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Introduction 
 

This is an introduction to some of ideas of relativity.  Along the way we will 
shoot at a stop sign, take the square root of minus one, derive E  = mc 2, and 
stumble across antimatter. 
 
 
Dots on a piece of paper 
 
 Let me start by drawing a couple of dots on a piece of paper, and then -
wait for it - connect the dots.  Sort of like this: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The distance between the two dots is given by the Pythagorean theorum: 
the square of the hypotnuse is the sum of the squares of the sides.  Or, to put it 
differently, 

( ) ( )222 yxR += . 
 

Now imagine that this paper is sitting on the table in front of me, and you 
are sitting just a bit to my right.  This is what you will see: 
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Again, the square of the hypotenuse is the sum of the squares of the two 
sides - but the sides are different from this other point of view.  I've drawn the 
sides to indicate the distance from left to right and from top to bottom; since you 
are looking over my shoulder, your left and my left are in slightly different 
directions.  But the distance between the dots is the same: 

 
( ) ( )222 '' yxR += . 

 
This is all you need to understand the principle of relativity. 

 
The distance between the two dots is the same, independent of viewpoint.  

As such it is, in a certain sense significant.  The span of the figure from left to 
right or top to bottom does depend on your viewpoint; it is relative while R is 
absolute.  In dweeb, we say that R is an invariant, or that it is conserved.  Not 
only is R absolute, the form of the equation is also absolute; the Pythagorean 
theorum is true from both points of view. 
 

Another terminology, which is more popular among dweebs nowadays 
than in Einstein's time, is that of symmetry.  Here is a picture of a symmetric 
object: 
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To be precise, to say that this picture is symmetric is to say that if we flip 
this drawing over horizontally, it will look the same.  In the example of the dots on 
the paper, the Pythagorean equation looked the same from the two points of 
view, and the distance between the dots was also the same from both 
viewpoints.  Dweebs call these things symmetric under rotations. 
 

There are reasons why symmetry as we call it has become such an 
important idea in 20th century physics.  The first reason is that symmetries 
provide a simples test that we can apply to theories to see if they could even 
possibly be true.  Suppose for example, that I draw a triangle on a piece of paper 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
and that I try to remember some of that old geometry class, and that I work with 
this triangle and come up with a proof that the sum of those three angles is 173 
degrees. That is my theory.  Right, you say.  Since you are looking over my 
shoulder, you have a different view of the paper 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
but you can still go through the steps of my proof of my theory, from this different 
point of view.  And you do.  But you get a different result: you conclude that the 
sum of these three angles is 184 degrees.  Now neither of us believe my theory 

 
   
 
 
 
 
 
  
   
 
 
 

 
   
 
 
 
 
 
  
   
 
 
 



anymore!  It failed to pass the symmetry test.  My "proof" has some flaw of some 
sort, and it doesn't work for everyone.  It is relative, and does not tell us anything 
that we could possibly think of as being absolutely true.  It still might not be a 
valid proof even if it does pass the symmetry test, but it certainly will not tell us 
anything if it fails this test. 
 

This is one of the reasons why dweebs like symmetry; it helps us get rid of 
bad proofs and other dumb ideas quickly.  By disregarding things that are 
relative, we can focus on what might be absolutely true.  In a way, the term 
relativity is unfortunate; the idea is really to classify things as either relative to 
your viewpoint or else absolute, and then to focus on the absolutes.  It might 
have saved some of us some confusion if it had been called absolutivity rather 
than relativity! 

 
The other reason why dweebs like symmetry are more mundane.  There 

is a lot of mathematics available to throw at problems when they have some kind 
of symmetry in them. 
 

The principle of absolutivity was not invented by Einstein.  It dates back to 
Newton at least.  What Einstein did was apply it to the laws of electricity and 
magnetism that were discovered in the mid-19th century.  Although by 1905, 
when Einstein published his theory, these laws were being used to invent all 
sorts of things (Marconi had managed to put England and the U.S. in radio 
contact in 1903), the dweebs were still puzzled by them.  The things for which 
Einstein are famous are the result of applying the principle of absolutivity to 
these laws, rather than the priniciple itself. 

