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Abstract. Total variation (TV) image deblurring is a PDE-based technique that preserves
edges, but often eliminates vital small-scale information, or texture. This phenomenon reflects the
fact that most natural images are not of bounded variation. The present paper reconsiders the image
deblurring problem in Lipschitz spaces Λ(α, p, q), wherein a wide class of nonsmooth images can be
accommodated. A new and fast FFT-based deblurring method is developed that can recover texture
in cases where TV deblurring fails completely. Singular integrals, such as the Poisson kernel, are used
to create an effective new image analysis tool that can calibrate the lack of smoothness in an image.
It is found that a rich class of images ∈ Λ(α, 1,∞)∩Λ(β, 2,∞), with 0.2 < α, β < 0.7. The Poisson
kernel is then used to regularize the deblurring problem by appropriately constraining its solutions
in Λ(α, 2,∞) spaces, leading to new L2 error bounds that substantially improve on the Tikhonov–
Miller method. This so-called Poisson Singular Integral or PSI method is only one of an infinite
variety of singular integral deblurring methods that can be constructed. The method is found to be
well-behaved in both the L1 and L2 norms, producing results closely matching those obtained in the
theoretically optimal, but practically unrealizable, case of true Wiener filtering. Deblurring experi-
ments on synthetically defocused images illustrate the PSI method’s very significant improvements
over both the total variation and Tikhonov–Miller methods. In addition, successful reconstructions
with inexact prior Lipschitz space information, highlight the robustness and practicality of the PSI
method.
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1. Introduction. The space BV (R2) of functions of bounded variation, normed
by the “total variation” seminorm

∫
R2 |∇f |dxdy, plays an important role in much

recent work in image analysis. See, e.g., [11], [13], [14], [15], [16], [20], [21], [26], [33],
and [39]. In particular, highly successful applications of the total variation approach
to image denoising have been well-documented. In contrast, total variation image
deblurring is generally not well-behaved, and often results in unacceptable loss of
fine scale information. This phenomenon is now believed traceable to an improper
choice of function space [24]. The present paper reconsiders the image deblurring
problem in Lipschitz spaces Λ(α, p, q), wherein a wide class of nonsmooth images can
be accommodated. A new and fast FFT-based deblurring technique is developed
that can demonstrably recover texture in cases where total variation deblurring fails
completely. The approximation properties of certain singular integral operators are
intimately linked to such Lipschitz spaces [3], [4], [36]. Here, these properties are
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exploited in two distinct ways. In the first part of the paper, singular kernels are used
to create an effective new FFT-based image analysis tool that can calibrate the lack
of smoothness in an image. This tool can be used in contexts unrelated to deblurring,
e.g., as a sharpness analysis tool in performance evaluation of imaging systems or
image reconstruction software [38], or as a tool for detecting and quantifying “fine-
structure” content in images. In the second part of the paper, singular integrals are
used as regularization tools in the deblurring problem. Specifically, we show how to
stabilize ill-posedness by using the Poisson kernel to impose a priori constraints, in
appropriate Λ(α, p,∞) spaces, on the desired nonsmooth deblurred image. This so-
called Poisson Singular Integral or PSI method, is only one of an infinite variety of
singular integral deblurring methods that can be constructed. In particular, Gaussian
kernels may also be used, leading to the Gaussian Singular Integral or GSI method.
Restricting attention to the case of defocus blurs, we derive L2 error bounds for the PSI
method for images in Λ(α, 2,∞), and demonstrate robust recovery of fine structure
in synthetically blurred images. Similar results hold for other types of blurs.

Extensive numerical experiments with known exact solutions indicate that the
PSI method is remarkably well-behaved. In both the L1 and L2 norms, relative
errors in the PSI method are found to closely approximate those obtained in the
theoretically optimal, but practically unrealizable, case of true Wiener filtering. The
latter method requires prior knowledge of the exact power spectra of both the noise
and unknown desired sharp image, i.e., a total of 8N2 prior data values for a 2N ×
2N image. Since the PSI method requires only 4 prior data values, its ability to
closely track Wiener filtering is especially noteworthy. The availability of reliable
fast deblurring methods is of major significance in the case of nonsmooth images.
The true value of the Lipschitz exponent α in the desired sharp image is usually not
known in advance, although a plausible range of values for α can often be deduced.
In section 10, we document the practicality and robustness of the PSI method, by
showing that good quality reconstructions can often be obtained with inexact, but
plausible, Lipschitz space information. Such initial restorations can then be refined
interactively. Here, fast algorithms enable simultaneous computation and display of
large numbers of trial deblurred images, resulting from multiple choices for α and/or
some of the regularization parameters. We stress that the PSI method is exclusively
intended for deblurring and is not intended for denoising.

2. Lack of smoothness of images. In [27], a new analytical framework for
image processing is introduced, whereby a given image f(x, y) is conceptualized as
being the sum of three components, f(x, y) = u(x, y) + v(x, y) + w(x, y). Loosely
speaking, u(x, y) contains the edges and the other high-priority information that is
sufficient for object recognition, v(x, y) contains the fine-scale details and other low-
priority information that is often not necessary for recognition, and w(x, y) represents
noise. The v(x, y) component is called texture. One example of v(x, y) might be the
hair in a photograph of a person’s face. Another example of v(x, y) might be the heat-
shield tiles in an image of the Columbia space shuttle. The ability to resolve individual
hairs is generally not necessary for identification. In several image processing tasks,
such as compression, segmentation, or face recognition, this texture component can
often be neglected. However, there are numerous other situations, such as in the ill-
fated Columbia episode, where v(x, y) may be of paramount interest. It is shown in
[27] that only the u(x, y) component can generally be expected to lie in BV (R2). In
[24], it is proved that most natural images are not of bounded variation, because the
texture component v(x, y) generally has infinite total variation.
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Denoising and deblurring are two basic image processing tasks where total varia-
tion restoration has been extensively applied. Such restoration can be accomplished
most effectively by solving an initial value problem for an appropriate nonlinear
anisotropic diffusion equation, using the stepwise marching scheme described in [26].
In deblurring, one typically starts with a degraded image g(x, y) which differs from
the desired true image f(x, y) in that the u(x, y) component is blurred but recogniz-
able, the v(x, y) component is seriously attenuated and often not recognizable, and
the w(x, y) component is usually small. Reconstructing v(x, y) while keeping w(x, y)
small, is the prime objective in numerous medical, astronomical, industrial, and sci-
entific contexts [9], [10]. However, while total variation deblurring sharpens u(x, y)
and keeps w(x, y) small, the texture component v(x, y) is often eliminated due to the
“staircase effect” [13], [20], [29], [30], [39]. This is in accordance with the analyses in
[24], [27].

Let x = (x1, x2) ∈ R2. Postulating f(x) ∈ BV (R2) means that f(x) is con-
strained to satisfy,

∫

R2

|f(x + h) − f(x)|dx ≤ Const |h|.(1)

However, from the standpoint of modeling texture, it is advantageous to consider
functions f(x) satisfying weaker constraints, such as

{∫

R2

|f(x + h) − f(x)|pdx
}1/p

≤ Const |h|α, 0 < α < 1.(2)

Such an f lies in Λ(α, p,∞). With 0 < α < 1, 1 ≤ p < ∞, the Lipschitz (Besov)
spaces Λ(α, p, q) [36], [37], consist of the class of functions f(x) ∈ Lp(R2) with finite
seminorm ‖ f ‖αpq, where

‖ f ‖αpq =

{∫

R2

(
|h|−α ‖ f(x + h) − f(x) ‖p

)q
dh/|h|2

}1/q

, 1 ≤ q < ∞,(3)

‖ f ‖αp∞ = sup
h∈R2

{
|h|−α ‖ f(x + h) − f(x) ‖p

}
, q = ∞.(4)

