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ABSTRACT

Microeconomic employment adjustment costs affect not only employment adjustments at the micro

level but may also profoundly impact aggregate employment dynamics. This paper sheds light on the

nature of these microeconomic employment adjustment costs and quantifies their impact on aggregate

employment dynamics. The empirical exercises in the paper analyze the differences in employment

adjustments by establishment characteristics within a hazard model framework using micro data for

approximately 10,000 U.S. manufacturing plants. I find that employment adjustments vary

systematically by establishment characteristics; moreover,  these variations suggest that employment

adjustment costs reflect the technology of the plant,  the skill of its workforce, and the plant’s access to

capital markets. Concerning the structure of the adjustment costs, the employment adjustments have

significant nonlinearities and asymmetries consistent with nonconvex, asymmetric adjustment costs.

Specifically, employment adjustment behavior shows substantial inertia in the face of large employment

surpluses, varied adjustment behavior for small deviations from desired employment, and (S,s)-type of

bimodal adjustments in response to large employment shortages. Finally, the micro level heterogeneity,

asymmetries, and nonlinearities significantly impact sectoral and aggregate employment dynamics.
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“The vast literature on dynamic factor demand has been organized around the concept of costs

of adjustment. The standard assumption has been that these costs are convex and symmetric...

[This] convenient approximation detracts from our ability to provide useful discussions of

macroeconomic behavior and microeconomic policies... An important first step will therefore be

to discover the correlates of the structures of adjustment costs in order to learn how widespread

each potential [structure] of these costs is... Discovering the size of adjustment costs and how

these too vary by industries’ and workers’ characteristics should be high on anyone’s research

agenda in the study of factor demand.”

Hamermesh and Pfann (1996, p. 1289)

1. Introduction

Microeconomic employment adjustment costs affect not only employment adjustments at the micro

level but may also profoundly impact aggregate employment dynamics. At the beginning of their

extensive review of the current state of research concerning factor demand adjustment costs,

Hamermesh and Pfann (1996) set forth four questions that need to be answered about adjustment

costs. The questions concern the source, size, and structure of the adjustment costs facing an

individual agent and the macroeconomic implications of these adjustment costs. Since it has proven

difficult to directly observe and measure employment adjustment costs, this paper addresses these

questions indirectly by examining differences in employment adjustments over worker and plant

characteristics.  Specifically, this paper examines establishment-level employment adjustments within a



1 As this paper focuses on adjustment costs in terms of the labor demand decision, changes in
employment that reflect job matching or life cycle issues are not as relevant, and hence net employment
changes are studied rather than gross employment changes.

2 See Oi (1962) and Nickell (1986) for examples of directly measuring employment adjustment
costs. Concerning indirect identification of the sources and size of employment adjustment costs, see
Foster (1999) which uses the more traditional partial adjustment model as a theoretical framework.
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hazard framework for approximately 10,000 U.S. manufacturing plants over a variety of worker and

plant characteristics. In addition to shedding light on the source, size, and structure of the micro

adjustment costs, this paper quantifies the impact of these costs on sectoral and aggregate employment

dynamics. 

There are many sources of employment adjustment costs.1  There are explicit adjustment costs such as

the costs of contracted-out advertising, testing, processing, and training new workers when expanding

the workforce and costs related to legal requirements and regulations when reducing the workforce. 

Other costs are less explicit such as the adjustment costs that arise from restructuring the workforce

(including planning and organizational costs) and those associated with changing the mix of inputs. For

employment increases that require expansions across other dimensions (for example, acquiring more

equipment), these adjustment costs can include the costs of obtaining access to financial capital. Finally,

there are implicit employment adjustment costs which represent the loss of productivity that ensues as

work shifts from producing output to absorbing employment changes. Thus there are many potential

sources of adjustment costs, the few direct measurements of the size of employment adjustment costs

suggest that they are significant.2 

Much of the recent literature on dynamic factor demand centers on a debate concerning the structure

of adjustment costs. The structure of adjustment costs affects not only the nature of the micro-level



3  Pfann and Verspagen (1989) and Schiantarelli and Sembenelli (1993) find evidence suggesting
that the adjustment costs are higher on the hiring side. However, Jaramillo, Schiantarelli, and Sembenelli
(1993) find evidence that the adjustment costs are higher on the firing side. The relatively small samples
used in these studies for a select number of industries makes drawing general conclusions difficult. In
addition, there may be differences across countries that account for the variation in the results. Caballero,
Engel, and Haltiwanger (1997) find evidence consistent with adjustment costs that are higher on the firing
side.  In a study using aggregate data, Palm and Pfann (1993) find that hiring costs exceed firing costs for
production workers but that the reverse is true for nonproduction workers.  Chang and Stefanou (1988)
reject symmetry of adjustment costs. Holzer and Montgomery (1990) do not find evidence of an
asymmetric adjustment pattern for employment until they analyze large and small firms separately. They
find that large firms adjust more in reaction to negative shocks, while small firms adjust more in reaction
to positive shocks.
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adjustments but can also determine the nature of the aggregate dynamics in response to shocks.

