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ABSTRACT

Ageostrophic baroclinic instabilities develop within the surface mixed layer of the ocean at horizontal
fronts and efficiently restratify the upper ocean. In this paper a parameterization for the restratification
driven by finite-amplitude baroclinic instabilities of the mixed layer is proposed in terms of an overturning
streamfunction that tilts isopycnals from the vertical to the horizontal. The streamfunction is proportional
to the product of the horizontal density gradient, the mixed layer depth squared, and the inertial period.
Hence restratification proceeds faster at strong fronts in deep mixed layers with a weak latitude depen-
dence. In this paper the parameterization is theoretically motivated, confirmed to perform well for a wide
range of mixed layer depths, rotation rates, and vertical and horizontal stratifications. It is shown to be
superior to alternative extant parameterizations of baroclinic instability for the problem of mixed layer
restratification. Two companion papers discuss the numerical implementation and the climate impacts of
this parameterization.

1. Introduction

A typical oceanic stratification and shear allows two
types of baroclinic instability (Boccaletti et al. 2007,
hereafter BFF): deep mesoscale instabilities spanning
the entire depth and shallow submesoscale instabilities
trapped in the weakly stratified surface mixed layer
(ML). The troposphere and its surface boundary layer
provide two analogous types of instability (Blumen
1979; Nakamura 1988). The shallow ML instabilities are
ageostrophic baroclinic instabilities (Stone 1966, 1970,
1972a; Molemaker et al. 2005) and differ from the deep
mesoscale instabilities in their fast growth rates O(1
day�1) and small scales O(1 km). BFF suggest that ML
instabilities play an important role in restratifying the
upper ocean after strong mixing events.

Presently ocean models use a variety of boundary
layer parameterizations to represent the processes that
mix away stratification in response to surface forcing
(e.g., Kraus and Turner 1967; Price 1981; Price et al.
1986; Large et al. 1994; Thomas 2005), while ML re-
stratification occurs only by surface heating. Dynamical
restratification by slumping of horizontal density gradi-
ents within the ML is typically ignored. As a conse-
quence, ocean models have a bias toward weak near-
surface stratification (e.g., Oschlies 2002; Hallberg
2003; Chanut et al. 2008). Large-scale ocean models are
beginning to resolve deep mesoscale eddies with O(10
km) grids, but resolving restratification by submeso-
scale instabilities requires O(100 m) grids. Submeso-
scale instabilities are subgridscale even in “eddy resolv-
ing” models.

In this paper scalings are developed for restratifica-
tion by finite-amplitude ML instabilities, herein re-
ferred to as mixed layer eddies (MLEs). These scalings
are tested in idealized simulations and formulated into
a parameterization. Two companion papers provide
more insight into the workings of the parameterization.
Fox-Kemper and Ferrari (2008, hereafter FF) compare
the parameterization with submesoscale-resolving
simulations and estimate the importance of MLE re-
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stratification from data. The numerical implementation
of the parameterization and its effects in realistic global
simulations are the subject of a third paper (Fox-
Kemper et al. 2008).

Tandon and Garrett (1995) first proposed that dy-
namical restratification occurs at lateral density fronts
in the ML after strong mixing events. However, they
considered only restratification by Rossby adjustment
of lateral fronts (Rossby 1937, 1938; Ou 1984; Tandon
and Garrett 1994). Young (1994) and Hallberg (2003)
derive parameterizations for the restratification by
Rossby adjustment. However, BFF show that most dy-
namical restratification occurs after the initial Rossby
adjustment, when ML instabilities reach finite ampli-
tude and start releasing the potential energy (PE)
stored in the front.

The parameterization developed here represents the
restratification by ML instabilities. Following Gent and
McWilliams (1990, hereafter GM), the restratification
is cast in terms of an eddy-induced streamfunction that
adiabatically overturns isopycnals from the vertical to
the horizontal. Scalings are derived directly for the
overturning streamfunction, in contrast to the tradi-
tional approach of using mixing length arguments to
relate fluxes to mean gradients via an effective diffu-
sivity. The proposed scaling depends only on finite-
amplitude properties of MLEs that are confirmed by
simulations.

There are many notable studies of baroclinic insta-
bilities in the ML. References for the linear analysis are
given in BFF. This work is closer in spirit to previous
studies at finite amplitude (Samelson and Chapman
1995; Spall 1997; Jones and Marshall 1993, 1997; Haine
and Marshall 1998). However, the focus here is a pa-
rameterization of ML restratification, which does not
appear elsewhere. It will be shown that MLEs restratify
importantly through an upward buoyancy flux; captur-
ing MLE horizontal fluxes is less important. The
strength of the vertical fluxes is predicted by the pa-
rameterization as a function of the lateral frontal buoy-
ancy gradient and the ML depth. The parameterization
applies to restratification by the submesoscale eddies
observed throughout the extratropics (Weller 1991;
Rudnick and Ferrari 1999; Hosegood et al. 2006). The
parameterization also recovers the scaling laws found
by Jones and Marshall (1997) and Haine and Marshall
(1998) for eddy transport and restratification during
deep convection at high latitudes.

The paper is structured as follows: Section 2 gives a
relevant phenomenology of MLEs through the study of
two idealized numerical simulations. Section 3 presents
the theory behind the parameterization. Section 4 vali-
dates the parameterization by diagnosis of the simula-

tions. Concluding remarks and a review of observa-
tional evidence of ML restratification are presented in
section 5.

2. Phenomenology of MLEs

Two numerical simulations are used to gain a sense
of the phenomenology of MLEs. The first contrasts and
connects mesoscale eddies and submesoscale MLEs.
The second focuses on MLE restratification at a single
front.

a. Simulation with both mesoscale and
submesoscale eddies

The first simulation is configured to produce deep
mesoscale eddies extending through the whole water
column and shallow submesoscale eddies trapped in the
surface ML. The Massachusetts Institute of Technology
general circulation model (MITgcm; Marshall et al.
1997) is configured to simulate a reentrant channel
where a baroclinically unstable jet is maintained by re-
storing temperature profiles along the sidewalls (Fig.
1). The upper 75 m are initially unstratified and are
subsequently mixed by a diurnal cycle of 200 W m�2

cooling compensated by penetrating heating during the
day. Nightly cooling thoroughly mixes the ML to
roughly 50-m depth. The simulation is run at 8-km reso-
lution for 900 days, interpolated to 2-km resolution, and
continued for 100 days. At this resolution, the largest
MLEs1 are permitted but only marginally resolved in
order to permit mesoscale features as well. Below,
dedicated simulations of MLEs alone allow better
resolution of submesoscale features. Details are in ap-
pendix A.

A vigorous mesoscale eddy field develops through-
out the full water column (Fig. 1b), while variability in
the ML is dominated by small-scale meandering fronts
(Fig. 1a). The tightly packed isotherms result from
straining by the mesoscale eddies and frontogenetic
processes compacting outcropping isotherms. The me-
anders that develop along the fronts are MLEs. The
large mesoscale eddies result from baroclinic instability
of the mean jet with growth rates O(1 month) and
length scales O(80 km). The smaller MLEs result from
ageostrophic baroclinic instabilities that develop along
fronts within the ML. Their scales begin near the linear
instability scale based on ML depth and stratification,
O(1 to 5 km), and enlarge as a result of an inverse
cascade, as discussed in BFF. MLEs cluster along fronts
where frontal vertical shear endows the fastest growth

1 MLEs vary in size according to the strength of the front upon
which they grow; see (2).
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(Stone 1966). Elsewhere the growth rates are too slow
to compete with the damping due to turbulent mixing.

BFF argue that the ML instability linear growth rates
are only weakly affected by large-scale straining, yet
Spall (1997) shows that a large-scale strain can substan-
tially alter finite-amplitude baroclinic instability. This
effect is notable in Fig. 1a near (450, 80) km, where a
powerful surface temperature front is pinched between
three mesoscale eddies (Fig. 1b). MLEs develop only
after the front exits the strain field near (400, 140) km.
The strain rates in this idealized simulation are larger
than is typical in the real ocean, yet MLEs are present
throughout the domain. Thus, while mesoscale strain-
ing can occasionally suppress MLEs, the effect is con-
fined to the regions of largest convergence.