For given p and q, functions with larger values of α are better behaved, or “smoother”,
than functions with smaller values of α, and functions in Λ(α, p, q1) are smoother than
functions in Λ(α, p, q2) if q1 < q2. In fact, the following continuous embedding results
are proved in [37, Theorem 9]

Λ(α2, p, q1) ⊂ Λ(α1, p, q2), 0 < α1 ≤ α2 < 1; 1 ≤ q1 ≤ q2 ≤ ∞.(5)

Also, in R2,

Λ(α, p, q) ⊂ Λ(β, r, q), α− 2/p = β − 2/r, p ≤ r.(6)

Let r = 2, let the pair (α, p) satisfy 2/(1+α) < p ≤ 2, and let β = 1+α− 2/p. Then,
0 < β ≤ α, and it follows from (5) and (6) that

Λ(α, p, q) ⊂ Λ(β, 2, q) ⊂ Λ(β, 2,∞) ⊂ L2(R2).(7)

This result will be important in what follows.
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For given fixed p with 1 < p < ∞ and q = 2p/(2+αp), a class of Lipschitz spaces
Λ(α, q, q) ⊂ Lp(R2) is considered in [18], [19], and shown to contain common types
of images. A method for empirically estimating image smoothness is developed in
[18], [19], based on analyzing the behavior of lossy wavelet compression of the image
f(x, y). In [12], the spaces Λ(α, q, q) ⊂ L2(R2), q = 2/(1 + α), are advocated as
being particularly appropriate for accommodating a rich variety of real images in an
L2 setting. Lossy wavelet compression is again used to estimate image smoothness,
and values of α in the range 0.4 < α < 0.75 are reported in [12] for a class of 24 test
images ∈ Λ(α, 2

1+α ,
2

1+α ). Such α values are an indication of true image smoothness
only when the image is largely noise free. If the noise component w(x, y) is not
sufficiently small, artificially low values of α must be expected. A basic limitation
of the above wavelet compression approach is the restriction on q, which precludes
consideration of the larger spaces Λ(α, p,∞) ⊃ Λ(α, p, q).

The present independent method of estimating image smoothness rests on an en-
tirely different analytical basis, and requires neither wavelet expansions nor image
compression. Instead, the method uses fast FFT algorithms to convolve the image
with a specific type of kernel, and then analyzes how well this convolved image ap-
proximates the original image as the kernel approaches the Dirac δ-function. This
simple direct approach permits consideration of the spaces Λ(α, p,∞), 1 ≤ p < ∞.
The results obtained here are compatible with those obtained in [18], [19], [12], and
[24]. We indeed find that most natural images are not of bounded variation, and that
a rich variety of images ∈ Λ(α, 1,∞) with 0.2 < α < 0.7.

Remark 1. We deal with high resolution images f(x, y) of size 512×512 or 1024×
1024 pixels. Such an f(x, y) may be viewed as a piecewise constant or trigonometric
polynomial approximation to the original intensity field f∞(x, y), or as some other
kind of finite dimensional representation of the infinite dimensional object f∞. All
norms are equivalent on a finite dimensional space. Hence, even if f∞(x, y) is not of
bounded variation, the discrete total variation norm for f(x, y) is always finite, though
it may be very large. To estimate smoothness properties of f∞(x, y) by examination
of the finite dimensional representation f(x, y) requires some sagacity. In [18, section
4B, section 5B], the authors stress that in their method of estimating the value of α by
monitoring the rate of convergence as a function of the number N of nonzero wavelet
coefficients, one must restrict attention to low values of N . At high values of N , the
fact that f(x, y) is actually piecewise constant causes the error to decrease much too
rapidly, resulting in an artificially high reading for α that diverges from true behavior
in f∞(x, y). This same finite dimensionality pitfall occurs in the present approach,
but wears a different guise. See Remark 2 and the discussion surrounding Figures 1
and 2 below.

We shall use the spaces Λ(α, 1,∞) and Λ(α, 2,∞) for examining and classifying
image smoothness. However, deblurring applications will be limited to the spaces
Λ(β, 2,∞) ⊂ L2(R2), wherein all spaces Λ(α, p, q), 2/(1 + α) < p ≤ 2, 1 ≤ q ≤ ∞,
are continuously embedded. The spaces Λ(α, 2,∞) will be shown to contain a rich
and significant class of images.

3. The spaces Λ(α, p, q) and the Poisson singular integral. Define the
Fourier transform ĥ(ξ, η) of h(x, y) ∈ L1(R2) by

F{h} = ĥ(ξ, η) ≡
∫

R2

h(x, y)e−2πi(ξx+ηy)dxdy.(8)
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For each fixed t > 0, consider the Poisson kernel in R2

ψ(x, y, t) =
t

2π(x2 + y2 + t2)3/2
, (x, y) ∈ R2.(9)

We have

ψ̂(ξ, η, t) = e−tρ, ρ =
√
ξ2 + η2.(10)

For each t > 0, define the linear operator U t on Lp(R2), 1 ≤ p < ∞, by

U tf =

∫

R2

ψ(u, v, t)f(x− u, y − v)dudv.(11)

It can be shown that limt↓0 ‖ U tf−f ‖p= 0. Moreover, defining U0 to be the identity
operator, we have that for s, t ≥ 0, U tUs = U t+s. In fact, {U t}t≥0 is a holomorphic

contraction semigroup on Lp(R2). See [3]. We may write U t = e−tA, where −A is
the infinitesimal generator of U t. Here, A corresponds to the fractional differential
operator (−∆)1/2. Note that for t > 0, U t maps Lp(R2) into D(A), so that AU tf is
well-defined for arbitrary f ∈ Lp. In general, this is not the case for nonholomorphic
semigroups. The Gauss singular integral, where the two-dimensional Gaussian kernel
is used in lieu of ψ in (9), defines an analogous holomorphic semigroup W t, with
A = −∆. Many such singular integral semigroups St exist. A very rich variety
can be constructed by subordination [7], [40]. For small t > 0, St behaves as an
approximate identity on Lp. There is a large literature on how well Stf approximates
f as t ↓ 0. See [3], [4], [5], [35], [36], [37], and the references therein. As t ↓ 0,
we have ‖ Stf − f ‖p= o(1) for arbitrary f ∈ Lp, ‖ Stf − f ‖p= O(t) if and only
if f ∈ D(A), and ‖ Stf − f ‖p= o(t) if and only if Stf = f for all t ≥ 0. Thus,
the optimal rate is always O(t). Of particular interest in this paper is the case of
nonoptimal approximation, where f /∈ D(A) yet retains sufficient smoothness that
‖ Stf − f ‖p= O(tα), 0 < α < 1, as t ↓ 0. While complete theories exist for a
wide class of singular kernels, the simplest such theory revolves around the Poisson
semigroup U t in (11). We have from [37, Theorem 4], the following result.

Theorem 1. Let U t, t > 0, be the Poisson integral operator in (11), and let
0 < α < 1, 1 ≤ p, q < ∞. Then, f ∈ Λ(α, p, q) if and only if

∫ ∞

0

(
t−α ‖ U tf − f ‖p

)q
dt/t < ∞.(12)

For q = ∞, we have f ∈ Λ(α, p,∞) if and only if

sup
t>0

t−α ‖ U tf − f ‖p < ∞.(13)

Using the embedding results in (7) together with (13) leads to the following corollary.
Theorem 2 (corollary). Let f ∈ Λ(α, p, q), with 2/(1 + α) < p ≤ 2, and let

β = 1 + α− 2/p. Then, in the L2 norm

sup
t>0

t−β ‖ U tf − f ‖2 < ∞.(14)
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4. Periodized problems, the Poisson summation formula, and FFT al-
gorithms. The above results can be used to fashion a practical image analysis tool.
Theoretically, given any image f(x, y) in L1(R2), one could use the Fourier transform
(8) to form

F
{
U tf

}
= e−tρf̂(ξ, η), ρ =

√
ξ2 + η2,(15)

for sequences of positive t-values tending to zero. Inverse transformation is always
possible on account of the factor e−tρ, and this can be used to produce an infinite
sequence of positive numbers µn = {‖ U tnf − f ‖1 / ‖ f ‖1} with tn ↓ 0. If every
such sequence (tn, µn), ultimately lies below the curve µ(t) = C tα, 0 < t ≤ t, for
suitably chosen constants C > 0 and 0 < α < 1, then ‖ U tf − f ‖1≤ C ‖ f ‖1 tα, as
t ↓ 0, and f(x, y) ∈ Λ(α, 1,∞) by Theorem 1. However, this does not lead to a
practical procedure.

