing cases is almost identical. This reaffirms that the subgrid treatment of

the droplets below the cut-off retains the physics of the problem.

In Figure 7.14, the mean velocity at 200 mm downstream location is plotted for

all the three cases. Self-similarity of the mean profiles is achieved in all the cases and is

not shown here for clarity. The increased spread of the mixing layer for the vaporizing

case can be noted in this figure and is in agreement with Fig. 7.13. The fluctuating

quantities are plotted in Fig. 7.15 for all the three cases. Here, similar to earlier figures,

there is very good match between the two vaporizing cases. This confirms that the new

subgrid treatment of droplets below the cut-off models the mean and fluctuating

quantities correctly. As noted in Figs. 7.13 and 7.14, there is increased spread of the

mixing layer in the transverse direction. This is reflected in the increased cross-stream

fluctuations in Fig. 7.15. The axial fluctuations and the corresponding Reynolds stresses

seem to be higher when the droplets are vaporizing. This is related closely to the

production of baroclinic torque and reduction of the peak vortex strength in temporal

mixing layers discussed in Chapter VI. This is also in agreement with recent studies by

Miller and Bellan [37], who have indicated that increasing the droplet mass loading

results in a more “natural” turbulence characterized by increased rotational energy (as

indicated by instantaneous squared vorticity magnitude averaged over the entire domain)

and less influence of the initial forcing parameters.

Calculations using infinite rate kinetics with no heat release, i.e. when the

vaporized fuel mixes with the oxidizer and instantaneously reacts, were carried out for

the mixing layer with vaporizing droplets. The product mass fraction, which is the ratio
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of the product density to the overall gas density, at a location 20 mm downstream of the

droplet injection is predicted by the two methods is compared in Fig. 7.16. It can be seen

that there is very good agreement between the two methods.

In summary, the current simulations of single and two-phase spatial mixing layers

capture most of the salient features. These studies compare very well to the experiments

of Hishida et al. [46] for mixing layer with and without non-vaporizing particles. The

vaporizing case demonstrates the viability of the new subgrid treatment of the droplets

below the cut-off as a tool to accurately and efficiently model the two-phase flows. These

studies demonstrate the strength of LES of two-phase flows in simulating complex flows

with particles and droplets. The simulation methodology as outlined in this thesis can be

a great tool to study the two-phase flows with highly non-linear interactions. From the

knowledge of the author, this is the first LES simulation of two-phase spatial mixing

layer reported in open literature. 
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Figure 7.1 Schematic of NIST spray combustor
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Figure 7.2 Inflow gas-phase profiles for the two cases: a) Axial Velocities and b) Radial 
Velocities.
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Figure 7.3 Droplet distribution for two different cases in the NIST combustor: a) Case 1 
and b) Case 2
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Figure 7.4 Droplet characteristics downstream of the injection for both the cases: a) Radial 
profile of the droplet axial velocities b) Radial profile of the droplet radial velocities and 

c) Radial profile of the Sauter mean diameter of the droplets.
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Figure 7.5 Schematic of the Spatial Mixing Layer (from Hishida et. al., [46]) along with 
the geometric parameters used in the simulations.
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Figure 7.6 Evolution of local momentum thickness with downstream distance.

Figure 7.7 Mean axial velocities distribution of the gas-phase flow (lines with empty sym-
bols) compared to the experiments of Hishida et al., [46] (corresponding solid symbols).
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Figure 7.8 Comparisons of the fluctuating quantities with the experiments at 100 mm 
downstream for the following quantities: a) Normalized streamwise fluctuations, b) Nor-

malized cross-stream fluctuations and c) Reynolds stress.
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Figure 7.9 Comparisons of the 42 Pm particle properties with the experiments at 200 mm 
downstream for the following: a) Normalized streamwise mean velocities, b) Normalized 
cross-stream mean velocities, c) Normalized cross-stream fluctuations, and d) Normalized 