Specifically, the relevant features of the adjustment cost function are its symmetry and convexity.

Concerning symmetry, there is no reason to suppose that adjustment costs are of the same magnitude

over the expansion and contraction sides of employment adjustments.  The issue of convexity concerns

whether the employment adjustment cost function has two components: costs that vary over the size of

the adjustment and costs that are fixed over the size of the adjustment. The structure of adjustment

costs has implications for the smoothness of adjustments to a shock. Unlike convex adjustment costs

which are associated with smooth, continuous adjustments to shocks, these fixed adjustment costs are

associated with lumpy adjustments.

The existing literature on employment adjustment costs using micro-level data suggests that adjustment

costs are asymmetric and nonconvex.  Within the employment adjustment asymmetry literature,

however, there is no consensus as to which side has the greater adjustment costs.3  Studies that use

establishment-level data report evidence consistent with nonconvex adjustment costs. Hamermesh

(1989, 1992a) finds that a model that allows for nonconvexities in adjustment costs dominates the



4 Foster (1999) finds faster speeds of adjustment for production workers and younger, smaller
plants.
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quadratic adjustment cost model for two small sets of micro data. In two related papers using Italian

data, Rota (1997a, 1997b) finds that fixed adjustment costs are important, and moreover, concludes

that employment decisions can be described by an (S,s) rule with symmetric bounds. Caballero, Engel,

and Haltiwanger (1997) using a large dataset of U.S.  manufacturing plants find that plants adjust

disproportionately more to large (absolute) employment shortages and that establishment-level

employment adjustments often are either non-existent or complete suggesting that employment

adjustments can be characterized by an (S,s) model. This paper extends the work in Caballero, Engel,

and Haltiwanger (1997) by broadening their framework to encompass plant-level heterogeneity in

employment adjustment costs by worker and establishment characteristics.

Given the range of types of adjustment costs, it is reasonable to expect that adjustment costs might vary

for different types of workers and plants. This introduction outlined four broad sources of adjustment

costs: costs related to the skill of the workers, costs related to the plant technology, costs associated

with access to capital markets, and institutional and regulatory costs of adjustment. The relative

importance of these different adjustment costs may vary systematically by certain worker and

establishment characteristics.  For example, one might expect employment adjustment costs to be

higher for more skilled workers. Estimates of the speed of adjustment parameter from the partial

adjustment model suggest that differences in adjustment costs with respect to technology and worker

skill are particularly important.4  Furthermore, the structure of the adjustment cost function might vary

with plant characteristics. Extending the example above, having found that adjustment costs are larger



5   Hamermesh (1990, 1992b) stresses the importance of using spatially and temporally
disaggregated data. Nickell (1984) notes the importance of using data disaggregated by worker type. 
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for more skilled workers, one may further discover that the employment adjustments suggest that fixed

adjustment costs are especially important on the hiring side and less important on the firing side.  Since

directly measuring the adjustment costs is not feasible, employment adjustment costs are indirectly

analyzed by examining differences in establishment-level employment adjustments taking into account

differences in the establishments’ age, average plant and firm size, ownership type, industry

classification, shutdown technology, location, input intensities, and workforce skill level.  

The adjustment hazards approach developed by Caballero and Engel (1993) serves as the theoretical

framework for the empirical analysis in this paper. This framework enables one to determine whether

adjustment costs are asymmetric and nonconvex and can be extended to allow for heterogeneity across

workers and establishments. Furthermore, the adjustment hazard approach can establish whether the

nonlinearities, asymmetries, and heterogeneity potentially uncovered at the micro plant-level are

empirically significant at the sectoral and aggregate levels. Much of the existing literature on adjustment

costs stresses the importance of using highly disaggregated data in empirical analysis.5  The empirical

analysis in this paper uses quarterly production worker employment data for approximately 10,000

U.S. manufacturing plants, and is thus well-suited to the task of analyzing micro employment adjustment

costs as it is disaggregated spatially, temporally, and by worker type.  

  This paper is organized in the following manner. The hazard model is described in the next section.

The data are described in the Section 3. Section 4 contains parametric analyses of employment

adjustments. Section 5 examines the sectoral and aggregate dynamics when there are nonconvexities at
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the micro level. Concluding remarks are presented in Section 6. 

2. Theoretical Framework: State-Dependent Hazard Model 

Average aggregate employment growth ()E) is decomposed into three pieces by Caballero and Engel

(1993): it is the sum over all employment shortages (z) of the product of these shortages, the adjustment

hazard function (A) and the distribution of deviations (f). That is,

The adjustment hazard function (A) determines the fraction of the employment deviation closed on

average by plants with a particular deviation (z) at time t. The shape of this adjustment hazard function

(A) is influenced by the structure of adjustment costs and, in turn, has a profound effect on plant-level

and aggregate employment dynamics. The distribution of deviations (f)  reflects the full range of

employment shortages or surpluses that can exist at different plants at one time immediately following

the latest idiosyncratic shocks.  Shifts in this cross-sectional density of employment shortages evolve

depending on the aggregate shock, the number of plants that adjust, and the idiosyncratic shocks.