Basinwide restratification can occur only by a net
upward transport of buoyancy. That is, on the whole,
the near-surface ML is made more buoyant and the
deeper ML becomes denser. The vertical eddy buoy-
ancy flux, w�b�, is shaded in Fig. 1a. (Primes denote
departures from along-channel, x-direction averages;
see Table 1). The figure shows fluxes near the depth
where they are largest (20 m). Two features emerge.
First the largest vertical fluxes are small-scale features
clustered near fronts. In fact, filtering w� and b� indi-
cates that 70% (50%) of the basin average, w�b�

xy
, is

generated by scales smaller than 12 km (8 km). (Over-
bars denote along-channel averages, and superscripts
indicate additional averaging along other coordinates;

see Table 1.) Second, w�b�
xy

is positive rather than
negative, implying a tendency to restratify the ML. The
shading in Fig. 1b indicates regions where |u�Hb�| is larg-
est. The horizontal fluxes are coherent on scales asso-
ciated with mesoscale eddies, while the vertical fluxes
are distinctly submesoscale. The mesoscale eddies and
MLEs have comparable horizontal velocities, but me-
soscale eddies stir over longer distances and dominate
the horizontal fluxes. MLEs and fronts have larger
Rossby number and thus larger vertical velocities, so
they dominate the vertical fluxes. In sum, mesoscale
eddies dominate the lateral fluxes while fronts and
MLEs dominate vertical fluxes and restratification.

The role of MLEs in restratification is clarified by
comparing the simulation described above with an oth-
erwise identical simulation run without a diurnal cycle
from day 900 to day 1000. When the resolution is in-
creased at day 900, near-surface restratification in-
creases as a result of sharper fronts from mesoscale
straining (Spall 1997; Nurser and Zhang 2000; Oschlies
2002; Lapeyre et al. 2006). But, do MLEs and their
associated fronts lead to even more restratification as
suggested by BFF? With and without a continued diur-
nal cycle, the mesoscale eddies differ little and fronts of
a similar strength develop at the surface—the averaged
surface |�Hb|2 differs by less than 25%. But, without a
diurnal cycle the ML disappears through unchallenged
restratification, and soon MLEs are stabilized. The av-
erage flux, w�b�

xy
, in the upper 40 m is half (a third) that

FIG. 1. Contours of temperature at (a) the surface and (b) below the ML base in a simulation with both mesoscale eddies
and MLEs (0.2°C contour intervals). Shading indicates w�b� in (a) and | u�Hb�| in (b) at 20-m depth, the depth at which eddy
fluxes are largest.
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of the simulation with a continued diurnal cycle in 10
(40) days.

Some recent investigations without active remixing
of the ML underestimate the restratification effect of
MLEs (e.g., Mahadevan 2006; Mahadevan and Tandon
2006), as MLEs do not occur after the ML has already
restratified by other mechanisms. Other studies have
found few or no MLEs because the ML in the regions
considered were very shallow, so very high horizontal
resolution would be required to resolve the instabilities
(e.g., Capet et al. 2008; Lapeyre et al. 2006). Of course,
these simulations are not without near-surface restrati-
fication: frontogenesis, winds, and solar heating may all
restratify. Ferrari and Thomas (2008) compare the rela-

tive contributions from these mechanisms quantita-
tively and conclude that MLEs play an important role
in near-surface restratification. MLE restratification is
the subject of this paper.

b. Restratification by spindown of an ML front

Frontal instabilities—MLEs—develop once the sub-
mesoscales are permitted (Fig. 1). However, the com-
putational expense of refining grid resolution to con-
vergence for MLEs while retaining properly sized
mesoscale eddies is onerous. Hence, the MLE restrati-
fication study continues by focusing on the spindown of
a single ML front, representing the aftermath of a me-

TABLE 1. Symbols used in this paper.

Symbol Name Typical value

H ML depth 100 m
B Buoyancy (b � �g�/�0, �0 � 1035 kg m�3, g � 9.81 m s�2) �0.04 m s�2

u, �, w Velocity components �0.05 m s�1

uH Horizontal velocity �0.05 m s�1

A Along-channel mean of A and perturbation from A
A

xy
Along- and cross-channel mean

Axyz Horizontal mean and vertical mean over ml
V, W Typical eddy velocity scales 0.05 m s�1

U Mean shear velocity scale (M2H/f ) 0.05 m s�1

M2 Front-averaged horizontal buoy gradient �(2f )2

N2 Front-averaged vertical buoy gradient (buoy frequency2)
M2

f Initial maximum horizontal buoy gradient �(2f )2

N2
ml, N2

int Initial ML and interior vertical buoy gradient (4f, 64f )2

� Earth angular frequency (2�/day) 7.29 	 10�5 s�1

f Coriolis parameter �

s Stone growth time scale 1 day from (3)
Ls, ks Stone fastest-growing length scale/wavenumber 1 km from (2)
E(�) Kinetic energy power density spectrum (|u�Hb�|2

xyz
� �E(�) d�)

Es(�) Kinetic energy power density spectrum prediction from (1)
KE, EKE Kinetic energy, eddy kinetic energy
PE, EPE Potential energy, eddy potential energy

tr Traditional streamfunction ���b�/N2


hs Held and Schneider (1999) streamfunction w�b�/M2


d Diagnosed streamfunction
� 3D streamfunction
u* 3D eddy-induced velocity
�x, �z Horizontal and vertical grid spacing Ls/10 from (2)
Lf, Lb Front width, basin width 40�x, 150�x
x, y, z Along-channel, cross-channel, and vertical coordinate 0 → Lb, �300 → 0 m
C Flux slope to isopycnal slope ratio, �M2��b�/(w�b�N2) 2
Ce Efficiency factor 0.06–0.08
Cs Efficiency factor (Stone parameterization) 0.1–0.9
Cg Efficiency factor (Green parameterization) 0.001–0.009
k, l Along- and cross-channel wavenumbers 1/Lb → 1/�x
� Isotropic wavenumber (�k2 � l2) 1/Lb → 1/�x
� Vertical excursion scale �b�2/N2 0.2 H
Ri0 Initial condition balanced Richardson number Ri0 � N2

0 f 2/M4
0 0 → 256

Ri Balanced Richardson number Ri � N2f 2/M4 0 → 4500
Sm Smagorinsky coefficient (horiz. visc. � [(Sm�x/�)]2�(ux � �y)2 � (uy � �x)2 1
� Vertical viscosity 0.0001 m2 s�1

��, �H Vertical and horizontal MLE effective diffusivity
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soscale straining event as in Fig. 1 or the edge of a
recent vertical mixing event (Price 1981; Haine and
Marshall 1998). The front is initialized as a horizontal
density gradient in a flat-bottom reentrant channel.
Vertical stratification is uniform in the interior and

weak in a surface ML. A typical model configuration is
shown in Fig. 2a and detailed in appendix B. The initial
velocity may be either resting (hereafter “unbalanced”)
or in thermal wind balance (“balanced”). Many other
parameters vary across the simulations, and resolution

FIG. 2. Temperature (°C) during two typical simulations of a ML front spinning down: (a)–(c) no diurnal cycle and (d)–(f)
with diurnal cycle and convective adjustment. (Black contour interval � 0.01°C; white contour interval � 0.1°C.)
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is varied to ensure that baroclinic instability is resolved;
tripling the resolution does not significantly change the
results.