On the other hand, Theorems 1 and 2 remain valid in the periodic case [36], [37].
Here, the image f(x, y) and the kernel ψ(x, y, t) in (9) are now periodized [5], [6]. Let
Ω denote the unit square −1/2 < x, y ≤ 1/2 in R2. The image f(x, y) is now viewed
as originally defined on Ω from which it is extended by periodicity to all of R2. Let

f̂(ξ, η) =

∫

Ω
f(x, y)e−2πi(ξx+ηy)dxdy.(16)

Define the periodized Poisson kernel ψ∗(x, y, t) by

ψ∗(x, y, t) =
∞∑

k,m=−∞
ψ(x + k, y + m, t), t > 0, (x, y) ∈ R2,(17)

and let

U tf =

∫

Ω
ψ∗(u, v, t)f(x− u, y − v)dudv, t > 0.(18)

The Poisson summation formula, [1], [5], [6], [22], [37], can be used to show that the
periodized Poisson kernel has a complex Fourier series with Fourier coefficients again
given by (10), but where ξ, η are now integers running from −∞ to +∞. Moreover,

U tf =
∞∑

ξ,η=−∞
e−tρf̂(ξ, η)e2πi(xξ+yη), t > 0, ρ =

√
ξ2 + η2.(19)

Again the factor e−tρ assures uniform convergence of the Fourier series in (19). Let

fN (x, y) =
N∑

ξ,η=−N

e−tρf̂(ξ, η)e2πi(xξ+yη), t > 0, ρ =
√
ξ2 + η2.(20)

Since Lp(Ω) ⊂ L1(Ω), p > 1, we may apply this approach to any f ∈ Lp, and
‖ U tf−fN ‖p can be made arbitrarily small by choosing N large enough in (20). Next,
given the 2J × 2J digitized image f(x, y) with J > N , the discrete Fourier transform
[2] is now the appropriate numerical tool for analyzing this periodized problem. One
can use FFT algorithms to form the Fourier coefficients f̂(ξ, η), − J ≤ ξ, η ≤ J , and
then apply the filter (e−tρ − 1) as in (15). An inverse FFT then yields an accurate
approximation to U tf − f at each of the 2J × 2J pixels, for each small t > 0. We
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may then examine the discrete Lp relative error in Poisson approximation as t ↓ 0,
and locate constants C and α such that ‖ U tf − f ‖p ≤ C‖ f ‖p tα, 0 < t ≤ t. In
summary, we have constructed an accurate numerical procedure, based on correct
mathematical analysis, for assessing membership in any Λ(α, p,∞) space. Equally
important, the values of C and α constitute a priori information that will be useful
in stabilizing the ill-posed deblurring problem.

Remark 2. Analogously to the case of lossy wavelet compression discussed in Re-
mark 1, there is a finite dimensionality pitfall in the above singular integral methodol-
ogy that necessitates the exclusion of very small values of t > 0. Let f∞(x, y) be the
original image intensity field as in Remark 1, and assume that f∞(x, y) ∈ Λ(0.5, p,∞),
so that ‖ U tf∞− f∞ ‖p= O(

√
t) as t ↓ 0, by Theorem 1. Let f(x, y) be the 2J × 2J

digitized image corresponding to f∞(x, y). We shall show that at very small values of
t > 0, the behavior of ‖ U tf − f ‖p diverges from true behavior in f∞(x, y), resulting
in a false reading for α. Let St = e−tA be any contraction semigroup on Lp(R2). As
already pointed out, if f ∈ D(A), ‖ Stf − f ‖p= O(t) as t ↓ 0. This follows from

Stf − f =

∫ t

0

d

du
(Suf)du = −

∫ t

0
SuAfdu,(21)

so that ‖ Stf − f ‖p ≤ t ‖ Af ‖p, for all t > 0. In addition, ‖ Stf − f ‖p ≈ t ‖ Af ‖p,
for all sufficiently small t > 0, because SuAf ≈ Af for all sufficiently small u. In
the above Poisson semigroup U t, the unbounded operator A is defined as follows in
Fourier space

F {Af} = ρf̂(ξ, η), ρ =
√
ξ2 + η2.(22)

Since the digitized 2J × 2J image f(x, y) is a trigonometric polynomial, it is always
∈ D(A) and ‖ Af ‖p is always finite, although it may be very large. Consequently,
with a possibly large positive constant K, we always have ‖ U tf − f ‖p≤ Kt for all
t > 0, as well as actual linear behavior ‖ U tf − f ‖p ≈ Kt for all sufficiently small
t, irrespective of the behavior of ‖ U tf∞ − f∞ ‖p at these same values of t. This
phenomenon is well-illustrated in Figures 1 and 2 below.

5. Application to real images. The following examples illustrate the use of
the Poisson singular integral approach. Our first example, in Figure 1, is the 512 ×
512 Mandrill image highlighted in [24] as an example of an image /∈ BV (R2). The
above FFT procedure was used to obtain the L1 and L2 relative errors in Poisson
approximation

µ(t) =‖ U tf − f ‖p / ‖ f ‖p, p = 1, 2,(23)

at 300 values of t given by tn = 0.5(0.95)n, n = 1, 300. For the L1 norm, a plot
of µ(t) versus t on a log-log scale produced the solid curve A in Figure 1. Least
squares fitting was used to find the two distinct majorizing dashed straight lines Γ
and Σ. For each dashed line, the y-axis intercept value obtained by least squares
was slightly increased so as to make each line lie visibly above the solid curve A;
however, the slope of each line remains the same as that obtained from least squares.
The line Γ, defined by logµ(t) = 3.2 + 0.994 log t, accurately captures the misleading
linear trend in (23) for very small values of t, while being grossly inaccurate at larger
values of t. It was obtained by excluding data corresponding to log t > −7 from
the least squares fit. The line Γ implies that ‖ U tf − f ‖1 < 24.53 ‖ f ‖1 t0.994
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A

Fig. 1. 512 × 512 Mandrill image was identified in [24] as not in BV (R2). This is confirmed
in above graphical use of Theorem 1, using FFT techniques discussed in section 4. Solid curve A is
a plot of µ(t) =‖ Utf − f ‖1 / ‖ f ‖1 versus t, on a log-log scale. Majorizing dashed straight line Γ,
defined by log µ(t) = 3.2+0.994 log t, accurately captures linear behavior in (23) for very small values
of t, but is grossly inaccurate at larger values of t. Linear behavior at very small t is misleading, and
falsely implies that image is of bounded variation. (See Remarks 1 and 2). Majorizing dashed straight
line Σ, defined by log µ(t) = −0.75+0.306 log t, accurately reflects behavior for −6 ≤ log t ≤ −1, while
being grossly inaccurate at very small t. Behavior along Σ is taken to be true behavior in Mandrill
image, implying image ∈ Λ(0.306, 1,∞) with ‖ Utf − f ‖1 ≤ 0.472 ‖ f ‖1 t0.306, 0 < t ≤ 0.1.