particle shear stress.
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Figure 7.10 Comparisons of the 72 Pm particle properties with the experiments at 200 mm 
downstream for the following: a) Normalized streamwise mean velocities, b) Normalized 
cross-stream mean velocities, c) Normalized cross-stream fluctuations, and d) Normalized 

particle shear stress.
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Figure 7.11 Comparisons of the 135 Pm particle properties with the experiments at 200 
mm downstream for the following: a) Normalized streamwise mean velocities, b) Normal-
ized cross-stream mean velocities, c) Normalized cross-stream fluctuations, and d) Nor-

malized particle shear stress.
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Figure 7.12 Instantaneous droplet distribution for the following particle sizes: a) 42 Pm, b) 
72 Pm and c) 135 Pm.
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Figure 7.13 Evolution of local momentum thickness with downstream distance with and 
without vaporization.

Figure 7.14 Mean axial velocities distribution of the gas-phase flow with and without 
vaporization.
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Figure 7.15 Comparisons of the fluctuating quantities with and without vaporization at 
200 mm downstream location for the following quantities: a) Normalized streamwise fluc-

tuations, b) Normalized cross-stream fluctuations and c) Reynolds stress.
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Figure 7.16 Cross-stream variation of normalized product mass fraction for vaporizing 
droplets with and without subgrid contribution.
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CHAPTER  VIII

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The primary focus of this thesis was on development of models for studying

liquid-fuel and air mixing downstream of a fuel injector in a gas turbine, spark-ignition

and diesel combustors. This study employed the technique of large eddy simulations as

fuel-air mixing is highly unsteady. 

The approach outlined in this thesis combines the best features of both Eulerian-

Eulerian (gas-liquid) and Eulerian-Lagrangian (gas-liquid) modeling approaches. Gas

phase calculations are carried out using an Eulerian LES method, while the liquid

droplets are tracked within the Eulerian gas phase using a Lagrangian particle tracking

method. The droplet properties are integrated in time in each of the gas phase LES cells

and are transported across the Eulerian domain. In this process, the droplets exchange

mass, momentum and energy with the local gas phase. 

In conventional two-phase modeling, all droplets smaller than a prespecified cut-

off size are assumed to instantaneously vaporize and mix. However, results have

confirmed that this assumption is highly erroneous unless the cutoff size is very small.

Increasing the cutoff size without sacrificing accuracy is of great interest since this would
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reduce the computational time significantly. Therefore, in the new model, this issue has

been addressed such that the droplets below the cut-off are carried into the subgrid using

a void fraction Eulerian formulation. The subgrid model simulates the effect of droplets

all the way till the liquid phase completely vaporizes and mixes at the smallest scales

using a one-dimensional (1D) domain within each LES cell. 

In this thesis, three different problems that constitute the building-blocks of a

realistic combustor were addressed. The three problems that have been studied are:

• Two-phase isotropic flows with and without vaporization.

• Two-phase temporal mixing layers.

• Two-phase spatial shear layers.

Two-phase isotropic flows: Simulations of two-phase isotropic flows are carried

out using DNS to form a database to compare the LES results. Both DNS and LES (with

the closures obtained in this work) results agree very well over the range of parameters

chosen in this study. It has been found that the droplets transfer energy from the large

scales to the small scales and this process is stronger with increased mass loading of the

droplets. The transfer energy spectra also suggests that the energy transfer through gas-

phase energy cascade plays less important role in the presence of droplets. The

vaporization cases also suggest similar behavior and the transfer of energy is enhanced.

Due to periodic conditions the current cases were restricted to very low vaporization

rates. The new hybrid subgrid approach could not be evaluated in this set-up because of

the low vaporization rates. The computational requirements also limited the study to

reasonably low Reynolds numbers compared to practical devices. These studies have to
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be re-evaluated at higher Reynolds numbers. 