 
One of the famous discoveries is that in some ways, time is like space.  Here is 
how that works.  Instead of labeling our dots with x and y, use x and t, where x 
is a spatial dimension and t is time.  
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This picture is a way of representing an object which is at one place at one time 
and another place at another time.  Say, a car.  The change in the position is x 
and the change in time is t, and the speed is (x /t).  Now, speed is a relative 
quantity.  From the point of view of someone in the car, it does not appear to be 
moving at all.  From the point of view of someone in the car, all that stuff outside 
the car is moving backwards but the car is stationary.  So from that viewpoint, 
time passes, but there is no change in position; x' is zero.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
  
By putting a time dimension on a piece of paper with a space dimension, 

we can easily represent changes in the speed of the viewer.  Changing from the 
viewpoint of someone standing by the side of the road to the viewpoint of 
someone moving along the road is as easy as rotating the paper. 

 
Again, it didn't take Einstein to figure this out.  This method of plotting 

things is very old.  But next we will do the kind of thing that it did take Einstein to  
do, at least the first time.  We look for absolute quantities.  We look for numbers 
or equations that will be true no matter how the paper is turned. 

 
First guess:  use the Pythagorean theorum.  Heck, it worked the last time, 

so start with 
( ) ( )22 xt + . 

 
Is this an absolute quantity or a relative one? 
 

Wrong!  Trick question!  It isn't either.  It is gibberish.  You see, x is a 
distance and so x2 is an area - square meters or square feet or some such.  But 

 
   
 
 
 
 
  
                      t' 
 
 



t is a time and so t2 is square seconds.  You can't add square meters to square 
seconds any more than you can add apples to oranges. 
 

So we need to turn the seconds into meters, or vice versa.  To turn 
seconds into meters, you need a speed, a velocity; multiply time by speed and 
get distance.  But which velocity?  Since we are trying to build a formula for an 
absolute number, it is probably a good idea to use an absolute number in the 
recipe.  There is one, and only one, absolute speed: the speed of light.  From 
every viewpoint, the speed of light (c  = 299,792,458 meters/second = 
670,616,629 miles per hour) is exactly the same. 

 
All of the wierd stuff in the theory of absolutivity is contained in that 

statement: the statement that the speed of light is always the same.  Here is an 
example of just how wierd that really is. 

 
Suppose I have a 0.308 which fires bullets at 1900 miles per hour.  I don't, 

but just say.  And suppose further that we are flying down the highway at some 
totally unsafe speed, like 100 miles an hour, and I lean out the window and start 
shooting.  In real life, I drive a bit on the slow side while listening to Twila Paris, 
but just say.  Those bullets are gonna hit that stop sign at 1900+100 = 2000 
miles an hour.  They'll go right through, too.  Now suppose further that this rifle 
has a laser sight.  The laser light leaves the rifle at 670,616,629 miles per hour 
and it hits the stop sign at the exact same speed.  It does not hit the sign at 
670,616,629+100 = 670,616,729 miles an hour.  It hits the sign at 670,616,629 
miles per hour. 

 
Between the time when the first clues appeared that light does this, and 

the time that we dweebs really settled down about the idea, there was about a 
half a century of experiments and studies.  The story of that half century is very 
interesting, although I won't go into it here. But I will say that when you read 
today about Einstein's results of a century ago, you are probably reading a very 
sharply edited version of a very long history. 

 
OK.  So now we have an absolute number to convert seconds into 

meters, and we are ready for a second try at trying to construct an absolute 
quantity for space-time: 

( ) ( )22 xct + . 
 

Now we are adding apples to apples.  But we are still not creating an 
absolute number; this quantity is relative and will come out to a different number 
depending on one's viewpoint. 

 
Here is the simplest way to construct an absolute number for space-time.  

Imagine a car of width w  moving along a road at a speed v.  Inside the car, on 
one side of the car, a little light turns on.  The light goes across the car and gets 
to the other side in a certain time, t, which is the width of the car divided by the 



speed of light: t = w /c .  What does the situation look like from the point of view of 
someone outside of the car?  Well, the arial photography will look like this: 

 
 Here is the car, and the light is shown in red.  It is just starting its trip. 
 