for all t > 0. As emphasized in Remark 2, this correct statement primarily reflects
the fact that the 512 × 512 Mandrill image lies in a finite dimensional space; it does
not describe the smoothness properties of the intensity field f∞(x, y) that gave rise
to the digitized Mandrill image. The majorizing dashed straight line Σ, defined by
logµ(t) = −0.75+0.306 log t, accurately reflects behavior of (23) for −6 ≤ log t ≤ −1,
while being grossly inaccurate at very small values of t. The line Σ was obtained
by excluding all data corresponding to log t < −6 from the least squares fit. Note
that this still leaves over 100 data points remaining. The behavior along Σ indicates
that ‖ U tf − f ‖1 ≤ 0.472 ‖ f ‖1 t0.306, 0 < t ≤ 0.1, and this is taken to be the
true behavior in the Mandrill image. From (13), this implies that the Mandrill image
∈ Λ(0.306, 1,∞), and hence, is not of bounded variation. The behavior in the L2

norm is strikingly similar, and indicates the image ∈ Λ(0.271, 2,∞). Estimates of
α in any other discrete Lp norm can be obtained similarly. All α estimates shown
in this paper were obtained using the above procedure of constructing the line Σ in
log-log plots of µ(t), after excluding all data corresponding to log t < −6. As in [18,
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section 5B], we have occasionally found contradictory examples where the value of α
in the L2 norm was greater than that in the L1 norm. When that happened, a new
Σ line was constructed for the L2 trace, based on excluding data corresponding to
log t < −5. It is recommended that data for very small values of t always be included
in log-log plots of µ(t), so as to enable clear identification of the spurious linear trend,
prior to rejecting that part of the data.

Our second example, in Figure 2(A), is a 1024 × 1024 Whirlpool galaxy image,
taken at the National Optical Astronomy Observatory, (NOAO/AURA/NSF), by T.
Rector and M. Ramirez. As in the case of Figure 1, Poisson integral approximation
in L1 was used to obtain the solid curve A, and the line ΣA was constructed using
least squares. This procedure was repeated for the L2 norm. The results indicate
that Figure 2(A) satisfies ‖ U tf − f ‖1 ≤ 0.6 ‖ f ‖1 t0.530, 0 < t ≤ 0.1, and that
Figure 2(A) ∈ Λ(0.530, 1,∞) ∩ Λ(0.462, 2,∞). Interestingly, if we sharpen Figure
2(A) using the APEX method [9], we obtain the image in Figure 2(B). This enhanced
image displays significant fine scale detail not readily visible in the original image, and
strongly resembles a Whirlpool galaxy plate taken by Milton Humason in 1950 using
the 200 inch Mt. Palomar telescope. See [34, plate 26]. Here, L1 Poisson analysis
produced the solid curve B and the majorizing line ΣB . We find that Figure 2(B)
∈ Λ(0.239, 1,∞) ∩ Λ(0.230, 2,∞), and thus has substantially lower values of α than
does Figure 2(A). This result is highly plausible. Presumably, any low-pass blurring
process that may have affected Figure 2(A) would have attenuated fine scale features,
and thereby increased the values of α. The result also indicates that APEX processing
of image (A) produced relatively more sharpening in the L1 norm than in the L2 norm.

The nine images in Figure 3 and Table 1 form an interesting collection that
includes natural as well as man made objects, exhibiting a wide range of sizes. The
last row contains a nanoscale electron microscopy micrograph, a galactic scale object,
and a cosmological scale structure. Along with the three images in Figures 1 and
2, this paper has applied the Poisson integral method to 12 high resolution images,
and we have found that, in either Λ(α, 1,∞) or Λ(α, 2,∞), the values of α lie in the
range 0.2 < α < 0.7. This range of values is compatible with that found in [12],
[18], [19], using an entirely different method. Moreover, while Λ(α, 2,∞) are smaller
spaces than are Λ(α, 1,∞), they are evidently wide enough to contain each of these
12 images, albeit with smaller values of α. Notice also that the values of the constant
C in Table 1 are confined to a very narrow range in both L1 and L2.

Remark 3. Following [18], [19], the values of C and α reported in Table 1 and
elsewhere in this paper, are given to two and three decimal places. Such precision
must be viewed with skepticism. These values are based on the use of the Poisson
operator U t, together with the particular sequence tn = 0.5(0.95)n, n = 1, 300. Also,
the specific interval −6 ≤ log t ≤ 0 was chosen for the least squares fit to logµ(t).
However, different sequences tn tending to zero might be used, as well as slightly
larger or slightly smaller t-intervals for the least squares fit. In addition, the Gaussian
operator Gt may be used in place of U t, in which case the image Lipschitz exponent
α = 2δ, where δ is the slope of the corresponding Σ line. It is found that such
variations in the basic methodology result in slightly different values for C and α. For
this reason, all reported values of C and α should probably be rounded to one decimal
place. It may not be feasible to determine true image Lipschitz space parameters to
higher place accuracy.

The PSI deblurring method to be described in section 7 below requires prior
knowledge of the values of C and α in the desired unknown deblurred image. In
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A B

Fig. 2. Whirlpool galaxy M51. Original and enhanced images have noticeably different L1

Poisson traces µ(t) = ‖ Utf − f ‖1 / ‖ f ‖1, reflecting sharply distinct Lipschitz exponents. (A)
Original 1024 × 1024 image taken by T. Rector and M. Ramirez, National Optical Astronomy Ob-
servatory, (NOAO/AURA/NSF). L1 Poisson relative error µ(t), shown in solid trace A, is ma-
jorized by dashed straight line ΣA defined by log µ(t) = −0.5 + 0.530 log t. This implies that image
(A) ∈ Λ(0.530, 1,∞). (B) Blind deconvolution of (A) using APEX method [9], brings out signifi-
cant fine scale detail, and results in solid trace B, majorized by dashed straight line ΣB defined by
log µ(t) = −0.2 + 0.239 log t. This indicates that deblurred image (B) ∈ Λ(0.239, 1,∞). Image (B)
strongly resembles [34, plate 26] taken by Milton Humason using 200 inch Mt. Palomar telescope.
For log t < −7, solid traces A and B have identical slopes of 0.994. This confirms the observation in
Remark 2 that behavior at very small t is artificial and disconnected from true image smoothness.
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Fig. 3. A significant class of high-resolution 8-bit images have Lipschitz exponents α in the
range 0.2 < α < 0.7, in either L1 or L2, and are not of bounded variation.

general, these values will not be known. However, as shown in Figure 2, it is reasonable
to assume that α in the deblurred image will be lower than in the given blurred
image, provided that image is relatively noise free. Inspection of Table 1, or of other
more extensive tables pertaining to the types of images under consideration, may
indicate plausible initial estimates for (C,α). As will be shown in section 10, the
PSI method is sufficiently robust as to produce good quality reconstructions, even
with inexact Lipschitz data. Moreover, given a fast algorithm, because of the narrow
range of values involved in both C and α, it is feasible to refine such reconstructions
by simultaneous computation and display of multiple trial restorations, based on
neighboring values of (C,α). Efficient exploration in parameter space is usually the
key to the successful solution of inverse problems, when such problems can be solved.
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Table 1
Values of (C, α) in ‖ Utf − f ‖p ≤ C ‖ f ‖p tα, 0 < t ≤ 0.1, p = 1, 2, for each image f(x, y)

in Figure 3, when Ut is Poisson operator in (19). The (C,α) values shown below may be more
meaningful if rounded to one decimal place. See Remark 3.