Two-phase temporal mixing layers: Simulations of two-phase temporal mixing

layers are carried out in order to study the effects of large-scale motion. These studies

corroborate earlier work (both experimental and numerical) that the particles of Stokes

number of order one disperse the most. The mixing layers with vaporizing droplets have

indicated that the vaporization inhibits the growth of large scale structures. Further

analysis of the various terms in the vorticity transport equation suggests that significant

baroclinic torque is generated and this curtails the growth of the coherent vortical

structures. This phenomena is very similar to the one observed in mixing layer with heat

release, though heat is absorbed through the vaporization process. The vaporizing cases

also suggest that it is erroneous to assume that droplets below certain cut-off size

vaporize instantaneously. It has been found that the method developed in this thesis gives

consistently better results as the physical process below the droplet cut-off is explicitly

modeled in the two-phase subgrid domain. These studies also indicate that this approach

can be computationally more efficient as it avoids tracking the droplets to very small

sizes.

Two-phase spatial shear layers: Spatial shear layers are the essential building

blocks of all combustors and they are usually more complicated to study with the

additional requirement to provide good inflow conditions. This translates to a bigger

problem for two-phase flows, as all the information needed for simulations is not

generally available from experiments. In addition, treating inflow-outflow boundary

conditions accurately is difficult and still an active area of research in computational fluid



144 

dynamics (CFD). Simulations of particles in a NIST combustor are performed and it has

been found that crucial primary air gas-phase velocities are missing. The studies indicate

that the particle properties have highly non-linear dependence on the gas phase properties

and a good set of inflow conditions is needed validate CFD codes. The spatial mixing

layer of Hishida et al. is simulated and there has been reasonable agreement between the

experiments and simulations for both gas phase properties and particle properties. The

studies also indicate the need to have more exact specification of the inflow conditions in

order to have more deterministic evaluation of LES models. Due to resource constraints,

only a few grid points are used in the spanwise direction and there is a need to evaluate

the model with higher resolution. The reacting vaporization case suggests that the new

LES two-phase model gives consistent results even when the droplets fall below the cut-

off.

In summary, a new mixed Eulerian-Lagrangian model for the dispersed phase has

been implemented and tested for a wide variety of problems. The new model is

computationally more efficient and also less sensitive to changes in droplet cut-off size.

The fact, that the dispersed phase transfers kinetic energy from large scales to small

scales where it is eventually dissipated is clearly demonstrated. This implies that two-

phase models have to explicitly include the effects of dispersed phase on both the large

scale and small scale flow features and vice-versa.
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8.2 Recommendations

The two-phase flow methodology adopted in this thesis is applicable to dilute

spray regime. This is because there are no interactions between the droplets and the

droplets are small enough such that secondary break-up is rare. Limitations of this work

include the absence of interaction of droplets with the walls and the use of some

simplified models governing the heat transfer and vaporization processes in the droplets

themselves. Some features that can be included in the spray Lagrangian tracking scheme

to extend the scope of applicability are:

• Droplet-droplet collision models: Insight through various experiments using the

LES with levelsets for droplet-droplet interactions along with some of the recent

work (Chen, et al. [80] [81]) can be bundled to incorporate the droplet-droplet col-

lision models. Droplet-droplet break-up and coalescence is also exhibited in the

dense spray regions of the spray. Some of the droplet interaction models (e.g.

Georjon and Reitz [82]) can be incorporated into the Lagrangian scheme to

increase the applicability over a wide range of conditions.

• Droplet-wall interaction models: Inclusion of droplet-wall interaction is of great

consequence in automotive and other engines. Some of the simple models

(Mundo, et al. [83]) can be easily implemented in current LES formulation. 

• Particle dispersion models: This thesis uses a simple stochastic model (Faeth [28])

to calculate the instantaneous velocity from the averaged and subgrid fields avail-

able from the gas-phase LES solution. Considerable progress has been made in the
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so-called eddy-interaction models (Shirlokar, et al. [84]) and some of those models

can be implemented and evaluated in LES. Since the subgrid fields are more accu-

rate in LES, considerable improvements can be captured in terms of particle/drop-

let dispersion characteristics.

