NCRAR Workshop

Ototoxicity Early Identification & Monitoring

VA Rehabilitation Research & Development National Center for Rehabilitative Auditory Research

Outline

- I. Learner Outcomes
- II. Overview: Basic Principles
- III. Tinnitus Monitoring
- IV. Ototoxicity Monitoring in Adults
- v. Objective Monitoring
- VI. Ototoxicity Monitoring in Children
- VII. Establishing Program

IV. Monitoring Hearing in Adults

Kelly M. Reavis, M.S., CCC-A

Test Characteristics

Sensitivity & Specificity

- (high hit rate & low false positive rate)
- Reliability (test-retest)
- Time efficiency

Sensitivity & Specificity

• Sensitivity (hit rate)

 Percentage of times ears with hearing change identified as having hearing change by the experimental measure

- 100% - sensitivity = false negative or miss rate

- Specificity (correct rejection rate)
 - Percentage of times ears with no hearing change are correctly labeled as no change by the experimental measure
 - 100% specificity = false positive or false alarm rate

Sensitivity & Specificity

Reliability & Time Efficiency

Reliability (test-retest)

- Determine size change (e.g., in pure-tone threshold or OAE amplitude) likely to be real and not random variability
- Significantly different change with 0.05 level of confidence provides 95% probability that change is real
- Time Efficiency (clinically practical)

Monitoring Principles

- High- to low- frequency progression
- High-frequency testing is reliable (Fausti et al., 1998; Frank, 1990; Frank & Driesbach, 1991; Gordon et al., under review)
- Studies have shown the efficacy of high
 - **frequency monitoring** (Dreschler et al., 1989; Fausti et al. 1984; Jacobson et al., 1969; Ress et al., 1999; Tange et al., 1985; Van der Hulst et al., 1988; Fausti et al., 1993; Fausti et al., 1994)
- Studies have shown testing in 1/6-octave intervals provides earlier detection (Fausti et al., 2003; Vaughan et al., 2003)
- Individualized protocols targeting the highest frequencies a person can hear

Keep in Mind

- There are no normative high-frequency sensitivity (i.e., threshold) standards due to lack of standardization in
 - calibration,
 - instrumentation,
 - and methodological procedures

Fausti SA, Frey RH, Rappaport BZ, Schechter MA. Highfrequency audiometry with an earphone transducer. Sem Hear 1985;6:347-357

Keep in Mind

- There is also a high degree of intersubject threshold variability in high frequency sensitivity
 - Threshold variability increases with age (in elderly) and with higher test frequencies

Schechter MA, Fausti SA, Rappaport BZ, Frey RH. Age categorization of high-frequency auditory threshold data. J Acoust Soc Am 1986;79:767-771.

Matthews LJ, Lee FS, Mills JH, Dubno JR. Extended highfrequency thresholds in older adults. J Speech Lang Hear Res 1997;40:208-214.

Does it Matter for Monitoring?

- However, the key to serial monitoring is intrasubject reliability
- High-frequency test-retest threshold variability is within a clinically acceptable range (<u>+</u> 10 dB)
- As a result, monitoring near individual's high-frequency hearing limit is effective

ASHA Change Criteria

> 20 dB change at 1 test frequency

> 10 dB change at 2 adjacent test frequencies

Loss of response at 3 consecutive test frequencies where responses were previously obtained

*Change confirmed by retest

ASHA Change Criteria

- Normal variability in pure-tone thresholds occurs at random frequencies
- Threshold shifts at adjacent test frequencies indicate more systematic change (Atherly, 1963; Dobie, 1983)
 - Notion of examining threshold shift across frequencies
- Threshold shifts on repeated tests are also a stronger indication of a true threshold change (Royster & Royster, 1982)

1/6th Octave Testing Provides Earlier Detection

1/2 Octave vs. 1/6 Octave

1/2 Octave Protocol			
Test Frequency (kHz)	Change From Baseline		
<u><</u> 8	0		
11.2	+10		
16	5		

1/6 Octav	e Protocol	
Test	Change From	
Frequency	Baseline	
(447)		
(N12)		
< 8	0	
9	5	
40	_	
	9	
11.2	+10	
12.5	+10	
14 +10		
16	5	

1/2 Octave vs. 1/6 Octave

1/2 Octave Protocol			
Test Change Frequency From (kHz) Baseline			
1	0		
1.5	0		
2	0		
3	0		
4	0		
6	5		
8	+10		