Image Size (C, α) ∈ Λ(α, 1,∞) (C, α) ∈ Λ(α, 2,∞)

Marilyn Monroe 5122 C = 0.77, α = 0.565 C = 0.68, α = 0.474

Sagittal brain MRI 5122 C = 1.28, α = 0.590 C = 1.02, α = 0.520

Washington DC Landsat 5122 C = 0.45, α = 0.341 C = 0.55, α = 0.340

Mariner 5 spacecraft 5122 C = 0.90, α = 0.448 C = 0.99, α = 0.417

USS Eisenhower 5122 C = 0.47, α = 0.420 C = 0.50, α = 0.362

English village 5122 C = 0.49, α = 0.472 C = 0.55, α = 0.439

Nanoscale micrograph 10242 C = 0.45, α = 0.415 C = 0.55, α = 0.415

Spiral galaxy M81 10242 C = 0.68, α = 0.365 C = 0.78, α = 0.327

Cluster of galaxies 10242 C = 0.65, α = 0.222 C = 0.97, α = 0.216

6. Image deblurring in L2(R2). We now consider the image deconvolution
problem Pf = g with a known shift-invariant point spread function (psf) p(x, y),

Pf ≡ p(x, y) ⊗ f(x, y) = g(x, y), g(x, y) = ge(x, y) + n(x, y).(24)

Here, ⊗ denotes convolution, g(x, y) is the given recorded noisy blurred image, ge(x, y)
is the hypothetical exact blurred image that would have been recorded in the absence
of any noise, and n(x, y), presumed small, represents the cumulative effects of all noise
processes and other errors affecting final acquisition of the digitized array g(x, y). The
noise may be multiplicative. Neither ge(x, y) nor n(x, y) are known, only their sum
g(x, y). Denoting the unknown exact sharp image by fe(x, y), we have

Pfe = p(x, y) ⊗ fe(x, y) = ge(x, y).(25)

Given only (24), we seek a solution f(x, y) in (24) such that Pf ≈ g, and such that
‖ f − fe ‖2 is small. To achieve this goal, some a priori information about fe and
n is always necessary. Most real images fe(x, y) contain fine scale features, sharp
edges, and other kinds of nondifferentiable singularities. Deblurring techniques that
impose stabilizing constraints in the form of prescribed bounds on partial derivatives
of f(x, y) in (24), are generally inapplicable, although they are often used. Penalties
for such use include smoothing out of sharp features, and possible loss of vital diag-
nostic information. Indeed, the desire to accurately reconstruct edges and other sharp
singularities was the principal reason for developing total variation methods. In fact,
several deblurring methods actually exist that do not require prescribed bounds on
derivatives [8].

A wide variety of blurs can be used as illustrative examples in (24). Here, we
consider the case of uniform defocus blur, where the psf is proportional to the charac-
teristic function of a disc of radius R. This is the so-called “pillbox” model [17], [25],
[16], [31]. If R > 0 is the radius of the “circle of confusion”, the psf for defocus blur
is given by

p(x, y) =

{
(πR2)−1, x2 + y2 ≤ R2,
0, x2 + y2 > R2.

(26)

This has a Fourier transform given by the “sombrero function” [23, p. 72]

p̂(ξ, η) = 2J1(Rρ)/(Rρ), ρ =
√
ξ2 + η2,(27)
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where J1(x) is the Bessel function of the first kind of order 1. In our numerical
experiments below on 2N × 2N images, the expression (27) is used to blur images by
Fourier domain multiplication with a preselected R > 0, and (ξ, η) are integers with
−N ≤ ξ, η ≤ N. Rather than interpret R as a radius, we simply observe that the
severity of such a blur is determined by the number of zeroes1 in |p̂(ρ)| on 0 < ρ ≤ N .

6.1. True Wiener filtering and the Tikhonov–Miller method. Wiener
filtering [32, p. 356], is an important example of a method that does not impose
differentiability constraints. It assumes instead that the power spectra |n̂(ξ, η)| and
|f̂e(ξ, η)| of each of n(x, y) and fe(x, y) are known. When this is the case, Wiener
filtering produces a solution fw(x, y) in (24) defined as follows in Fourier space

f̂w(ξ, η) =
p̂(ξ, η)ĝ(ξ, η)

|p̂(ξ, η)|2 + |n̂(ξ, η)|2/|f̂e(ξ, η)|2
,(28)

where z denotes the complex conjugate of z. Under some additional conditions, it
can be shown that fw(x, y) is an approximate solution of Pf = g that minimizes
the error ‖ f − fe ‖2 over all f ∈ L2. In practice, the power spectra |n̂(ξ, η)| and
|f̂e(ξ, η)| are very seldom known in advance, and true Wiener filtering is almost never
realizable. However, the solution (28) is of considerable theoretical interest because
of its optimality property. Note that numerous ad hoc versions of (28) exist, in
which more readily available quantities are substituted in place of the required, but
unavailable, true power spectra. Such versions are sometimes called Wiener filtering
by an abuse of terminology. However, these substitute versions do not satisfy the
Wiener optimality criterion, nor do they elicit the same degree of theoretical interest.

One of the best-known rigorously analyzable and feasible versions of Wiener filter-
ing is the Tikhonov–Miller method [28], now considered canonical in image deblurring
[25]. Significantly, this method makes no a priori assumptions regarding the statistical
character of the data noise. For nondifferentiable images, Tikhonov–Miller restoration
requires the following a priori information: an upper bound ε > 0 for the L2 norm
of the noise n(x, y) in the blurred image g(x, y), and an upper bound M for the L2

norm of the unblurred image fe

‖ n ‖2=‖ Pfe − g ‖2≤ ε, ‖ fe ‖2≤ M, ε/M 1 1.(29)

It is assumed that ε and M are compatible with the existence of an fe(x, y) ∈ L2

satisfying (29). Tikhonov–Miller restoration is defined as the unique function fτ (x, y)
such that

fτ (x, y) = Arg min
f∈L2(R2)

{
‖ Pf − g ‖2

2 +(ε/M)2 ‖ f ‖2
2

}
.(30)

As will be seen from Theorem 3, where the Tikhonov–Miller method corresponds to
the special case Γt = 0, this minimum problem has a unique solution satisfying

Qτf
τ = P ∗g, Qτ = P ∗P + (ε/M)2I.(31)

Moreover, there holds the following best-possible error bound for Tikhonov–Miller
reconstruction

‖ fτ − fe ‖2 ≤ ε
√

2 ‖ Q−1/2
τ ‖2,(32)

1The first five positive zeroes of J1(x) are 3.83171, 7.01559, 10.17347, 13.32369, and 16.47063.
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where

‖ Q−1/2
τ ‖2 = sup

ξ,η

{
|p̂(ξ, η)|2 + (ε/M)2

}−1/2
.(33)

Given the psf p(x, y), together with the a priori information ε,M, one can always find
the maximum value in the 2N × 2N array on the right of (33). As in (28) we may
implement (31) in Fourier space. We have

f̂τ (ξ, η) =
p̂(ξ, η)ĝ(ξ, η)

|p̂(ξ, η)|2 + (ε/M)2
.(34)

Moreover, from (29) and Parseval’s relation
∫

R2

|n̂(ξ, η)|2dξdη ≤ ε2,

∫

R2

|f̂e(ξ, η)|2dξdη ≤ M2.(35)

Therefore, the Tikhonov–Miller method can be viewed as an approximate version of
true Wiener filtering where the unavailable pointwise values of the spectra in (28) are
replaced by more readily available integrals of these quantities. However, it may be
anticipated that since true Wiener filtering requires prior knowledge in the form of
8N2 numbers for a 2N × 2N image, whereas the Tikhonov–Miller method requires
only 2, less accurate results must generally be expected from the latter method.