 
 

 
  
 
 

After the light is about half way across the car, and the car has moved 
some down the road, the situation looks like this: 

 
 
 

 
  
 
 

And by the time the light is all the way across the car, the car has moved 
still further down the road: 

 
 
 

                            c t'                                        w   
  
 
 

                      vt'  
 
The light has traveled a distance c t', and the car has travelled a distance 

vt'.  Notice that I write t' rather than t.  If we used t here, it would mean that we 
are assuming that time is absolute.  But we need more imagination than that to 
solve this problem.  We have to imagine that time, or indeed anything, is relative 
until we can prove that it is absolute.  So we explicitly allow that the nature of 
time will seem to be different depending on ones point of view.  Now c t', vt', and 
w  = c t are distances in ordinary space and we can apply Pythagorus' theorum: 
 

( ) ( ) ( ) ( )2222 '' ctwtct ==− υ . 
 

Things will be a little simpler later if we swap the names.  From now on, 
what used to be t is t' and vice-versa. 
 

( ) ( ) ( ) ( )2222 'ctwtct ==− υ . 
 



What is the absolute quantity here?  The absolute truth, the thing that is 
true both from the viewpoint in the car and from the viewpoint outside the car, is 
that the car has width w .  The equation above gives three ways to write the 
number that is the car's width squared, and it shows that the time for the light to 
travel across the car is not an absolute quantity. 

 
This equation is physically correct - light really does work like this - but it 

does not look like what we were expecting.  The term (vt) is a distance, so we 
could call it x, but we don't have anything that looks like (c t)2 + (x)2; we have  
(c t)2 - (x)2.  Actually, since the width of the car is a distance like x, but in a 
different direction, it is a distance in a second space direction.  If we call the 
distance in the second direction by its usual name, which is y, and subtract it 
from the equation we get 
 

( ) ( ) ( ) zeroyxct =−− 222 . 
 

What about the third spatial dimension, z?  As long as the shocks are OK 
and the road is smooth, the car does not move up and down, and neither does 
the light.  Since there is no change in the altitude of the car, z = 0  and we can 
subtract (z)2 and still have an absolute number: 
 

( ) ( ) ( ) ( ) zerozyxct =−−− 2222 . 
 

Now we have more minus signs than plus signs!  And besides, the original 
form of the Pythagorean theorum, before we started to try to get time involved, 
had (x)2 + (y)2 in it.  Out of desperation, we multiply this absolute number (zero) 
by minus one 

( ) ( ) ( ) ( ) zeroctzyx =−++ 2222  
 

and by golly, now we have something.  We have the Pythagorean theorum for 
four dimensions.  The factor c  is still in there to turn seconds into meters, and for 
some reason there is a minus sign in front of the time coordinate, but otherwise 
this is some distance, squared.  Because we constructed this expression by 
adding, subtracting, and multiplying absolute quantities together, so we know 
that this thing, whatever it is, will be the same from all points of view. 
 

What we have here is useful enough to be given a name.  The proper 
distance ∆  is defined by 

( ) ( ) ( ) ( ) ( )22222 ctzyx −++=∆ , 
 

and it is the distance between two points in four dimensional space-time.  It also, 
as in the example of the light in the car, going to be zero for light or for anything 
travelling at the speed of light.  Sometimes, when we look at an object from a 
viewpoint where it does not seem to move, ∆ 2 can be negative! 
 
 



The square root of minus one 
  

What is the square root of minus one?  One squared is one, so one is a 
square root of one.  Minus one squared is one also, so minus one is also a 
square root of one.  What number is there that has a square of minus one?  
Good question.  Let's go back to the dots. 

 
 

 
 
 
Here are four dots.  You can see them, they are right there on the paper 

or the computer screen or whatever.  There are the dots.  Where is the four? 
 