An unbalanced ML front first slumps gravitationally
and oscillates inertially about the Rossby adjusted state
(Tandon and Garrett 1995). Soon afterward, ML insta-
bilities are detectable. Within a few days they are evi-
dent as wavelike disturbances along the oscillating front
(Fig. 2a) that enlarge in time (Figs. 2b,c). Five days are
required to reach finite amplitude because the initial
perturbations away from uniform flow in the along-
channel direction are artificially small. In test simula-
tions, and presumably also the ocean, larger initial per-
turbations develop into finite-amplitude MLEs within
one day. Balanced simulations do not undergo Rossby
adjustment, but the development and nonlinear growth
of ML instabilities is very similar. In all cases the initial
PE is the primary energy source, and the MLEs grow by
slumping the front to extract this energy (BFF).

MLE restratification increases the balanced Richard-
son number,

Ri � N2 | �ug

�z |�2

�
N2f 2

M4 ,

where N2 and M2 are volume-average values of bz and
by over the frontal region in the ML. The balanced Ri
differs from the traditional Ri in that geostrophic shear
replaces the full shear.

Figure 3 shows the increase in Ri in four simulations.

Two of the simulations have no initial velocity. The
other two begin in thermal wind balance. In each pair,
N2 at t � 0 is set to either M4/f 2 or 0.2 The unbalanced
simulations oscillate inertially near Ri � 1 for about 5
days, while the balanced simulation with Ri0 � 0 de-
velops symmetric instabilities in a few hours that then
increase Ri to 1. This early restratification is over-
whelmed once MLEs are active (after day 5), and the
MLE restratification rate (�N2/�t) is the same once fi-
nite amplitude is reached. Only the time to reach finite
amplitude differs: the larger Ri simulations reach finite
amplitude later [as the linear growth rate (3) below
predicts].3 In summary, there are a variety of instabili-
ties that rapidly bring the front to Ri � 1, but the sub-
sequent MLE restratification is insensitive to the details
of these processes.

Ageostrophic baroclinic instabilities, which extract
PE by slumping isopycnals, are the dominant form of
ML instabilities at Ri � 1 (BFF; Haine and Marshall
1998). Their main characteristics are captured by Stone
(1970) in his analysis of the Eady (1949) problem. The
linear growth rate is

�s�k� �
kU

2�3
�1 �

2k2U2

15f 2 �1 � Ri��, �1�

and the fastest growing mode has

Ls �
2�

ks
�

2�U

| f | �1 � Ri
5�2

, �2�

�s�ks� ��54
5

�1 � Ri
| f | . �3�

For the simulations shown in Fig. 2, Ls � 3.9 km and

s(ks) � 16.8 h for Ri � 1. MLEs appear near these
scales in both the frontal spindown simulations (Fig. 2)
and the mesoscale plus submesoscale simulation (Fig.
1a)—these values are much smaller and faster than
those of mesoscale eddies.

The scales from linear theory are helpful in deter-
mining the numerical resolution necessary to permit
MLEs, but they are not useful for parameterizing the
frontal slumping effect of MLEs. Figure 4 compares the
power density spectrum of eddy kinetic energy (EKE)
at various times from a nonlinear simulation and the
linear theory prediction. Linear theory tracks the non-

2 The initial Richardson number is Ri0 � 1 or Ri0 � 0, respec-
tively; see Table 1 for notation.

3 Symmetric instabilities are strengthened in a tripled resolution
version of the balanced Ri0 � 0 case. At higher resolution, Ri �
1 is reached a day earlier, but the average restratification rate
after Ri � 2 differs by less than 3%.

FIG. 3. Balanced Richardson number for four simulations start-
ing from a thermal wind “balanced” initial condition or resting
initial velocity (i.e., “unbalanced”). All parameters are identical
across simulations and at front center, but initial N2 may be M4

f /f 2

(labeled here as Ri0 � 1) or 0 (Ri0 � 0): N2 is bz averaged over the
center of the front (|y � y0| � Lf /4), and M4

f is the largest value of
by

2 in the initial condition (appendix B).
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linear spectrum only for the first 6 days. During this
period the spectral peak tracks the most unstable wave-
number predicted by (2) and shifts to larger scales be-
cause Ri grows as the stratification increases (Fig. 3).
However the nonlinear spectrum departs the linear pre-
diction as the instabilities reach finite amplitude. EKE
is transferred to scales larger than the most unstable
mode through a vigorous inverse cascade (Fig. 4).

The inverse cascade complicates the parameteriza-
tion problem. Eddy mixing length arguments are rou-
tinely used to study baroclinic eddy fluxes (Haine and
Marshall 1998; Spall 2000; Larichev and Held 1995;
Schneider and Walker 2006). In these arguments the
lateral transport of tracers is dominated by the largest
energy-containing eddies (e.g., Howells 1960). The
eddy saturation strength follows a simple scaling: the
eddy velocity within the front saturates at the initial
mean flow velocity, as shown in Fig. 5 (Stone 1972b).
The mixing length, however, is not fixed in time in spin-
down problems such as this one nor is it readily esti-
mated from other horizontal scales: the most energetic
eddies enlarge beyond the most unstable scale (e.g.,
Cehelsky and Tung 1991) and beyond the initial frontal
width (Fig. 2c).

Another popular approach for parameterizing baro-
clinic spindown relies on linear stability theory of the
basic state (e.g., Stone 1972b; Killworth 2005). The core
assumptions are that eddies and mean state satisfy the

same scaling and that finite-amplitude eddies resemble
the fastest-growing linear instability. In the MLE prob-
lem, not only are longer length scales energized by the
inverse cascade, but frontogenesis leads to smaller
length scales as well. The mean state is well described
by quasigeostrophic (QG) scaling, perhaps modified to
allow variable background stratification (e.g., Naka-
mura and Held 1989), but the MLE Richardson and
Rossby numbers approach one as a result of frontogen-
esis at the boundaries. This spontaneous loss of balance
is a distinguishing feature of fronts that outcrop at the
ocean surface (Molemaker et al. 2005).

Nakamura and Held (1989) and Nakamura (1994)
argue that the nonlinear, frontogenetic development of
MLEs can be captured by stability analysis in geo-
strophic coordinates (Hoskins 1976). This approach
correctly predicts frontal development of Richardson
and Rossby numbers O(1). However, this approach
also predicts that the ageostrophic shear generated
through frontogenesis grows as large as the geostrophic
shear and arrests further restratification, as verified in
2D simulations by Nakamura (1994). In three dimen-
sions restratification continues despite the appearance
of fronts (Fig. 2); the MLEs twist and fold the front and
prevent the frontogenetic two-dimensional saturation
(as in Spall 1997).

Traditional approaches therefore provide little guid-
ance in developing a parameterization of frontal slump-
ing and spindown by MLEs. There are, however, as-
pects of the nonlinear frontal spindown that can be

FIG. 4. Perturbation power spectral density E(�) for a simula-
tion from Fig. 3 (solid). Spectra are plotted at 2-day intervals from
day 1.5 to day 29.5. The linear prediction of the spectrum [Es(�),
dashed] is set equal to the nonlinear spectrum on day 1.5 and then
evolved at each along-channel wavenumber as predicted by linear
theory taking into account the changes in Ri and U; that is, Es(�)
is evolved using 
s(k) from (1) based on the instantaneous Ri and
U from the nonlinear simulation: Es(�) � e2t/
s(�)�E| t�1.5 (k, l) dl.
The decrease in growth rate with cross-channel wavenumber, l, is
ignored for simplicity and because low l modes soon dominate.

FIG. 5. Kinetic energies and cross-channel perturbation velocity
variance as a function of time from the same simulation as Fig. 3
(solid) and Fig. 4. The slight increase in the basin-average EKE
after day 15 is simply a result of the enlarging eddy scale widening
the area of eddy activity into previously motionless fluid (see Fig.
4). That is, the basin average of perturbation KE continues to
grow (dashed line) while the average over only the center of the
front saturates (solid line).
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used to develop a parameterization. First, the initially
vertical isopycnals slump from the vertical to the hori-
zontal without spreading much (i.e., M2 decreases only
10% to 20% while N2 increases by orders of magni-
tude). Second, the inverse cascade proceeds to ever in-
creasing scales in the horizontal, but it is arrested by the
ML depth in the vertical. The typical vertical excursion
scale is a fixed proportion of the ML depth across dif-
ferent simulations (Fig. 6).