7. The Poisson Singular Integral (PSI) method for images ∈ Λ(α, 2,∞).
The preceding discussion was necessary to set the stage for the PSI method. Here, in
addition to the a priori constraints (29), the behavior of ‖ U tfe − fe ‖2 on 0 ≤ t ≤ t
is assumed known, as in the case of Table 1. The constants Ct and α are now used
to place a further constraint on fe(x, y). For any f ∈ L2(R2), we have on Fourier
transforming f − U tf and using (10),

F
{
f − U tf

}
=

(
1 − e−tρ

)
f̂(ξ, η), ρ =

√
ξ2 + η2.(36)

Therefore, from Parseval’s theorem,

∫ t

0
‖ Usf − f ‖2

2 ds =

∫ t

0
ds

∫

R2

(
1 − e−sρ

)2 |f̂(ξ, η)|2dξdη.(37)

For fixed t > 0, define ẑ(ξ, η, t) ≥ 0 by

ẑ(ξ, η, t) =

{∫ t

0

(
1 − e−sρ

)2
ds

}1/2

=

{
t +

4e−tρ − e−2tρ − 3

2ρ

}1/2

.(38)

It follows directly from the integral definition in (38) that for any fixed t > 0, ẑ(ρ, t)
is a strictly increasing function of ρ, and that ẑ(0, 0, t) = 0. For fixed t > 0, define
the linear operator Z(t) in L2(R2) by

Z(t)f =

∫

R2

ẑ(ξ, η, t)f̂(ξ, η)e2πi(ξx+ηy)dξdη.(39)

Then, from (37),

∫ t

0
‖ Usf − f ‖2

2 ds = ‖ Z(t)f ‖2
2.(40)
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For any fe ∈ Λ(α, 2,∞), 0 < α < 1, we have ‖ Usfe − fe ‖2 ≤ Ct ‖ fe ‖2 sα, 0 ≤
s ≤ t, where Ct is a positive constant depending on t, fe and α. Therefore, with
‖ fe ‖2≤ M,

‖ Z(t)fe ‖2
2 ≤

C2
t
M2t

1+2α

1 + 2α
.(41)

Define

Γt =

{
1 + 2α

C2
t
t
1+2α

}1/2

.(42)

The exact image fe(x, y) satisfies the following a priori constraints:

‖ Pfe − g ‖2≤ ε, (ε/M) ‖ fe ‖2≤ ε, (ε/M) Γt ‖ Z(t)fe ‖2≤ ε.(43)

Fix t > 0, and consider the minimization problem

fψ(x, y) = Arg min
f∈L2(R2)

{
‖ Pf − g ‖2

2 +(ε/M)2
(
‖ f ‖2

2 +Γ2
t
‖ Z(t)f ‖2

2

)}
.(44)

As will be seen in Theorem 3 below, this minimum problem has a unique solution
satisfying

Qψf
ψ = P ∗g, Qψ = P ∗P + (ε/M)2

{
I + Γ2

t
Z(t)∗Z(t)

}
.(45)

The function fψ(x, y) in (44) is defined to be the PSI deblurred image. Moreover,
there holds the following error bound for PSI deblurring

‖ fψ − fe ‖2 ≤ ε
√

3 ‖ Q−1/2
ψ ‖2,(46)

where

‖ Q−1/2
ψ ‖2 = sup

ξ,η

{
|p̂(ξ, η)|2 + (ε/M)2

(
1 + Γ2

t
|ẑ(ξ, η, t)|2

)}−1/2
.(47)

Given the psf p(x, y), together with the a priori information ε,M , and Γt, one can
always find the maximum value in the 2N × 2N array on the right of (47). Again, as
in (28) and (34), fψ can be found explicitly in Fourier space. We have

f̂ψ(ξ, η) =
p̂(ξ, η)ĝ(ξ, η)

|p̂(ξ, η)|2 + (ε/M)2{1 + Γ2
t
|ẑ(ξ, η, t)|2}

.(48)

Equations (45)–(48) should be compared with equations (31)–(34). Tikhonov–Miller
deblurring can then be seen as an extreme case of PSI deblurring, the case where
fe(x, y) is presumed no smoother than the most general L2 function, so that ‖ U tfe−
fe ‖2 = o(1) as t ↓ 0. This corresponds to Ct = ∞ in (41), and hence, Γt = 0 in
(48).

Theorem 3. Fix t > 0 and let the exact image fe(x, y) satisfy the a priori
constraints (43). Let fψ(x, y) minimize (44), and let Qψ be the positive self-adjoint
operator on L2(R2) given by

Qψ = P ∗P + (ε/M)2
{
I + Γ2

t
Z(t)∗Z(t)

}
.(49)



1764 ALFRED S. CARASSO

Then fψ is the unique solution of Qψfψ = P ∗g, and fψ satisfies

‖ Pfψ − g ‖2
2 +(ε/M)2

{
‖ fψ ‖2

2 +Γ2
t
‖ Z(t)fψ ‖2

2

}
≤ 3ε2,

‖ P (fψ − fe) ‖2
2 +(ε/M)2

{
‖ fψ − fe ‖2

2 +Γ2
t
‖ Z(t)(fψ − fe) ‖2

2

}
≤ 3ε2.

(50)

This implies the L2 error bound

‖ fψ − fe ‖2 ≤ ε
√

3 ‖ Q−1/2
ψ ‖2,(51)

where

‖ Q−1/2
ψ ‖2 = sup

ξ,η

{
|p̂(ξ, η)|2 + (ε/M)2

(
1 + Γ2

t
|ẑ(ξ, η, t)|2

)}−1/2
.(52)

Proof. Let H denote the Hilbert space direct sum L2(R2)
⊕

L2(R2)
⊕

L2(R2)
with elements [u, v, w], scalar product ([u1, v1, w1], [u2, v2, w2]) ≡ 〈u1, u2〉 + 〈v1, v2〉 +
〈w1, w2〉, and norm ||| |||. Let P̃ : L2(R2) 4→ H be defined by P̃ f = [Pf, ωf, ωΓtZ(t)f ],
where ω = (ε/M), and let g̃ = [g, 0, 0]. We seek to minimize |||P̃ f − g̃||| over all
f ∈ L2(R2). The normal equation P̃ ∗P̃ fψ = P̃ ∗g̃ gives Qψfψ = P ∗g with Q as in
(49). By hypothesis |||P̃ fe − g̃|||2 ≤ 3ε2. The minimizing element fψ is such that
P̃ fψ is the orthogonal projection in H of g̃ on the range of P̃ . By the Pythagorean
theorem

|||P̃ fψ − g̃|||2 + |||P̃ (fe − fψ)|||2 = |||P̃ fe − g̃|||2 ≤ 3ε2.(53)

This proves (50). We now establish (51). From (49), (50),

‖ Q1/2
ψ (fe − fψ) ‖2

2= 〈Qψ(fe − fψ), (fe − fψ)〉 = |||P̃ (fe − fψ)|||2 ≤ 3ε2.(54)

Hence,

‖ fe − fψ ‖2 = ‖ Q−1/2
ψ Q1/2

ψ (fe − fψ) ‖2 ≤ ε
√

3 ‖ Q−1/2
ψ ‖2 .(55)

8. A preliminary deblurring experiment. In the following controlled exper-
iment, knowledge of the exact solution fe(x, y) is used to derive exact values for all
parameters that constitute a priori information in each of the above three methods.
Such exact knowledge is not available in practice. The experiment is primarily of
theoretical interest. It is designed to illustrate major differences in behavior, and to
properly locate the PSI method in relation to Wiener filtering and the Tikhonov–
Miller method. The PSI method with inexact information is discussed in section
10.

The 8-bit 512× 512 Marilyn Monroe image fe(x, y) in Figure 3 was synthetically
defocused by Fourier domain multiplication with the expression in (27) using R = 0.06.
This produced the exact blurred image ge(x, y). Multiplicative noise n(x, y) was then
added to ge as follows. Each pixel value ge(x, y) was perturbed by adding to it
the quantity n(x, y) = 0.03σ(x, y)ge(x, y), where σ(x, y) is an array of uniformly
distributed random numbers in the range [−1, 1]. We term this process “adding 3%
noise”. With varying percentages, we shall use the same process in all our experiments.
Note that no noise is thereby added at points where ge(x, y) = 0. The resulting
g(x, y) = ge(x, y) + n(x, y) is shown in Figure 4(A). We find ‖ n ‖2= ε = 2.247, and
‖ fe ‖1= 107.59, ‖ fe ‖2= M = 131.13. Therefore ε/M = 0.01713. From Table
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A B

C D

Fig. 4. Instructive deblurring experiment with exact a priori information highlights significant
differences in behavior in above three FFT-based methods. (A) Defocused Marilyn Monroe image
with R = 0.06 and 3% multiplicative noise. (B) Tikhonov–Miller method with exact parameters ε and
M , brings out significant noise. (C) PSI method with exact parameters ε, M, α = 0.474, Ct = 0.68.