• Charged particle interaction: Fast-multipole or field approximation theories can be

incorporated to study and analyze the behavior of charged injectors and other

applications involving the charge interactions.

• Circulation: Most of the droplets in practical systems are multicomponent with

vaporization. Additional models based on the previous research (Tong and Sirig-

nano [85]; Bellan and Harstad [86]) need to be incorporated into the Lagrangian

tracking scheme to model the chemical reactions and circulation. 

The work carried out in this thesis is currently limited to chemical reactions with

no heat release. The work has to be extended and evaluated under heat release. In the

presence of heat release, it is expected to have very tight and more non-linear coupling

between the two-phases. The vaporization of the liquid fuel is going to produce fuel in

gas phase, which is going to react and release heat. This, in turn will vaporize more fuel.

The vaporization process will absorb part of the heat released during the chemical process

and affect the reaction rates. Both the vaporization and chemical reactions are going to

interact closely in modifying the characteristics of the two phases.

The eventual goal of two-phase flow modeling is the ability to simulate the

physical processes all the way from the injector into the combustion chamber and into the

exhaust in a very closely coupled fashion. Based on the work in this thesis and with
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inclusion of the suggested extensions, a plausible approach is outlined here which can

provide a framework to model liquid-fuel combustors. Some of the simulation and

implementation issues pertaining to the same are discussed below, using a diesel engine

as a sample problem.

Figure 8.1, illustrates the various modeling regimes of a typical diesel engine.

Some details of the physical problem at hand along with the modeling requirements and

plausible approaches are given in this schematic.

The two-phase LES framework described in this thesis along with the extensions

suggested earlier can be adapted to model the fuel injector and spray formation (both

charged and non-charged) as a design tool for the next generation of high efficiency

engines with low emissions. LES on unstructured/adaptive grids with level-sets is a

viable approach to model the fuel injector and spray formation. The accurate interface

tracking capabilities of level sets, along with accurate fluid flow computations using LES,

makes the solution very feasible. These computations coupled with the Lagrangian

tracking capability can be used to study downstream evolution of spray, both in charged

and uncharged cases. 

The fuel injector modeling effort provides initial conditions to model the

downstream spray combustion process. The hybrid Eulerian-Lagrangian LES

methodology developed in this work can be adapted to simulate the physical processes

such as fuel-air mixing, vaporization and phase-change downstream in the combustor.
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Figure 8.1 Modeling regimes in a diesel engine
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APPENDIX A

ZERO-MACH NUMBER EQUATIONS

Zero Mach number approximation of the Navier Stokes equations 

The equations governing the flow of a reacting perfect gas are reduced to the

following non-dimensional form:
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In the above equation set, , , ,

,  are, respectively, the Reynolds number, Prandtl

number, Damkohler number, the Peclet number and the flow Mach number

corresponding to the reference quantities. Note that all the material properties such as the

various diffusivities (corresponding to momentum, mass and energy) and  are assumed

to be constant in obtaining the above equation set. These assumptions constitute a mere

convenience and are not absolutely necessary.  is the non-

dimensional number quantifying the effects of heat release against the effects of

convection on the energy transport.   

The parameter  quantifies the effects of compressibility on the flow field.

This can be shown by considering the limiting case when . In this limit, by

definition (of M), the acoustic speed is infinite and the fluid velocity is finite. The

acoustic speed is obtained as the rate of change of thermodynamic pressure with respect

to density variations at constant entropy . If this quantity is infinite, one

would need infinite thermodynamic pressure change to compress the fluid (i.e. change

it’s density). 

A perturbation technique is adopted for the current purpose using the parameter

. Each of the dependent flow variables is expanded as a power series of this

parameter. For e.g., . On substitution of these

expansions into Eqs. A.1-A.5, and using perturbation analysis, solutions that satisfy the
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governing equations up to any required order of  can be obtained. 