Third, the MLEs release PE by fluxing buoyancy
along a surface at a shallower slope than the mean iso-
pycnal surface (i.e., the flux direction is more horizontal
than the isopycnals), a characteristic of linear and non-
linear baroclinic instability (Fig. 7). The ratio of the
slopes is fixed near two, the value yielding the maxi-
mum extraction of PE (Eady 1949; Haine and Marshall
1998).

Fourth, the rms eddy velocities in the middle of the
front saturate at a value that scales with the initial mean
geostrophic shear (Fig. 5). These four elements consti-
tute the basic ingredients of the parameterization.

3. Theory for the parameterization

A parameterization of ML restratification is to be
derived based on the phenomenology of MLEs. A sche-
matic of the slumping process of a ML front is shown in
Fig. 8. The vertical eddy buoyancy fluxes are every-
where positive, and the horizontal cross-channel eddy

fluxes are everywhere down the mean horizontal gra-
dient. The fluxes are along a shallower slope than the
mean isopycnal slope to slump the front and reduce the
mean PE.

The ML restratification problem shares many aspects
with the mesoscale restratification considered by GM
and Gent et al. (1995). First, restratification proceeds
through baroclinic instabilities and releases mean PE.
Second, isopycnal slumping is largely adiabatic and can
be represented through advection by an eddy-driven
overturning streamfunction. Third, momentum fluxes
are weak compared to Coriolis forces; hence only buoy-
ancy fluxes need to be parameterized. Despite these

FIG. 8. Schematic of the ML restratification. Thin contours de-
note along-channel mean isopycnals. Straight arrows denote di-
rection of the eddy buoyancy fluxes, and circular contours/arrows
indicate eddy-induced streamfunction contours and direction. The
decorrelation lengths of the eddies �y and �z are indicated. The
reader is reminded that after Rossby adjustment the isopycnals
are already flattened to slopes O[10 m (km)�1] despite their near-
vertical appearance in this figure.

FIG. 6. Typical vertical excursion scale, � � �b�2/N2, scaled by
ML depth, H, for initially balanced simulations where the initial
ML depth was 200 m (solid), balanced simulations where the ML
depth was 50 m (dashed), and unbalanced simulations where the
initial ML depth was 200 m (dotted). Other parameters vary as
well: Lf /Ls varies by a factor of 4 and initial N is 0 or 4f. The value
of �/H shown is the maximum in z, horizontally averaged over the
front center.

FIG. 7. Ratio of the horizontal to vertical eddy fluxes scaled by
isopycnal slope for the same simulations as in Fig. 6. The z level
shown is the ML midpoint, and all quantities are averaged over
the center of the front.
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similarities, the GM parameterization is not optimal for
MLE restratification for two reasons. The MLE vertical
structure is dictated by the ML depth (Fig. 6); there is
no such constraint in the ocean interior or GM. Second,
the ML is frequently remixed, so M2 is nearly depth
independent. The Rossby adjustment or symmetric in-
stabilities that follow remixing provide a nearly depth-
independent N2 from the depth-independent M2.
Hence, ML instabilities develop with nearly uniform
background M2 and N2, which simplifies the parameter-
ization.

It is an open question whether parameterization of
mesoscale restratification should be cast in terms of PV
or PE budgets.4 During MLE restratification the hori-
zontally averaged PV outside of frictional layers is
nearly uniform in the vertical. Thus,

PE � �zb
xyz

� H2bz
xyz

� H2PV
xyz

�f,

and the two approaches are equivalent. Lapeyre et al.
(2006) note that frontogenesis can intensify PV near the
surface without affecting PE. While this effect appears
significant for mesoscale eddies, it is secondary for
MLEs. We can therefore develop the parameterization
using the along-channel mean buoyancy budget and the
volume average PE budget (over a large volume con-
taining the frontal slumping so that boundary terms
vanish),

�b

�t
� � · ub � � · u�b� � D, �4�

dPE
dt

� �
d

dt
zb

xyz
� �wb

xyz
. �5�

Overbars denote averaging (Table 1).

a. Magnitude of the potential energy release

A simple scaling for the magnitude of the vertical and
horizontal eddy buoyancy fluxes begins by considering
the PE extraction by exchange of fluid parcels over a
decorrelation distance (�y, �z) in a time �t, as sketched
in Fig. 8:

�PE
�t

�
��z��yM2 � �zN2�

�t
. �6�

We may estimate the extraction rate by assuming that

(i) the relevant time scale �t is advective: the time it
takes for an eddy to traverse the decorrelation
length with typical eddy velocities, V, is

�t � �y/V ; �7�

(ii) the horizontal eddy velocity V scales as the mean
thermal wind U (see Fig. 5):

V � U �
M2H

f
; �8�

(iii) the vertical decorrelation length scales with the
ML depth (see Fig. 6):

�z � H; and �9�

(iv) fluid exchange occurs along a shallower slope (i.e.,
PE extracting) and proportional to the mean iso-
pycnal slope (see Fig. 7):

�z

�y
�

1
C

M2

N2 , C 	 1. �10�

Thus,

�PE
�t

� �
C � 1

C

M4H2

| f | . �11�

Taking the absolute value of f ensures that PE is ex-
tracted in the Southern and Northern Hemispheres.

The MLE vertical flux dominates the mean, so

wb
xyz

� w�b�
xyz

�
C � 1

C

M4H2

| f | . �12�

Assumption (iv) implies


�b�
xyz

� �C w�b�
xyz

N2

M2

� � ��C � 1�
N2H2

| f | �M2. �13�

To conclude, (12) and (13) are consistent with Fig. 8:
w�b� is upward and ��b� is down the mean buoyancy
gradient M2.

b. Magnitude of the overturning streamfunction

One might base a parameterization of w�b� and ��b�
directly on the scalings (12) and (13), but introduction
of an overturning streamfunction aids numerical imple-
mentation.

The eddy buoyancy fluxes may be decomposed into a
skew flux generated by a streamfunction (��sb� � �
bz,
w�sb� � 
by) and the remaining residual flux,

4 Ertel potential vorticity, or PV, is ( f � � 	 u) · �b, but
when averaged over the meandering front it is well approximated
by fbz.
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� · u�b� � �
�

�y
��bz� �

�

�z
��by�

�
��
�b� � 
�sb��

�y
�

��w�b� � w�sb��

�z
. �14�

In an adiabatic statistically steady setting the residual
flux would vanish, so all fluxes would be skew with a
unique streamfunction. In spindown problems, the re-
sidual flux does not vanish—the fluxes are more hori-
zontal than the isopycnals—primarily due to time de-
pendence. Thus a choice of streamfunction remains,
and this choice should be governed by the ease of pa-
rameterization of the residual flux (Plumb and Ferrari
2005). Traditionally, the streamfunction is chosen to
eliminate the horizontal residual flux (Andrews and
McIntyre 1978),

�tr �
�
�b�

bz

, �15�

� · u�b� � �
�

�y
��trbz� �

�

�z
��trby�

�
��w�b� � 
�b�by �bz�

�z
. �16�

The residual flux here is the vertical cross-isopycnal
flux. It is O(Ro) compared to the skew flux, and thus it
can be neglected in the ocean interior where Ro K 1
and (15) is useful. In the ML setting, the vertical fluxes
are of leading order. Producing w�b� in (12) would re-
quire a delicate balance of the decomposed fluxes im-
plied in (15) and (16) to stably produce the upgradient
vertical flux and have it vanish at the surface—a daunt-
ing numerical task. The Held and Schneider (1999)
streamfunction, 
hs, is more convenient:

�hs �
w�b�

by

, �17�

� · u�b� � �
�

�y
��hsbz� �

�

�z
��hsby�

�
��
�b� � 
�sb��

�y
. �18�

With this definition, 
hs is readily given by w�b� in (12)
and vanishes naturally at the ocean surface. Further-
more, the horizontal residual flux is an easily param-
eterized downgradient flux, as C � 1.