(D) True Wiener filtering with exact power spectra |n̂(ξ, η)|, |f̂e(ξ, η)|. Realizable PSI deblurring
closely matches unrealizable true Wiener filtering.

Table 2
Behavior in defocused Marilyn Monroe image in Figure 4.

Deblurring method L1 relative error L2 relative error
Tikhonov–Miller (B) 29.82% 34.17%

Poisson Singular Integral (C) 6.89% 9.04%
True Wiener filtering (D) 6.03% 7.88%
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1, we have ‖ U tfe − fe ‖2 ≤ 0.68 ‖ f ‖2 t0.474, 0 < t ≤ 0.1. With t = 0.1, (42)
gives Γt = 19.33. Next, using FFT algorithms, we obtain the exact power spectra

|n̂(ξ, η)|, |f̂e(ξ, η)|. We are now ready to compare these three FFT-based procedures
under optimal conditions for each method.

The Tikhonov–Miller reconstruction is shown in Figure 4(B). Significantly, this
reconstruction is quite noisy, despite the use of exact values for ε and M . While the
regularizing information in (29) prevents explosive noise amplification, it is obviously
insufficient to prevent serious noise contamination. This is generally the case in the
Tikhonov–Miller method. The PSI restoration is shown in Figure 4(C). Here, the
additional information that fe ∈ Λ(α, 2,∞), together with the values of the constants
Ct and α, were evidently decisive in eliminating noise. The Wiener filtered solution,
shown in Figure 4(D), appears only slightly better than the PSI solution. However,
the very major difference between true Wiener filtering and the approximate version
known as the Tikhonov–Miller method, is another significant result brought out by
this deblurring experiment.

It is instructive to study the L1 and L2 relative error pattern shown in Table 2.
It is widely assumed in practice that the L2 minimum error property of true Wiener
filtering remains valid for the more feasible, approximate versions of such filtering.
This is emphatically not the case. The Tikhonov–Miller relative errors are more than
four times larger than the true Wiener errors. On the other hand, relative errors in the
PSI method are only slightly larger than those for true Wiener filtering. Put another
way, the PSI method appears to be a feasible procedure that can very substantially
improve upon the Tikhonov–Miller method.

Insight into how this improvement comes about can be gained by an analysis of
the respective error bounds for each method. Notice that each of the denominators
on the right-hand sides of (34) and (48) are radially symmetric functions of (ξ, η),
while this is not the case in (28). These denominators play a dual role. They define
the actual regularization procedures in (34) and (48), and they define the resulting
error bounds in (33) and (47). Because of the radial symmetry, a one-dimensional
picture tells the whole story. Define the respective Tikhonov–Miller and PSI error
bound functions θτ (ξ), θψ(ξ) as follows

θτ (ξ) =
{
|p̂(ξ, 0)|2 + (ε/M)2

}−1/2
,

θψ(ξ) =
{
|p̂(ξ, 0)|2 + (ε/M)2(1 + Γ2

t
|ẑ(ξ, 0, t)|2)

}−1/2
.

(56)

In Figure 5, we plot θτ (ξ) and θψ(ξ) as determined by the actual parameter val-
ues that entered the deblurring experiment in Figure 4. The significant differences in
these two curves translate into fundamental differences in the Fourier space regular-
ization that defines the corresponding procedures. From (27), we see that θτ (ξ) has
a maximum of M/ε = 58.36, at every point ξ > 0 where J1(0.06 ξ) = 0. There are
4 such points on 0 < ξ ≤ 256. The curve θψ(ξ) also develops maxima at these same
points, but these maxima are about five times smaller than those in θτ (ξ), owing
to the additional term involving ẑ(ξ, 0, t). Since the error estimate in each method
is proportional to the maximum along the corresponding curve, it is natural to find
substantially smaller errors in Figure 4(C) than in Figure 4(B).

9. Comparing total variation deblurring with PSI deblurring. The use of
initial value PDE methods in image processing and computer vision has mushroomed
into an important new branch of applied mathematics. The basic idea originates in
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Fig. 5. Plot of error bound functions θτ (ξ) (dashed curve), and θψ(ξ) (solid curve), as defined
in (56), for the deblurring experiment in Figure 4. Maximum value in θτ is more than five times
larger than in θψ. Qualitative difference in behavior in these two curves implies significant difference
in Fourier domain regularization in the PSI and Tikhonov–Miller methods. Difference in maximum
values explains large difference in L2 relative errors in Figures 4(B) and 4(C).

gradient descent methods for minimizing appropriate energy functionals. Instructive
surveys of this general set of ideas may be found in [11] and [39].

The total variation approach introduced in [33] is one of the most popular PDE
methods, and it is primarily designed to recover edges in the original image. Given
the deconvolution problem Pf = g as in (24), TV deblurring presupposes the exact
sharp image fe(x, y) ∈ BV (R2), and it produces an image f tv(x, y) defined by

f tv(x, y) = Arg min
f∈BV (R2)

{
(λ/2) ‖ Pf − g ‖2

2 +

∫

R2

|∇f |dxdy
}
.(57)

This means that f tv(x, y) is the solution of

P ∗Pf tv − λ−1∇.

(
∇f tv

|∇f tv|

)
= P ∗g.(58)

Here, λ > 0 is a regularization parameter that can be tuned. Provided the noise
level in g(x, y) is small, larger values of λ produce sharper images. Too large a value
of λ leads to computational instability. Unlike the cases in (31) and (45), (58) is a
nonlinear deconvolution problem that cannot be solved explicitly in Fourier space.
In fact, considerable effort is generally required to obtain f tv for large size imagery.
In pure denoising applications, where P = I, this effort is usually warranted by the
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quality of the resulting restoration. Recently, a new time dependent evolutionary
approach to (58) has been developed [26], whereby f tv(x, y) is obtained as the steady
state solution to the following nonlinear anisotropic diffusion problem

{
ut = −λ|∇u| P ∗(Pu− g) + |∇u| ∇.

(
∇u/{

√
|∇u|2 + β}

)
,

u(x, y, 0) = g(x, y),
(59)

where the given blurred image g(x, y) is used as the initial value. In addition, u(x, y, t)
satisfies homogeneous Neumann conditions at the boundary of the unit square Ω. In
(59), β > 0 is a small constant designed to prevent division by zero. In [26, section
5], an efficient new explicit finite difference scheme for (59) is proposed. This scheme
has improved stability and edge-enhancing properties, and converges rapidly to the
desired steady state solution. Accordingly, we shall use that method in our total
variation deblurring experiments.

This paper has drawn attention to the fact that most images are not smooth. The
PSI method is predicated on locating fe(x, y) in the correct Lipschitz space, while TV
deblurring assumes fe(x, y) ∈ BV (R2). It may be argued that such refined smoothness
measures are primarily applicable to f∞(x, y), the original intensity field that gave
rise to the digitized finite dimensional object fe(x, y), but may not be meaningful for
fe(x, y) itself. Indeed, since all norms are equivalent in finite dimensional space, it
remains to be seen whether such abstruse function space notions are ultimately of any
computational significance.