The transport equations for continuity, momentum, chemical concentration(s) and

equation of state, to the zeroth order (incompressible) approximation, reduce to the

following set of equations.

(A.6)

(A.7)

(A.8)

(A.9)

The superscripts corresponding to zeroth order terms of all variables except

pressure are dropped for convenience. The reason for the exception of pressure variable is

made clear in the arguments that follow. 

It is seen (from Eq. A.7) that the zeroth order approximation of the momentum
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order approximation of the governing equations, there is no equation for the velocity

variables. In order to obtain an equation for the velocity field, (at least) the first order

approximation of the momentum equation A.2 is needed. Such an approximation yields

the following equation for leading order velocity field. 

(A.10)

As seen in the above equation, the first order pressure is required in order to

obtain the leading order velocity field. The leading order approximation to the continuity

equation A.6 can be used to express the leading order approximation to the energy

equation as follows.

(A.11)

The heat release Q is a function of the reaction rate(s)  and is determined by

the chemical kinetic mechanism used for reaction rate modeling. The six equations (A.6-

A.11) form a closed system of equations for the leading order approximations of the six

variables, . For simplicity, p0 is used p(0) and p is used for p(1).
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Energy Equation for Two-Phase Flows in the Zero-Mach Number Limit 

The energy equation in terms of the total internal energy is of the following form:

(A.12)

Neglecting work due to body forces, dropping terms due to chemical heat release

and expanding LHS Eq. A.12 reduces to:

(A.13)

Invoking the continuity equation (Eq. 2.1):

(A.14)
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Multiplying the momentum equation (Eq. 2.2) by  we have

(A.15)

Subtracting Eq. A.15 from Eq. A.13 we get,

(A.16)

The viscous/pressure work term in Eq. A.16 is as follows:

 (A.17)

Neglecting dissipation by viscous forces in the above equation we get the

following:

(A.18)
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Substituting Eq. A.18 into Eq. A.16 we get the following simplification:

(A.19)

From the definitions of enthalpy, we have:

(A.20)

Casting total derivative of the internal energy in term of enthalpy we have:

(A.21)

The continuity equation can be recast into the following form:

(A.22)
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By invoking continuity equation, we can reduce the Eq. A.21 to the following:

(A.23)

plugging Eq. A.23 into Eq. A.19 we have:

(A.24)

Invoking the zero-Mach number approximation (Eq. A.7), we can reduce the

above equation to:

(A.25)
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form invoking the perfect gas relations and the zero Mach number approximation:

(A.26)

On substituting Eq. A.26 into Eq. A.25 we have the following:

(A.27)

On simplification we get:

(A.28)
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On further re-arrangement we get:

(A.29)

From continuity we have the following:

(A.30)

On substituting Eq. A.30 in Eq. A.29 and some rearrangement we have the

following for the dilatation term:

(A.31)

Heat flux in the above equation is:

(A.32)
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Substituting Eq. A.32 in Eq. A.31 we get the following for computing the

dilatation term:

(A.33)

So the final set of equations to be solved for the change in thermodynamic

pressure and the corresponding dilatation term are given as follows:

(A.34)

(A.35)

There are several new terms appearing in the equations due to the presence of

droplets which have to appropriately included. These are the fully resolved equations for

energy and the filtered equations which are used for computations are arrived at in a

similar procedure and are listed in Chapter II.
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APPENDIX B

SEMI-IMPLICIT SCHEME FOR NON-STAGGERED GRIDS

A numerical method for integrating the Navier Stokes equations in the zero-Mach

number limit earlier implemented and validated by Chakravarthy [64], is presented here.

The time-integration is conducted using a two-step, semi-implicit, second order accurate

fractional step method. A collocated grid system is used for the finite-difference spatial

discretization of governing equations. 