The four is not in, on, under or near any of the dots.  It is between your 

ears.  "Four" is a word we use to describe the world, but it is not a word for any 
specific thing in the world.  Maybe there might even be languages in which there 
is no word for four, and people who speak those languages will have a harder 
time to describe those dots than you or I.  A number is an abstract mental object 
that we can use to describe the universe.  An equals sign means that the 
abstract mental object on the left side of the equals is the same abstract mental 
object as the one on the right side of the equals.  All that a mathematician really 
requires of numbers is that they follow some consistent rules.  Apart from that, 
you can make up any number you want.  In fact, all the numbers are made up. 

 
And right now, we are going to make up another number.  This number 

has one key property: if you multiply it by itself, you get minus one.  We will call 
the number i, and actually it turns out to be a fairly useful number.  The square 
root of -1, and numbers which are proportional to it, are called imaginary 
numbers.  That is not a really good name in that all of the numbers are 
imaginary.  Even real numbers. 

 
I will show you some things that you can do with i.  Since I am not a real 

mathematician, I am not show you a real proof.  Instead, I am going to ask you to 
take out your calculator and check a few things. 

 
My first claim is that if θ is an angle in radians, and it is pretty small, (like 

0.02 or -0.004) then sin(θ) is very close to 
 

( ) 1206sin
53 θθθθ +−≅ . 

 
So for example, let's try an angle of -1.75 degrees.  In radians, that is (-1.75) 
times (π /180) = -0.030543262 radians.  Then θ3 is -0.000028494 and θ5 is 
-0.000000027, and the thing on the right is -0.030538514,  which is indeed the 
sin(-1.75 degrees).  Each of the three terms on the right is smaller than the one 
before it, and there are even more terms which are even smaller which I have 



not written out.  The thing on the right side of the equation is called a series 
expansion.  In this, as in most series expansions, there are an infinite number of 
terms but they become infinitely small so that the sum is finite. 
 

My second claim is that if θ is again an angle in radians, and it again 
pretty small, cos(θ) is very close to 

 
( ) 2421cos

42 θθθ +−≅ . 

 
You may haul out your calculator, pick a few small numbers for θ, and 

check me. 
 
My third claim is that if θ is again a pretty small number, then the 

exponential eθ is very close to 
 

12024621
5432 θθθθθθ +++++≅e . 

 
So for example, if θ is 0.1, then I claim that eθ will be 
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Is it true?  If you are good with a spreadsheet program, you can make plots of 
the sin, the cos, and the exponential functions and compare them to the series 
that I have written out. 
 

Now here is my last claim: 
 

( ) ( )θθθ sincos iei +=  
 

And I will try to convince you using these series expansions.  From the 
series expansion for the exponential,  

 

( ) ( ) ( ) ( ) ( )
12024621

5432 θθθθθθ iiiiie i +++++≅ . 

 
but since i2 = -1, this is 

( ) ( ) ( ) ( )
12024621

5432 θθθθθθ iiiie i +++−+≅ . 

 
Now if i 2 = -1, then i 3 = i (i 2) = i (-1) = -i, and i 4 = (i 2) (i 2) = (-1)(-1) = 1.  
Therefore, 

( ) ( )
12024621

5432 θθθθθθ iiie i ++−−+≅ . 



 
I will leave it to you to figure out what i5 is, but the next step is to re-arrange the 
terms: 

 [ ] [ ]12062421
5342 θθθθθθ iiie i +−++−≅ . 

 
and if you factor the i out from the second square brackets, voila!  Now, since I 
only showed you that these series expansions work for small numbers, you have 
no reason to believe that it will work for bigger numbers, like for θ = π radians.  
Actually, it will work, but I will let you try to prove that yourself. 
  

Here is what we will do with the square root of negative one: we re-write 
the formula for the proper distance to have all plus signs. 

 
( ) ( ) ( ) ( ) ( )22222 ictzyx +++=∆ . 

 
When you hear that in Einstein's theory, time and space are the same, 

this is what it means: if you take time and multiply it by the speed of light and the 
square root of -1, then you have a number that looks like a distance in the more 
general form of Pythagorus' theorum.  There are other ways in which time is still 
quite different from space.  Our minds - which probably are not the same as our 
brains - perceive time as flowing past us but do not see space as having a past 
or a future.  The theory of absolutivity does not really address that.  The theory of 
absolutivity puts times in the past and times in the future on the same footing at 
the very outset; it ignores the one-directional flow of time entirely. 
 