Our first experiment involves a slightly defocused image with very little noise.
The original sharp USS Eisenhower image is shown in Figure 6(A). Fourier space
multiplication with (27) using R = 0.03, followed by the addition of 0.1% multiplica-
tive noise, produced the blurred Figure 6(B). Because of the low noise level, we chose
β small and λ large in (59), as recommended in [26]. With β = 0.0001, ∆t = 0.1(∆x)2

and λ = 300, we obtained Figure 6(C) at T = 100∆t. Higher values of λ were com-
putationally unstable. Moreover, the resulting TV image did not improve if more
time steps were taken. Figure 6(D) is the PSI deblurred image using exact values for
ε, M , and using α = 0.362, Ct = 0.50, from Table 1. Zooming on selected parts of
the image in Figures 6(E) and 6(F), clearly shows significant loss of structural detail
in the TV image, as compared with PSI deblurring. For completeness, the L1 relative
errors in this experiment were as follows: true Wiener filtering (not shown) 1.67%,
PSI method 2.18%, TV deblurring 6.83%, and Tikhonov–Miller (not shown) 4.71%.

In our second experiment, the sharp English village image in Figure 7(A) was
moderately defocused using R = 0.06, and 0.1% multiplicative noise was again added
to form Figure 7(B). With β and ∆t as in Figure 6(C), it was possible to choose
λ = 500, and obtain Figure 7(C) at T = 100∆t. Again, no improvement was noted
with more time steps. Figure 7(D) is the PSI deblurred image using the exact values
for ε, M , together with α = 0.439, Ct = 0.55, from Table 1. Because of the stronger
blur, more information is now lost in TV deblurring. Zooming in on the first three
houses in Figures 7(E) and 7(F), we see that the windows and roof shingles have
been virtually eliminated in the TV image. The L1 relative errors in this experiment
were as follows: true Wiener filtering (not shown) 1.98%, PSI method 3.05%, TV
deblurring 6.70%, and Tikhonov–Miller (not shown), 7.42%.

10. The PSI method with inexact Lipschitz data. The controlled exper-
iments in sections 8 and 9 were designed to illustrate important theoretical points,
and involved use of the PSI method with exact prior Lipschitz space data. In fact,
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A B

C D

E F

Fig. 6. Comparison of total variation and PSI deblurring on mildly blurred image. Zooming on
selected parts of the image enables meaningful comparisons between the two methods. (A) Original
sharp USS Eisenhower image. (B) Mildly defocused image with R = 0.03 and 0.1% multiplicative
noise. (C) Total variation deblurring by applying finite difference scheme in [26, section 5] to (59),
with β = 0.0001, λ = 300, ∆t = 0.1(∆x)2, T = 100∆t. (D) PSI deblurring using exact a priori
parameters, ε, M, α = 0.362, Ct = 0.50. (E) Zooming in TV deblurred image reveals significant
loss of structural detail. (F) Zooming on same region in PSI image.
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A B

C D

E F

Fig. 7. Comparison of total variation and PSI methods on moderately blurred image. Zooming
now reveals unacceptable loss of content in TV deblurring. (A) Original sharp English village image.
(B) Moderately defocused image with R = 0.06 and 0.1% multiplicative noise. (C) Total variation
deblurring using scheme in [26, section 5] with β = 0.0001, λ = 500, ∆t = 0.1(∆x)2, T = 100∆t.
(D) PSI method with exact a priori parameters, ε, M, α = 0.439, Ct = 0.55. (E) Zooming in image
(C) reveals loss of windows and roof shingles. (F) Zooming on same region in PSI image.
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A B

C D

Fig. 8. Use of plausible guess. Robust PSI method can produce useful reconstructions, even
with inexact Lipschitz data. (A) Moderately defocused Ingrid Bergman image with R = 0.12 and
0.5% multiplicative noise. (B) Total variation deblurring using scheme in [26, section 5], with
λ = 400, β = 0.0001, ∆t = 0.1(∆x)2, and T = 150∆t, produces lifeless, mannequin-like appearance.
(C) PSI method using plausible guess α = 0.5, Ct = 0.5. (D) True Wiener filtering with exact

power spectra |n̂(ξ, η)|, |f̂e(ξ, η)|. Fast PSI deblurring, with fictitious Lipschitz data, produces good
first approximation to unrealizable optimal Wiener image.

Table 3
Behavior in moderately defocused Ingrid Bergman image in Figure 8.

Deblurring method L1 relative error L2 relative error
Tikhonov–Miller (not shown) 24.15% 27.33%

Total Variation (B) 5.79% 8.45%
PSI with plausible guess (C) 4.75% 5.76%

True Wiener filtering (D) 3.53% 4.40%



1772 ALFRED S. CARASSO

A B

C D

Fig. 9. Use of substitute information. Robust PSI method produces remarkably good reconstruc-
tion using Lipschitz space data corresponding to image of “similar” object. (A) Strongly defocused
USAF satellite image with R = 0.25 and 0.5% multiplicative noise. (B) Total variation deblurring
using scheme in [26, section 5], with λ = 400, β = 0.0001, ∆t = 0.1(∆x)2, and T = 150∆t, results
in severe loss of texture. (C) PSI method using substitute Lipschitz data α = 0.417, Ct = 0.99,
obtained from Mariner 5 image in Figure 3. (D) True Wiener filtering with exact power spectra

|n̂(ξ, η)|, |f̂e(ξ, η)|. Fast PSI deblurring, using substitute data, closely matches unrealizable optimal
Wiener image.

Table 4
Behavior in strongly defocused USAF satellite image in Figure 9.

Deblurring method L1 relative error L2 relative error
Tikhonov–Miller (Not shown) 37.95% 33.56%

Total Variation (B) 32.91% 31.82%
PSI based on similar object (C) 20.69% 16.83%

True Wiener filtering (D) 17.50% 13.04%
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the PSI method is a robust method of great practical significance that can produce
useful reconstructions even with inexact Lipschitz data. Inspection of Table 1 shows
that the values of (C,α) are typically confined to a narrow range. Indeed, a plausible
guess for (C,α) might be (0.5, 0.5) in many cases. In other situations, a sharp image
of a similar object might provide useful values for (C,α). Such initial reconstructions
can then be interactively refined through fast simultaneous computation and display
of multiple trial PSI images, corresponding to neighboring (C,α) values. We now give
two examples that show how good such initial reconstructions can be.

Figure 8(A) is an 8-bit 512× 512 synthetically defocused Ingrid Bergman image,
obtained using (27) with R = 0.12, followed by adding 0.5% multiplicative noise. Total
variation deblurring using the scheme in [26, section 5], with λ = 400, β = 0.0001,
and T = 150∆t, produces the lifeless, mannequin-like appearance shown in Figure
8(B). However, the PSI method with the plausible guess α = 0.5, Ct = 0.5, produces
Figure 8(C). This initial reconstruction is already in good qualitative agreement with
the true Wiener image in Figure 8(D). The L1 and L2 relative errors in Table 3
indicate that the PSI method, even with such inexact data, significantly improves
upon the Tikhonov–Miller and total variation methods.

Our final experiment involves the strongly defocused USAF satellite image in
Figure 9(A), where R = 0.25 and 0.5% multiplicative noise was added. As may be
expected in such a severely blurred image, total variation deblurring, shown in Figure
9(B), results in severe loss of structural detail. Here, the Mariner 5 image shown
in Figure 3 may be considered a “similar” object, and the corresponding Λ(α, 2,∞)
information in Table 1, C = 0.99, α = 0.417, may be used in the PSI method.
Remarkably, this produces the reconstruction shown in Figure 9(C). While faint hon-
eycomb artifacts are visible against the dark background in Figure 9(C), this initial
PSI image is an excellent approximation to the optimal true Wiener image shown in
Figure 9(D). Relative errors in this experiment are shown in Table 4.

In Figure 4, the PSI method’s improvement over the Tikhonov–Miller method
can be traced to the fact that the constraints in (29) allowed the solution to be too
rough. In Figures 6 through 9, PSI’s improvement over the total variation method
stems from the fact that the minimum principle (57) forces the solution to be too
smooth. Apparently, the use of singular integrals to calibrate image smoothness,
together with the direct use of that information in constraining the solutions of the
deblurring problem, constitutes an important new idea in image deconvolution.
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