In fractional step methods, a split procedure is adopted. In the first step, the

momentum equations are updated without the pressure gradient terms. The pressure is

then obtained by using a Poisson equation which couples the momentum equation to the

continuity equation. In the last step, the momentum equations are updated with the

pressure gradient thereby, leading to a coupled solution. The means to obtain pressure,

thus holds the key to fast convergence. 

Unlike most fractional step methods that are formulated on staggered grids, the

method here is formulated using a collocated (non-staggered) grid layout for variable

definitions. The pressure-velocity decoupling that is common to collocated grid

arrangements is overcome and strong elliptic coupling is achieved through a scheme that

mimics the finite-volume formulation. A discussion on the spatial discretization schemes

used for this coupling is presented following the time-integration scheme.
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Time integration scheme

The trapezoidal (Crank-Nicholson) scheme is presented here for the zero-Mach

number equations. All the terms in the governing equations (including the non-linear

terms) are updated semi-implicitly in order to retain stability at both the inviscid and the

Stokes limits. 

Consider the continuity and the momentum equations in their non-conservation

form. 

(B.1)

(B.2)

For convenience, the following notation is adopted henceforth. 

(B.3)

(B.4)
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For simplicity, the additional subgrid stress is assumed to be included in .

Since the volumetric dilatation is explicitly obtained (from Eq. 2.3) and used in the above

equations, conservation (divergence) forms can not be used in solving the zero-Mach

number equations. This presents a difficulty in building a finite-volume scheme and

hence a finite-difference scheme is used. The semi-implicit scheme produces the

following difference equations.

(B.5)

(B.6)

The following two step iterative procedure is used to converge the solution at

each time step. 
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followed by 

(B.9)

As usual, the pressure gradient couples the conservation equations for mass and

momentum. Before solving for  in Eq. B.9, the pressure gradient is required.

The pressure needs to be determined between the two steps of the split scheme (Eqs. B.7-

B.9). An elliptic equation for the pressure is obtained by using the divergence operator on

Eq. B.9. 

(B.10)

The above equation is a second order approximation to the equation for pressure.
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The equation for pressure and its second order accurate discrete form are shown below. 

(B.11)

(B.12)

Using the semi-implicit trapezoidal updating procedure, a second order scheme is

obtained without any complicated pressure updating. A Poisson equation is obtained for

pressure unlike the higher order equations encountered in other formulations. The

equation set B.7-B.9 is solved using a fixed point iteration. Initial estimates for the flow

quantities at time step “n+1” can be obtained using forward extrapolation in time.

In case of reacting flows, species conservation equations also need to be

integrated in time. These are handled in much the same way as the mass conservation

equation, except that U is now replaced by species concentrations and the extra diffusion

and destruction (/production) terms are also updated using a trapezoidal scheme. This

procedure is followed here only in simulations where the scalar transport equations are

solved using finite difference methods. 
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Spatial discretization

The finite-difference grid layout is identical to the finite-volume grid layout. The

half points ([i+1/2,j,k], [i,j+1/2,k] etc.) and the grid points ([i,j,k], [i+1,j,k] etc.) on the

finite-difference grid used here correspond respectively to grid cell faces and grid cell

centers of a finite-volume grid.

Here, an upwind biased (QUICK) interpolation along the grid lines is used to

obtained the required quantities at half points. The error involved in such interpolations

does not affect the second order accuracy of the scheme except when using highly

skewed grids. In such cases, a multi-dimensional upwind interpolation can be used. 

Consider the terms in A as defined in the previous section. The volumetric

dilatation (divergence of velocity field) is explicitly known. The remaining term is

discretized as follows.

(B.13)

where  is the coordinate on the computational domain.  is the metric of

transformation and is calculated using a second (or fourth) order finite-difference

approximation. 

The terms that account for the velocity acceleration due to advection and
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volumetric dilatation in  are also transformed into computational coordinates as

follows.