 
Speeding right along 
  

In everyday language, we have the words speed and velocity.  We tend to 
use them interchangeably and by them we mean how much distance a moving 
object will cover in a certain time.  Let us look at the proper distance and take the 
terms like x, which indicate a change in position, and divide them by time t, the 
span of time involved in that particular proper distance. 
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This thing has three numbers that look like what a dweeb would call the 

velocity:  they are vx = x / t, vy = y / t, and vy = y / t.  These three numbers, taken 
together, give not just how much distance the object has moved in the time t, but 
they also say how much of the motion was in the x direction, how much was in 
the y direction and how much is in the z direction.  Unlike in everyday use, a 
dweeb would mean a slightly different thing when he uses the word speed; 
precisely speaking, he means v, as defined by  v2 = vx2  + vy2  + vy2  .  I will just use 
speed here and not spend any more time hashing about the differences between 
speed and velocity. 
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Here is an equation for this thing that looks kind of like a velocity with an 

extra fourth dimension.  But it has a problem.  We made it by dividing the proper 
distance ∆ , which is an absolute number, by ordinary time t, which is a relative 
number.  The result is a relative number.  So while we can write a formula for 
(∆  /t ), it is not a very interesting thing. 

  
Another word that is used both in everyday language and by dweebs is 

momentum. The dweeb means mass times velocity.  I had better take a few 
minutes and talk about the word mass.  In physics, there are several different 
things that are very similar, and not all dweebs mean the same thing when they 
use the word. 

 
The first kind of mass is called the gravitational mass.  It is the mass that creates 
the gravitational field of an object.  It is conceptually different from the inertial 
mass, which is the mass that keeps a body at rest still in a state of rest unless 
acted upon by an outside force.  Or if you exert a force F  on an object, and it 
then gets some acceleration a, the inertial mass is the mass that you use for 
F  = ma.  These two kinds of mass do not have to be the same - but the universe 
is constructed so that they are.  We do not know why.  It is easy to imagine a 
universe in which they are different. 

 
In four dimensions, with the principle of absolutivity, we will find that inertia 

is a relative quantity,† but it is possible to divide out the relative part, leaving a 
quantity which is a mass of some kind and which is an absolute quantity. 

 
Some dweebs call the first quantity the relative mass and the second 

quantity the invariant mass, but not me.  When I say mass or write m , it is the 
second, absolute, quantity that I mean.  It is both how much the object responds 
to the force of gravity, and also is how much inertia the object has when you look 
at it from its own rest frame - i.e., a point of view in which the object is not 
moving. 

  
Now we can figure out the absolute momentum.  We have a velocity 

equation, and a carefully defined mass m, so the momentum p = mv would look 
like 

( ) ( )22
2
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† Actually, it turns out that not only does the amount of inertia that an object has depend on how 
fast it is moving, it also depends on the direction that the force is applied; so it seems from certain 
viewpoints that the direction of the force and the direction of the acceleration is different.  But this 
is too hard for me to try to derive here. 



Well, not quite.  Remember, this (∆  / t) is not an absolute quantity.  This 
number, (p)2 + (imc )2, is relative is because it is proportional to (v)2 + (ic )2  = 
v2 - c 2, which is relative.  If we divide out that v2 - c 2, the result will be an absolute 
quantity. 
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Multiply this equation by c 2, and you will have something interesting.  

Well, assuming that you are interested in this kind of thing.  Which you must be, 
or you would not have gotten this far, right?  Right.  And the reason why the thing 
you get is interesting?  It has mc 2 in it. 
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and therefore,  
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The stuff on the right is kind of complicated, but this quantity must be positive.  
That is because (as we will soon see and you have no doubt heard) no object 
can go faster than the speed of light.  So (v / c ) is less than one and ( )21 c

υ−  is 
positive and so is m2c 4 divided by ( )21 c

υ− .  The set of all the positive real 
numbers is the set of all the squares of the real numbers, so the quantity given 
by this equation is some real number, call it E , squared.  You can tell where I am 
going here. 
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where I have included the ± to remind us that there are both positive and 
negative square roots to a number.  This is the full form of the famous equation. 
 