Care must be taken if the scaling (12) for w�b�
xyz

is to
be used to estimate 
hs in the definition (17). The scal-
ing (12) applies to the large-scale yz average of w�b�
while (17) requires local values in y and z of w�b� and
by. The simulations suggest that smoothing horizontally

over an MLE length scale—or equivalently the resolu-
tion of any model where the parameterization will be
used—is sufficient to quell these subtle distinctions (see
FF). Thus, a local relationship in y is presumed,

�z �
�C � 1�H2by

xz

C| f | . �19�

The vertical structure of the parameterization is not
local and is presented next.

c. Vertical structure of the overturning
streamfunction

In linear theory, the length scale at which the vertical
velocity and the buoyancy perturbations are correlated
specifies the vertical structure of w�b�. Figure 9 shows
the dominant length scales contributing to the correla-
tions between w�, ��, and b�. While the correlations and
autocorrelations of �� and b� are dominated by features
larger than the most unstable length scale, the typical
horizontal scale at which w� and b� correlate remains
close to Ls. The difference in correlation scales is con-
sistent with a vertical mode saturation and a horizontal
mode inverse cascade. Thus, the vertical structure of
w�b� from linear theory persists at finite amplitude (per
Branscome 1983a,b).

A vertical structure function �(z) is taken from the
w�b� of linear theory and implemented as

FIG. 9. The horizontal length scales typical of the correlations
��b�, w�b�, and EKE for the same simulation as in Fig. 4, are
compared to the most unstable length scale. Length scales from
the �� and b� cospectrum, the w� and b� cospectrum, and the
EKE spectrum, E(k), are shown rescaled by the time-evolving Ls;
L2 � �ℜ[S(k)] dk/�k2ℜ[S(k)] dk for a cospectrum S(k), and
the �ℜ[S(k)] dk is the full correlation. For more details on cospec-
tra, see Emery and Thomson (2001).
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� �
CeH

2 by
xy��z�

| f | . �20�

Figure 10 shows how little �(z) changes as finite am-
plitude is attained. Normalization of �(z) to peak at
one collects all remaining constants into an efficiency
factor Ce.

An accurate approximation of �(z) is given by a
simple extension of the analysis described in Stone
(1972a). The vertical fluxes due to ageostrophic baro-
clinic instabilites are obtained by expanding the linear
solutions to O(k2U2/f 2). The expression for w�b� is
evaluated at the k of the fastest growing mode, as sug-
gested by the numerical simulations (Fig. 9). Taking the
large Ri limit, a �(z) appropriate soon after MLEs be-
gin strong restratification is found:

��z� � �1 � �2z

H
� 1�2��1 �

5
21 �2z

H
� 1�2�. �21�

Below the ML base, �(z) is set to zero. By differenti-
ating the buoyancy budget (4) in z and averaging in the
horizontal over a region large enough that the fluxes
vanish on the boundaries, one finds that the dominant
balance observed in the simulations:

�bz
xy

�t
� �by

x
�2�

�z2

y

,

� �Ce

H2|by
xz|2

| f |

y

�2��z�

�z2 . �22�

All of the factors on the right are depth independent
except �2�(z)/�z2. Hence, �(z) controls the relative rate
of restratification at different depths.

Equations (21) and (22) suggest that restratification
near the surface and base of the ML is nearly 3 times
faster than in the center, consistent with numerical
simulations (see FF). A long-wave approximation to
�(z) is easily obtained by neglecting the second factor
in brackets in (21), as shown by Stone (1972a). This
quadratic form is inappropriate for the ML frontal spin-
down because it produces uniform restratification at all
depths, contrary to the result of the simulations.

d. Comparison with other theories

Comparison with other parameterizations is useful to
clarify the implications of (20). In particular, most eddy
parameterizations assume a steady state with constant
N2. During ML restratification by frontal spindown
both the stratification and eddy length scale change
dramatically: this time dependence must be predicted
by the parameterization rather than ignored.

Stone (1972b) uses linear instability analysis to com-
pute the correlations ��b� and w�b� for small-amplitude
linear waves, and then sets the eddy velocity amplitude
to be proportional to the mean flow velocity U as is
done here. From Stone’s Eqs. (2.22)–(2.23),


�b� � �1.3�N2H2

f

�1 � Ri
Ri �M2, �23�

w�b� � 0.09
H2M4

f �1 � �2z

H
� 1�2� 1

�1 � Ri
. �24�

These fluxes differ from the ones proposed here, (12)
and (13), by a dependence on Ri that originates from
the linear theory correlations. The difference can be
traced to the linearized perturbation buoyancy budget,

b� � �M2
� � N2w���s�k�, �25�

where 
s is given by the linear growth time scale (3), or
just 
s � �Ri/f for large Ri. In turbulent flows, such as
in Fig. 2, b� decorrelates on the much longer advective
time scale 
a � Ri/f, hence the �Ri discrepancy of
Stone’s formulas with the simulation results. Eddy-
damped Markovian theory nicely demonstrates the
transition from fluxes governed by linear time scales to
fluxes governed by advective time scales as the insta-
bilities reach finite amplitude (e.g., Holloway and
Kristannsson 1984; Salmon 1998). A symptom of the
failure of (25) is that it predicts a vertical excursion

FIG. 10. Daily snapshots of 
hs from a typical simulation with-
out a diurnal cycle. The streamfunctions are rescaled to have a
maximum of unity for comparison to �(z) in (21), and they are
shifted by 1 each day (dotted lines show the origins; ML depth �
200 m).
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scale of � � �b�2/N2 � H
a/
s, while the simulations in
Fig. 6 demonstrate � � H.

Haine and Marshall (1998) use a mixing length argu-
ment to advocate ��b� � �LfUM2, and as advocated
here emphasize an advective time scale: the time scale
to transfer buoyancy across the baroclinic zone Lf /U.
However, they presume the zone width Lf holds fixed
during restratification. In the ML, the vertical length
scale and vertical fluxes are more constrained than the
horizontal, leading to �y � N2H/M2. Indeed, the snap-
shots in Haine and Marshall (1998) reveal eddies that
enlarge beyond the initial baroclinic zone. They analyze
flux scalings at only one time per simulation, 
model,
when “lateral transfer by eddies has become signifi-
cant,” which occurs naturally when �y � Lf. Their forc-
ing provides Lf � |N2H/M2| initially, so


�b� � �LfUM2 � �
N2H2

f
M2. �26�

This expression agrees with (13). However, the work
here uses �y instead of Lf , which extends the evolution
of ��b� and w�b� beyond 
model and applies to situations
where Lf is not equal to |N2H/M2| initially (e.g., Fig. 3).

Green (1970) proposes a scaling based on equating
the total difference in PE between an initial baroclinic
zone and a hypothetical one with the minimum PE ac-
cessible by adiabatic rearrangement. The PE released is
equated to EKE to yield an eddy velocity scale and—
with b� scaling as the buoyancy difference across the
zone—a scale for ��b�. Green assumes constant N2, but
adapting Green’s approach to allow for large changes in
N2 yields

�PE � HM2Lf , �27�


�b� � �M2Lf
3�2H1�2, �28�

�
�M2N2H2

| f |
1

Ro3�2Ri1�2 , �29�

where Ro � U/( fLf). Once the eddy length scale ex-
ceeds the front width, one may replace Lf with N2H/M2

(or equivalently Ro with Ri�1), and then (29) becomes


�b� � �
N2H2�Ri

f
M2. �30�

Different arguments lead Visbeck et al. (1997) and Lar-
ichev and Held (1995) to the same expression. While
the amount of PE extracted in (27) is the same as pro-
posed in section 3a, the results for ��b� differ by �Ri.
The extraction of mean PE is close to EKE � EPE, but

Green assumes that EKE � EPE � EKE. Yet, from the
numerical simulations (Figs. 5 and 6),

EKE
EPE

�
M4H2

f 2N2H2 � Ri�1.