(B.14)

The volumetric dilatation is obtained explicitly in the zero Mach number

approximation. So the second term on the right needs no differencing. The derivatives of

 and  along the computational coordinate (required in last two equations) are

evaluated using a finite-difference approximation that is at least third order accurate. 

Central differencing of the convective terms is preferable since the truncation

error involved would add to the dispersion of the solution and the numerical dissipation is

relatively low.

In the current numerical method, the velocity discontinuities (across the

vaporization zones) are better captured with out any destabilizing oscillations if an

upwind biased approximation is used for the convective terms. The two requirements of a

numerical scheme (for LES), low numerical dissipation and oscillation free flame zones
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for determining the spatial stencil for discretizations. For the exothermic/endothermic
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flow simulations, the computational derivative in the convective term is computed as

follows.

(B.15)

where, subscripts “L” and “R” respectively denote the left biased and the right

biased fifth order finite-difference approximations. T of 0.5 produces a central difference

approximation. T is computed from the contravariant velocity  and is designed to be

0.5 in regions where the flow is sufficiently smooth. In regions of strong flow gradients,

it is closer to 0 or 1 depending on the contravariant velocity direction, thus producing a

upwind biased finite-difference approximation for the gradient. Given that the upwind

biased finite-difference operators are at least fifth order accurate, better than second order

accuracy is maintained at all times. 

The diffusive terms are calculated using central difference approximations. For a

variable q with diffusivity , the diffusion term is approximated as follows. 
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where, J is the jacobian of the transformation  and  is called

the mesh skewness tensor computed as follows.

(B.17)

A generic second order, 19-point stencil (discussed in the next section) is used to

discretize the Laplacian operator on the computational grid.

Poisson solver
The Poisson equation in curvilinear coordinates has the form:
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the pressure at a given point are independent of the velocities at that point. Further, if the

pressure update in the corrector step also uses a central difference approximation for the

pressure gradient, the velocity at a given point depends only on the pressure values at

neighboring nodes and not on the pressure at that point itself. The velocity and pressure

fields can completely be decoupled in space. When a non-symmetric interpolation

scheme (like QUICK) is used, the decoupling is prevented since the source term in the

Poisson equation, at a given location, depends on the momenta  and  at

that location.

Note that the metrics  and  are required at half

points along the  line. A second order scheme is used to discretize the source term in

the above equation.

(B.20)
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expression for the source term. In a finite-volume sense,  can be viewed as a correction

to the mass flux vector across grid cell faces (half points). This correction ensures mass

conservation within a virtual finite-volume centered around each grid node. In constant

density flows, the velocity field at the advancing time step is divergence free. In order to

ensure this upon completion of the split scheme, the source term is calculated by setting

the divergence of  to zero in the above equation.

For discretization of the Poisson equation, we define  as . The

Laplacian of pressure in the computational domain can now be discretized as shown

below.

(B.21)
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not needed. It has also been observed that in high vaporization cases, point Jacobi is more

efficient than other schemes.

Order to accuracy
The order of accuracy of the present scheme is determined here by simulating a

flow with a known unsteady, analytical solution. The flow corresponds to the single

mode decay of a two-dimensional periodic velocity field. 

(B.22)

(B.23)

(B.24)

This flow has often been used to test the accuracy of numerical methods designed

for simulating laminar flows. A cubical domain is considered for these simulations. The

initial solution is advanced for 20 non-dimensional time units using various grid
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simulation times.

While the order of accuracy test shows that the present scheme is second order

accurate, the nature of the error is unknown. Dispersive errors lead to spurious high

wavenumber modes and dissipative errors lead to artificial damping of the fluid dynamic

eddies. In unsteady turbulent simulations, the dissipative errors should be kept minimal in

order to capture the energy dynamics accurately and at the same time, the high

wavenumber modes should not be severely affected by the dispersive error. The results

from the stochastically forced isotropic turbulence simulations (described in chapter V)

indicate that the current DNS/LES solver is numerically accurate to model all the

resolved scales of interest.
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