 
The famous equation 
 

Now I must justify why this particular E  really is energy.  Look at the case 
where the velocity of the object is small compared to the speed of light.  In that 
case, we know from Newton that the kinetic energy is ½ mv2.  This proof needs 
an other series expansion. 
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At a low enough speed, we can forget the third term, and also all the even 
smaller terms which I did not write, so 
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There is the Newtonian ½ mv2.  There is no doubt that E  is the energy, 

somehow.  But there is an additional energy in an object equal to mc 2, that is 
there even when the object has no kinetic energy at all.  This energy is like a 
potential energy in that it is sort of hidden, but it can be released under certain 
conditions, such as in nuclear reactions. 
 

And there still is that ± sign, too.  What could it possibly mean that the 
energy is negative?  A moving object has positive kinetic energy and there is the 
rest energy of mc 2, but what is a negative energy?  It is like the opposite of 
moving but also not at rest.  Makes no sense! 

 
Between about 1905 and 1929, "makes no sense" is about the best 

answer that anyone had.  Sometimes equations have solutions that do not 
correspond to what happens in the real world, and we just ignore them.  But 
between 1927 and 1929, quantum mechanics was worked out and suddenly, 
negative energy began to make sense. 

 
Quantum mechanics is about the behavior of extremely small objects - 

electrons and protons and such.  The first example of quantum mechanics that 
most of us learn is the Bohr atom.  Niels Bohr suggested that maybe a hydrogen 
atom is a positively charged lump with an electron spinning around it - and that 
the angular momentum of the electron around the lump has to be a multiple of 

3410055.12/ −×== πhh  kg-m2/s.  The very small size of h is why quantum 
mechanical effects only matter for very small objects.  But the thing I want to 
focus on is the units.  Angular momentum is a radial distance times a 
momentum: (meters)(kilogram-meters/second).  Energy, as you can tell from the 
form mc 2, is kilograms by (meters/second)2.  Energy multiplied by time is the 
same units as angular momentum. 

 
In quantum mechanics, what we do with the energy once we have it is 

multiply it by time and compare it to h .  Everywhere we have E , we have h/Et .  
Which means that negative energy is the same as negative time; a particle with 
the negative sign in the famous equation is a particle moving as if time is going 
backwards for it.  That is what antimatter is - matter for which time seems to be 
going backwards. 

 



Remember!  All of our theoretical machinations here ignore the existence 
of past and present at the very outset.  So we can not conclude that a human 
being made of antimatter rather than matter would remember tomorrow and look 
forward to yesterday. 

 
A particle of antimatter has the same amount of inertia as the same 

particle of matter.  In otherwords, the antimatter form of a proton has the same 

m  as the matter form of a proton, and ( )22 1 cmc υ−  will be the same for a 
proton and an antiproton at any given speed.  But the charge will be different.  
Here is why. 

 
Imagine two plates of metal with some electric charge on them and a 

proton in between.  The proton, being positively charged, will accelerate away 
from the positive plate and towards the negative plate.  If it starts at rest, it will 
soon have some speed, call itV, towards the negative plate.  Now imagine the 
process happening in reverse:  a particle starts out with speedV towards the 
positive plate slows down to a stop. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
In the figure, the red dot shows the motion of a positively charged particle 

going forward in time as you read down the page.  The blue dot is a particle of 
the same mass, but which moves as if time were reversed.  The red dot ends 
with a velocity towards the negative plate, and the blue dot starts with a velocity 
towards the positive plate. 

 
Now, if a particle starts moving towards a positive plate and slows down to 

a stop, what charge does it have?  Positive.  The antiproton is a particle with the 
same mass as a proton, but with the opposite charge.  More generally, 
antimatter has the same mass as matter, but has the opposite electrical charge.  
It also has the opposite "charge" for other forces, like the nuclear binding force.  