As Ri increases, the mean PE extracted goes increas-
ingly to EPE, while EKE saturates near the initial mean
KE. The work here avoids this problem by using the PE
budget, (5), to directly relate PE extracted to w�b�

xyz
.

Some eddy parameterizations (e.g., Canuto and
Dubovikov 2005) suppose that the decorrelation length
is approximately the linear instability length scale for a
mixing length theory. Using the linear length scale in
(2) yields


�b� � �LsUM2 � ��N2H2

| f |
�1 � Ri

Ri �M2. �31�

Except for an unspecified efficiency factor, this expres-
sion is Stone’s (23). This approach fails because the
linear instability length scale during frontal spindown is
smaller than �y � N2HM�2 by Ls/�y � �1 � Ri/Ri.

In summary, the scaling here differs from others
in approach and by nondimensional factors. The pa-
rameterization is tested against these alternatives in
section 4.

e. Residual diffusive fluxes

The skew flux generates restratification because it is
part of the overturning circulation, but the residual flux,

R � 
�b� � �bz � 
�b� � w�b�
bz

by

, �32�

merely widens the front slightly (FF). In the linear Eady
model, ��b�, bz, and by are depth independent while
w�b� depends on �(z), so the relationship between re-
sidual flux and ��b� is depth dependent. In these simu-
lations ��b� and bz change as the flow restratifies until
R � ��b�/2. Perhaps not coincidentally, parcel exchange
theory indicates that, if R is ��b�/2 at all depths, then
potential energy extraction is maximized. Using the
scalings for ��b� and w�b� in (13) and (12), R can be
parameterized with a nonlinear horizontal diffusivity
scaling as


�b� � �bz � �
Hby, �33�


H �
Cebz

xzH2��z�

| f | . �34�

Given the value of Ce � 0.06 as determined in section
4 and typical ML stratifications, �H is only O(1–100
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m2 s�1). This small value confirms that MLE horizontal
fluxes—residual or not—are smaller than mesoscale
horizontal fluxes. FF show that in a forward simula-
tion of parameterized frontal spindown, adding the re-
sidual flux widens the front, but minutely, comparable
to changing the buoyancy advection scheme. They
also show that including residual fluxes makes the
model less stable numerically. In sum, adding the re-
sidual fluxes is possible, but the costs outweigh the ben-
efit.

While w�b� is upward in the ML, it is downward be-
low the ML base, as the reversal of the sign of 
 just
below the ML base in Fig. 10 shows. This tendency is
easily understood: �� and w� are continuous, so fluxes
roughly along isopycnals in the ML overshoot as the
mean isopycnal slope flattens suddenly at the ML base.
Below the ML base the vertical buoyancy flux is down-
ward and thus down the mean vertical buoyancy gradi-
ent; a vertical diapycnal diffusivity �� of O(10�4 m2 s�1)
acting on the mean buoyancy gradient could param-
eterize this flux. This magnitude was estimated by di-
agnosing w�b�/bz for the simulations run using the typi-
cal MLE parameter values in Table 2, but �� varies
strongly with MLE strength. FF show that using �� �
3 	 10�5 m2 s�1 in a forward model of the parameter-
ization slightly improves agreement with a comparable
submesoscale-resolving simulation. Turbulent mixing
parameterizations may already contain penetrating tur-
bulent fluxes of this magnitude (e.g., Large et al. 1994).
The additional diffusivity might be important where
ML entrainment is critical, but a full study of this sec-

ondary effect of MLEs is beyond the scope of the
present work.

f. MLEs under additional mixing: Diurnal cycle

The preceding discussion has paid little attention to
the mechanisms that cause the ML to be mixed in the
first place: turbulent vertical mixing. Some Rossby ad-
justment simulations were inundated with a diurnal
heat flux cycle for a more realistic ML environment. An
example is shown in Figs. 11 and 2d–f. With a diurnal
cycle, the initial instability wavelength is slightly
smaller during the linear growth stage (see BFF), but
later the MLEs and their nonlinear saturation are re-
markably similar to those in Figs. 2, 4, and 5.

Considering “afternoon” snapshots suffices to isolate
the effects of MLEs; during the night convection blurs
the MLE signal. Figure 12 shows that the afternoon
MLE fluxes are along a slope shallower than the iso-
pycnal slope just as without a diurnal cycle. This effect
is apparent once the MLEs are sufficiently strong to
overcome the noise of the diurnal cycle (after about day
10).

The next section shows that the 
 scaling (20) holds
nearly as well as in the no diurnal mixing case.

The diurnal cycle causes a notable change to the ver-
tical structure of the fluxes. Figure 13 shows that the
streamfunction does not vanish at the surface, but at
some level below. This is because the ML is capped by
large N2 during solar heating (Figs. 2 and 11). The
streamfunction structure �(z) may be trivially altered
by translating and rescaling the vertical coordinate in
�(z) so that it vanishes at a depth just below the surface
rather than the surface. This shortcut approximates the
result from linear instability analysis for a ML with sur-
face-intensified N2.

In conclusion, the scaling for 
 in (20) holds in the
presence of spatially uniform intermittent mixing tow-
ing to a strong diurnal cycle, as MLEs are relatively
unaffected. Haine and Marshall (1998) find the same
scaling with a constant 400 W m�2 cooling of the sur-
face to represent strong wintertime cooling, so even
larger fluxes without daytime restratification do not
halt MLEs. However, MLE restratification may not
overtake convective destratification. Indeed, here the
basin-average ML stratification decreases each night as
the MLE w�b� is dwarfed by the peak cooling. Yet, the
carefully chosen balance between nighttime cooling
and solar heating in these simulations is tipped by the
MLE flux so that the long-term tendency is toward a
shallower ML. In the ocean and in realistic models a
balance will exist between long-term-average (e.g.,
monthly) surface forcing and MLE restratification,

TABLE 2. Parameters varied across simulations. Test grids were
confirmed to agree with standard grids.

Symbol Name Value range

H0 Initial ML depth {50, 200} m
M2

f Horizontal buoy gradient �({1, 2, 4}f )2

Nml ML vertical buoy
gradient |1/2 (buoy
frequency)

{0, 4, 16, 32}f

Nint Interior vertical buoy
gradient |1/2 (buoy
frequency)

{16, 64, 128}f

f Coriolis parameter {2�, �, �/2}
�x Standard horizontal grid Ls/10 from (2)
�x Tripled resolution

test grid
Ls/30 from (2)

�z Standard vertical grid 5 m
�z Vertical test grid 1 m
q0 Nighttime cooling {0, 200} W m�2

Lf Front width {20, 40, 80} �x
Sm Smagorinsky coefficient {1, 2, 4, 8}
� Vertical viscosity {0.0001, 0.001, 0.01} m2 s�1
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while during active convection the effects of MLEs will
be secondary. MLE restratification does not prevent
active convection but immediately initiates restratifica-
tion when convection ceases, during the daytime here
and at the edge of the cooling region in Haine and
Marshall (1998).

4. Diagnostic validation

This section validates the scaling argument presented
above by diagnosing the magnitude of the overturning
streamfunction in MLE-resolving numerical simula-
tions.

FIG. 11. Temperature (°C) during one diurnal cycle using convective adjustment; (d)–(e) are afternoon values. (Black
contour interval is 0.01°C; white contour interval 0.1°C.)
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The simulations provide instantaneous three-dimen-
sional fields of buoyancy and buoyancy fluxes. The rel-
evant diagnosed quantity is

�d �
1
T �

t0

t0�T w�b�xy

by
xy ��z��1 dt, �35�

where the time averaging in (35) is restricted to an
interval after MLEs have reached finite amplitude and
before lateral boundary effects are important. Appen-
dix C discusses further details of the diagnosis.