1/6 Octave	e Protocol		
Test Frequency	Change From		
(KH2) 1	0		
1 2	0		
3 4	0 5		
6	5		
6.35	+10		
7.13	+15		
8.00	+10		

1/6th-Octave vs Conventional

	AMG (N=25 ears)	Cisplatin or Carboplatin (N=185 ears)
Percentage of Ears Missed or Detected Later	28%	37%

Compared to testing in 1/6th-octave steps above and below 8 kHz, testing conventional frequencies alone resulted in initial ototoxic hearing change missed or detected later in 76/210 ears Number of Frequencies between 2 – 20 kHz in 1/6 Octave steps?25 Test Frequencies x 2 ears = **50 Test Frequencies** OUCH!

Individualized Sensitive Range for Ototoxicity (SRO)

Highest Audible Frequency

Highest Audible Frequency 0.5 10 11.2 12.5 14 -10 Threshold (dB SPL) NR

Initial Ototoxicity Detection

SRO Principle

- Thresholds > 100 dB SPL remain unchanged
- Most initial changes seen within one octave below the highest audible frequency
- Range for each individual is unique and specific to their hearing configuration

A sensitive range for ototoxicity (SRO) is the uppermost frequency with a threshold $\leq 100 \text{ dB}$ SPL and 6 lower consecutive frequencies in $1/6^{th}$ octave steps

Case Example using SRO

Sensitivity: SRO 1/6th Octave

	Total (Ears)	Hit	Miss	Initial Change on SRO
AMG	54	46	8	85%
Cisplatin	226	207	19	92%
Carboplatin	59	50	9	85%
Total	339	303	36	89%

Fausti SA, Helt WJ, Phillips DS, Gordon JS, Bratt GW, Sugiura KM, Noffsinger D: Early detection of ototoxicity using 1/6th-octave steps. *J Am Acad Audiol* 14(8):444-50, 2003.

Example SRO Above 8 kHz

Example SRO Below 8 kHz

Example SRO Below 8 kHz

Case Example of Ototoxic Threshold Shifts: SRO < 8 kHz

SRO Principle

S = **Sensitive**, detects ototoxicity 90% of the time

R = **Range**, 1 octave in 1/6 octave steps (7 frequencies) at the upper limits of hearing

O = **Ototoxicity**, early detection is key

Ototoxicity Identification Device

A portable, handheld audiometer-like device that will enable timeefficient, reliable and sensitive early detection of ototoxicity.

Specificity: Booth vs. Ward

False Positive rate, using ASHA Criteria						
	Booth		Ward			
Earphone Type	<u>></u> 20 dB at 1 Frequency	≥ 10 dB at 2 Consecutive Frequencies	≥ 20 dB at 1 Frequency	≥ 10 dB at 2 Consecutive Frequencies	Frequency Range	
Koss Pro/4X*	0%	0%	0%	7%	2, 5-16	
ER-4B*	0%	0%	0%	0%	2, 5-16	
Sennheiser HDA 200**	0%	2%	n/a	n/a	8-16	

*Gordon JS, Konrad-Martin D, Phillips DS, Helt WJ, Fausti SA: The evaluation of insert earphones for high-frequency bedside ototoxicity monitoring. *JRR&D*, under review.

**Frank T: High-Frequency (8 to 16 kHz) reference thresholds and intrasubject threshold variability relative to ototoxicity criteria using Sennheiser HAD 200 earphone. *Ear & Hearing* 22 (2): 161-168, 2001

Technical Considerations

Audiometer

- High frequencies and 1/6th octave capability
- Capable of high output with low noise floor
- Portable

Earphone Selection

- High frequency capability
- High output capability
- Insert ER-3A and Circumaural TDH-39/49 WILL NOT work for high frequency measurement

Calibration

Technical Considerations

- Earphone placement
- Stimulus Tone:
 - Pulsed
 - Increase duration of tone presentation
- Ambient Noise:
 - Single-walled vs. Double-walled sound booth
 - Hospital ward testing
 - Make noise measurements
 - "Do Not Enter Test in Progress" sign
- Listening check:
 - High frequencies, High Output

CONSISTENT EARPHONE PLACEMENT IS KEY

Conclusions

Evidence-based protocol

Time-efficient protocol

Portability

- High frequencies are reliable
- Sensitive Range for Ototoxicity (SRO) exists
- ~90% initial detection rate using SRO
- Only 7 frequencies in SRO
- OtoID
- Earphones can be used on ward