 
Now here is an interesting question.  Does antimatter have a gravitiational 

mass opposite to matter?  Remember, we said that the gravitational mass is the 
one which decides what the force of gravity is on an object.  The inertial mass is 
the one which is m  in mc 2; and that the universe is created somehow so that 
they are actually the same.  But (for no reason that anyone can explain) the 
universe is made out of matter, mostly.  So all of our experiments that show the 
equivalence of gravitational and inertial mass are done with matter.  We have no 
experiments for antimatter; maybe it has an opposite gravitational mass.  Maybe 
antimatter falls up! 

 
Well, probably not.  Here is why.  When an electron and an anti-electron 

collide, they become a particle of light, called a photon.  Similarly, a photon can 
turn into an electron and an anti-electron†.  Suppose that happens, and the 
photon comes out going down.  As the photon falls, it gains energy from the 
gravitational field.  Then imagine that the photon splits again into an electron and 
an antielectron.  It will take some amount of energy, call it U , to lift the electron 
against the force of gravity back to the initial point.  If antimatter falls up, then 
one gets U  energy out by moving the antimatter up.  So if antimatter falls up, 
there is no net energy needed to lift the electron / anti-electron pair; but then the 
process can be repeated, putting still more energy into the system.  If antimatter 
falls up, maybe we can get infinite amounts of energy out of nowhere.  That 
seems pretty unlikely.  So, although there are no experiments to prove it, we 
expect that anti-matter falls down. 
 
 
Breaking the speed limit 
 

With the famous equation (in its full form) we can also see that objects 
can not go faster than the speed of light.  Start at v = 0.  Then E  = ±mc 2.  
neglecting our wierd little ±, the energy of the object is at its smallest possible 
value.  As the speed increases, the energy increases also.  At v = c  / 2, the 

                                            
†I am simplifying.  At best, one gets two photons.  And probably other things have to happen.  But 
the soundness of the argument is unchanged. 



energy is ±1.41421mc 2; at v = 0.9c , it is ±2.29416mc 2.  As the speed 
approaches the speed of light, the energy that you need to put into the object 
increases infinitely.  At v = c , in fact the energy goes straight up to infinity: 
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Unless you have an infinite supply of energy, you can not get an object to move 
faster than the speed of light.  You can keep pushing on it, but it will not move 
any faster.  In other words, inertia is relative - if you take a viewpoint where an 
object is already moving quickly, then you will see the object be very resistant to 
further acceleration. 
 

So then how can light go at the speed of light?  Any real number, like mc 2, 
when divided by zero, is infinity.  But zero divided by zero is another matter.  
Zero divided by zero calls for highly trained specialists - but it can be done.  Light 
can travel at the speed of light because it has m  = 0.  That is, it has no inertia 
and does not create a gravitational field.  Any massless object will also travel at 
that same speed - it is the maximal possible speed that the universe allows. 
 

So what this shows is that an object going slower than the speed of light 
can not get to above lightspeed.  What about the possibility of objects that start 
at above the speed of light?  The idea exists; such things are called tachyons.  
But although they have a name, they probably do not exist. 

 
In quantum mechanics, we have wavefunctions; in your chemistry class, 

they may have been called orbitals and used to help picture the shapes of 
molecules.  We do not really know the exact location of a particle quantum 
mechanically, but the wavefunction tells us the probability of finding the particle 
at any given place. 

 
If you write down a mathematical expressions for a wavefunction, it will 

have a factor h/iEte  in them. 
 
Suppose that somehow we had an object that got to be moving faster 

than the speed of light.  Then the energy becomes an imaginary number: 
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For the positive root, h/iE   is a negative number, so the wavefunction is 
proportional to e(a negative number)t.  As time goes on, t gets bigger, and the 
wavefunction gets smaller and smaller.  The probability of finding the particle 
diminishes with time - the particle disappears!  The negative root is even 
stranger.  For the negative root, the wavefunction is proportional to 



e(a positive number)t.  Your odds of finding the particle increase infinitely as time goes 
on!  Not much chance of that.  The idea of tachyons does not mix well with 
quantum mechanics. 
 