Figure 14a shows that 
d scales well with H2by
xy

|f |�1yt

for a set of 37 runs with balanced initial conditions and
no diurnal cycle. The slope on this figure demonstrates
the scaling, and the intercept amounts to Ce � 0.06 in
(20). Figure 14b shows that the same scaling holds over
the whole set of 241 simulations varying front strength,
initial stratification, front width, vertical and horizontal
viscosity, rotation rate, etc. Consistent with Fig. 3, bal-
anced and unbalanced simulations obey the same scal-
ing. The diurnal cycle introduces noise in the estimation
of 
d, as can be anticipated from the noisy afternoon
results in Fig. 12, and increases the estimate of Ce to
near 0.08. The scaling agrees best when 
d is large,
which is when MLE restratification is most important
(Fig. 14b).

The magnitude of Ce may be compared to other stud-
ies measuring baroclinic eddy horizontal fluxes by using
the scaling for the vertical flux (12) and converting to a
horizontal flux with (13). Cenedese et al. (2004) present
a laboratory result for horizontal flux scaling approxi-
mately equivalent to Ce � 0.05 and cite many studies
covering a range equivalent to 0.02 � Ce � 0.12. The
wide range found in these studies is likely an artifact of

fitting inappropriate scaling laws to ��b� and conse-
quently folding parameter variations (e.g., of Ri) into
the measured “constants” of eddy processes.

A clever intuition might arrive at the scaling 
 �
CeM

2H2�(z)/|f | by pure dimensional analysis, but di-
mensional analysis cannot rule out nondimensional pa-
rameters. Dependence on Ri is quickly eliminated. Fig-
ures 14c,d show that the scaling of Stone (1972b) from
(24) and (17),

�s � Cs

H2by
xz��z�

| f |
1

�1 � Ri
, �36�

and Green (1970) from (30) and (15),

�g � Cg

H2by
xz��z�

| f | �Ri, �37�

have substantially more scatter than Fig. 14a, confirm-
ing the scaling proposed in (20).5 Figure 14f shows that
this scatter is associated with erroneous dependence on
the time-evolving Ri, rather than other factors. (Using
the initial value of Ri instead of a time-evolving value
produces an order of magnitude more scatter for these
scalings, not shown.) Figure 14e shows that there is no
systematic trend with Ri in the departures of 
d from
(20) nor is there a systematic trend with the initial value
of Ri (not shown). Dependence on Ro through the
frontal width Lf, as in (29) and as assumed by Haine
and Marshall (1998), is irrelevant as soon as �y � Lf,
which occurs soon after finite amplitude is attained. A

5 Similar scalings of Canuto and Dubovikov (2005) and Visbeck
et al. (1997) are equivalent to Stone and Green and have more
scatter too.

FIG. 13. Daily snapshots of afternoon 
hs from a typical
simulation with diurnal cycle. Compare to Fig. 10.

FIG. 12. As in Fig. 7, but for a simulation with a diurnal cycle.
The afternoon values, when the surface is not being actively
cooled, are shown as diamonds.
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figure like Fig. 14e, but with Ro as ordinate, shows no
dependence on Ro (not shown).

Additional potentially relevant nondimensional
quantities appear in the problem, such as (H/Lf), Sma-
gorinsky coefficient (Sm), grid resolution to front width

(�x/Lf), Ekman number (Ek � �H�2 f �1), diurnal cycle
time scale to inertial time scale f/�, and interior strati-
fication to ML stratification (Nml/Nint). Nonlinear opti-
mization was used to test sets of nondimensional pa-
rameters Pi to find exponents b(i) and the efficiency

FIG. 14. Magnitude of 
d vs theories for magnitude of 
 for simulations with diurnal cycle (blue) and without (red)
starting from balanced (circles) or unbalanced (squares) initial conditions. Plus signs and crosses indicate balanced
simulations where Ri0 � 1 or Ri0 � 1 initially: (a) 
d in the balanced, no diurnal cycle simulations vs Ceby

xzH2| f |�1
yt

,
Ce � 0.06, and (b) unbalanced and diurnal cycle simulations, Ce � 0.08; (c) Stone’s theory, (36), Cs � 0.53; (d) Green’s
theory, (37), Cg � 0.0085; (e) 
d/Ceby

xzH2| f |�1
yt

vs Ri1/2. Also shown are lines parallel to Ri1/2 and (1 � Ri)�1/2: (f) 
d/
s

(black dots) and 
d/
g (green crosses) vs Ri1/2. Also shown are lines parallel to Ri�1/2; 
d, 
s, and 
g are defined in (35),
(36), and (37).
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factor Ce that reduced the difference between 
d and
the product of parameters, CeH

2M2| f |�1�iP
b(i)
i . By this

method, an Ekman number factor of approximately
Ek�0.2 was found to improve the results. No robust
dependence on any other nondimensional parameter
was found (i.e., the exponents were less than 0.1 in
magnitude). Haine and Marshall (1998) note that the
parameter space needed to distinguish potential scal-
ings is often unexplored. Even the 241 simulations here
neglect some part of parameter space. Neglected re-
gions include nonhydrostatic effects [H/Lf � O(1)],
barotropic instabilities of the front (RiRo2 K 1), and
viscosity sufficient to stabilize the ML instabilities.
However, the scaling presented here spans the regime
relevant for MLEs.

5. Summary and conclusions

Numerical simulations and theory reveal that the ML
is host to shallow frontal instabilities that act to re-
stratify the ML. This paper presents a parameterization
of the restratification by these instabilities cast as a
streamfunction to represent the overturning of the
front. The parameterization depends on the horizontal
buoyancy gradients and provides a first attempt at in-
corporating the interaction of lateral gradients and ver-
tical mixing in the ML. This parameterization will pro-
vide GCMs with a novel climate sensitivity, so far ig-
nored by other ML parameterizations. In three
dimensions, the parameterization takes the form

� � Ce

H2�bz 	 z
| f | ��z�, �38�

with Ce between 0.06 and 0.08. The vertical structure
�(z) is well approximated by

��z� � �1 � �2z

H
� 1�2��1 �

5
21 �2z

H
� 1�2�.

�39�

This parameterization produces fluxes and an eddy-
induced velocity

u�b� � � 	 �b, u* � � 	 �. �40�

Two companion papers (FF; Fox-Kemper et al. 2008)
give further insight into the skill, implementation, and
importance for climate of the parameterization.

Previous attempts to include eddy-driven restratifi-
cation by horizontal buoyancy gradients in ML models
relied on ad hoc modification of the GM mesoscale
eddy parameterization through tapering functions. This
approach fails as the mesoscale horizontal fluxes—were

they to flux along the shallow ML slopes—imply exces-
sive vertical fluxes and restratify the ML immediately.
Indeed, the GM tapering schemes are introduced pre-
cisely to avoid instantaneous ML restratification. In
contrast, MLEs provide the correct amount of eddy
restratification for the ML.

The approach in developing this parameterization is
novel in that scaling arguments are derived directly for
the overturning streamfunction instead of relying on
diffusive closures for the horizontal eddy fluxes. The
scaling simply constrains the streamfunction to release
PE at the rate expected for baroclinic spindown. Work-
ing in terms of diffusivities offers less obvious con-
straints. Furthermore, the parameterization avoids pa-
rameters that are difficult in modeling practice: Ri, de-
formation radius, instability length scale, or the width
of a “baroclinic zone.” Only the readily available ML
depth and horizontal buoyancy gradient are needed.
The issue of estimating the relevant horizontal buoy-
ancy gradient in a coarse model is discussed in Fox-
Kemper et al. (2008). In principle, the approach here
could be extended to a mesoscale parameterization for
use in the ocean interior, but the nontrivial complica-
tions of variable background stratification are left for a
future investigation.

A few observational studies prove the existence and
ubiquity of MLEs. Flament et al. (1985) observe the
development of small-scale eddies along an ML front
that compare favorably with the phenomena here.
Munk et al. (2000) have noted MLEs in photos taken by
astronaut Scully-Power. Recent observations also sug-
gest the tendency for MLEs to release PE from fronts
(E. A. D’Asaro 2006, personal communication).
Houghton et al. (2006) detect submesoscale along-
isopycnal filaments of tracer possibly indicating frontal
instabilities, although somewhat below the surface ML.
Repeated MLE slumping of horizontal density fronts
(formed from salinity and temperature variations) in-
terspersed with strong vertical mixing events effectively
eliminates the horizontal density fronts, but leaves be-
hind compensated salinity and temperature gradients
(Young 1994; Ferrari and Young 1997; Ferrari and Pa-
parella 2003). ML density compensation is observed at
the submesoscale (Rudnick and Ferrari 1999; Ferrari
and Rudnick 2000; Rudnick and Martin 2002). Hose-
good et al. (2006) demonstrate that density variability
extends to the ML deformation radius and not beyond,
in agreement with our analysis of MLEs. Rudnick and
Martin (2002) show that density compensation is stron-
ger for deep MLs. All of these observations are consis-
tent with restratification by MLEs.

Now that a foundation has been laid, the effects of
MLEs may be studied in combination with the effects
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of wind (Thomas 2005) and mesoscale frontogenesis
(Spall 1997; Oschlies 2002; Lapeyre et al. 2006). Includ-
ing the additional physics may improve the fundamen-
tal parameterization here. However, the results here
and in FF show that for the case of nonlinear spindown
of a mixed layer front this parameterization has signif-
icant skill.
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APPENDIX A

Mesoscale–Submesoscale Resolving Model
Configuration

The coupled mesoscale–submesoscale simulation is a
200 km 	 600 km 	 800 m channel on an f plane with
temperatures restored near the walls to force a geo-
strophic flow. A sloping bottom keeps the eddies out of
the temperature restoring region. The vertical resolu-
tion is 10 m over the surface 100 m and then enlarges by
20% for each deeper grid point. The model is spun up
with �x � 8 km for 900 days, interpolated, and contin-
ued for 100 days at 2-km resolution. Figure 1 shows day
925.

Initially, H � 75 m, and a 50-m ML is preserved by a
diurnal cycle of 200 W m�2 nighttime cooling and just
enough daytime penetrating shortwave radiation
(maximum heat flux �717 W m�2) to give zero diurnal
average. The K-profile parameterization (KPP; Large
et al. 1994) is used to simulate ML turbulent processes.
The heat flux q is

q � q0 � qd �max�cos2�t, cos�th � cos�th .

The constants are q0 � 200 W m�2, qd � �1834 W m�2,
and th � 1/3 day, and t is model time in units of days.
The temperatures in the upper layers are restored only
on the warm side of the front.

Below H, the initial stratification is

�

�0
� 1 � ��T0 � e�z�H�����T
 �

�Th

2
tanh

y � y0

L ��,

�T
 �
TL � TR � 2T0

2
,

�Th � TR � TL.

This stratification also is restored along the walls. Con-
stants are ML depth (H), left temperature (TL), right
temperature (TR), bottom temperature (T0), thermal
expansion coefficient (!), center of channel (y0), ther-

mocline depth scale ", and active channel width (L) and
depth (D).

QG linear instability solutions are used to tune the
parameters so that the most unstable modes fit in the
domain. The choices used (�T� � 5°C, �Th � 8°C, " �
100 m, and D � 800 m) provide 50–150-km unstable
modes. The fastest-growing mode is near 80 km with an
e-folding time near 6 days. These values are smaller
than those expected in the real ocean, but a sacrifice
must be made for cost. Horizontal temperature gradi-
ents are rapidly mixed by the mesoscale to the bound-
ary regions over the sloping bottom and the e-folding
time decreases to O(1 month). Thus, a temporal sub-
mesoscale to mesoscale separation is present. A robust
and approximately statistically steady mesoscale eddy
field persists throughout.

APPENDIX B

Rossby Adjustment Model Configuration

The Rossby adjustment simulations begin with a tem-
perature front above a stratified interior. The initial
stratification is

b � N2�z � Ho� �
LfMf

2

2
tanh�2�y � yo�

Lf �� bo,

N2 � �Nml
2 �: z 	 �Ho

Nint
2 �: z � ��Ho

.

The channel is 300 m deep. The initial vertical stratifi-
cation has a ML, with parameters Ho, Mf, Nml, and Lf,
which rests on a more strongly stratified interior with
Nint. Rotation rate and viscosities are also varied ( f, Sm,
�). Unbalanced or balanced initial conditions and a di-
urnal cycle [with 200 W m�2 nighttime cooling as in
(41)] were also used in many of the simulations. Con-
vective adjustment was used in all simulations shown
here, but test simulations in nonhydrostatic mode and
with KPP (Large et al. 1994) mixing parameterization
were run and gave generally similar results (see BFF).
A third-order flux-limiting advection scheme was used
for temperature that does not require explicit diffusion,
so none was used. The selection of parameters for all
241 simulations used are given in Table 2.

APPENDIX C

Computation of Diagnostics

Verification of (20) begins with an along-channel
mean of the fluxes and buoyancy at every time snap-
shot. While (20) was derived with a constant M2 in
mind, in the simulations by varies in cross-channel di-
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rection to isolate the front from the effects of the hori-
zontal boundaries of the channel. Thus, care is needed
in cross-channel averaging. One might average over the
initial location of the center of the front, use averages
weighted by by, average only where by is over a critical
value, or use the average over the whole channel (given
that w�b� and by are likely to be nonzero over roughly
the same region). All of these methods agree when
MLEs dominate, and differ only when the signal is con-
taminated (e.g., by gravity wave w�b�, by the front slid-
ing out of the averaging window, or by boundary ef-
fects). Using the basin average is closest to (12), but
averaging only over the center of the front reveals the
relevant Ri. Experimentation determined that averag-
ing over the center of the front (i.e., where |by| was
more than 10% of its median value) agrees with the
basin average to within 15%, so this was the y averaging
used.

Another issue is quantifying the vertical structure of
the diagnosed overturning streamfunction. This is
readily accomplished by evaluating the best fit to (21)
[via the singular value decomposition pseudoinverse of
the discrete form of �(z) based on a diagnosed ML
depth], or more simply by taking the maximum abso-
lute value of the streamfunction in z over the ML. Es-
timates agree to within a few percent, so the fit to (21)
is used.

A suitable definition of H, the ML depth, is given by
the integral constraint,

N2�H� �
Cm

H �
�H

0

N2�z�� dz�. �C1�

The base of the ML is the depth at which the local
buoyancy frequency is Cm times the buoyancy fre-
quency averaged from the surface. The results are rela-
tively insensitive for 1.5 � Cm � 3; Cm � 2 was used. To
find H and Hs, one begins at the level of the minimum
of N2 and separates these bounds until (C2) is satisfied:

N2�H� �
Cm

H � Hs
�

�H

�Hs

N2�z�� dz�. �C2�

While this more complex method is used diagnostically
to aid in determining the streamfunction from the
MLE-resolving simulations, it is probably more compli-
cated than needed in a parameterization where (C1)
will suffice.

The parameterization focuses on the period of strong
restratification by finite-amplitude ML eddies. Thus,
for each simulation, a time window is diagnosed. It be-
gins when the rms �� was more than 10% of the initial
maximum mean shear velocity at half of the ML grid
points (i.e., when finite amplitude is achieved). It ends

if the total buoyancy difference across the channel
changes by 10% for half of the ML grid points to avoid
effects from the sidewalls. Finally, the window is re-
stricted to times when the different y-averaging meth-
ods agree to within two standard deviations to elimi-
nate the occasional moment when M2 vanishes in a
particular average. For runs with a diurnal cycle, the
averaging window is further restricted to afternoon
times. This time window generally agrees with the win-
dow one would designate “by eye” as equilibrated, and
the scaling relationships shown in all figures are sup-
ported with the by eye window as well. This window
simply reduces the scatter over the by eye version. The
relevant diagnosed quantity is thus

1
T�#w�b�$

#by$
��z��1 dt, �C3�

where �(z)�1 indicates the pseudoinverse of (21), and
the time averaging occurs only over the time window
specified above.
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