Similarly at the plant-level, employment changes reflect the hazard function and plant-level deviations in

desired employment. That is,

The basic building block for this decomposition is the deviation of actual employment from the

employment that would be optimal in the momentary absence of any frictions (z).  Specifically, the



6   This relationship is derived explicitly in Foster (1998). Specifically, 2=(µ-$()/(1-"().  Where
µ=elasticity of wages with respect to hours , $=output elasticity of hours,  "=output elasticity of
employment, and ( is a function of the price elasticity of demand.

7  See Caballero, Engel, and Haltiwanger (1997) for a similar discussion and Foster (1998) for
other examples, derivations of the employment dynamics, and a detailed discussion concerning the choice
of functional forms for the state-dependent hazard.
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employment deviation (or shortage) is defined as:

Where net is the log of actual employment at establishment e at time t and n*et is the log of desired

employment at establishment e at time t. Thus this gap measures the current employment shortage (z)

which can arise due to both aggregate and idiosyncratic shocks. Caballero and Engel (1993) note that

under certain conditions one can approximate this desired employment up to an additive constant by the

solution to the static optimization problem. The relationship that results from this optimization relates the

change in employment deviations (z) to the change in hours (h):

Where 2 is determined by the technology of the production function, the elasticity of wages with

respect to hours, and the market structure.6  Given how 2 is defined, this parameter may vary over a

number of plant characteristics.

To see why the shape of the hazard function is important it is useful to consider two examples, the

constant hazard and the increasing hazard.7  With a constant hazard function, plant-level employment

adjustments are constant over the size of the employment shortage (z).  The constant hazard is



8  At the aggregate level it is not possible to distinguish between having plants continuously
adjusting 8 of the deviation (as in the partial adjustment model) from some fraction 8 of plants adjusting
completely.  However, it is possible to distinguish between these two different adjustment-types by looking
at the empirical distribution of adjustment rates. 

9   The specific functional form they use is a second-order polynomial. A(z)= 80+82z2.
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consistent with convex adjustment costs as plants close some fraction of the employment gap in each

period because too rapid adjustment yields higher and higher adjustment costs. The plant-level change

in employment is a linear function of the employment deviations. Similarly, the aggregate employment

dynamics in response to a contemporaneous aggregate shock are linear. This is because only the first

moment of the cross-sectional distribution matters.  To see this, imagine a shift in the cross-sectional

distribution. In this case,  the fraction of the gap that plants close remains the same, the only relevant

thing that has changed is the average size of the employment deviation.8

Caballero and Engel (1993) prefer an increasing adjustment hazard as it has the intuitively appealing

implication that plants do not tolerate large deviations from desired as much as they do small

deviations.9 The plant-level employment growth rate is still positively related to the deviation, but it is

now more sensitive to large deviations than small. The aggregate employment dynamics for the

increasing hazard model depend on the first and third moments of the cross-sectional distribution of

moments.  Any shift in the distribution towards the tails of the hazard function brings a more than

proportional increase in the employment adjustments as the probability of adjusting has risen as well as

the size of the adjustment (since the adjustments are full and the deviations are growing). This increasing

adjustment hazard has the property that it is consistent at the aggregate level with the (S,s) model if

there is heterogeneity of agents concerning the width of the band of inactivity. 



10  See also Abraham and Houseman (1989) for a discussion about differences by worker types. 
See Dunne, Haltiwanger, and Troske (1997) for a discussion of using these worker types as measures of
skill differences.
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A. Plant Characteristics

The above discussion of the state-dependent hazard model implies that all plants have the same

adjustment hazard function. However, one finding common to work using plant-level data is the

tremendous heterogeneity of plants across many dimensions. Plant characteristics may affect

employment adjustment costs and hence may affect the adjustment hazard. Plant characteristics that are

likely to affect employment adjustment costs include general worker skill-level, plant technology,

institutional and regulatory environment, and access to financial capital markets.

Starting with Oi’s (1962) pioneering work, many researchers have found significant differences in

employment adjustments over workers of different skill levels (measured here as production versus

nonproduction workers).10 Furthermore, nonproduction worker adjustments may be more costly as

they may entail adjustments over other inputs, such as capital. Griliches (1969) and Bergstrom and

Panas (1992) find evidence that skilled employment is more complementary with capital than is

unskilled employment. Brown, Hamilton, and Medoff (1990) note that large firms (which tend to

operate large establishments) are more likely to hire more educated, more experienced, older workers

than small firms. One possible reason for this that they cite is that large firms may tend to be more

capital intensive. Thus the literature suggests that more skilled workers face larger adjustment costs.

There are a variety of technological factors that can impact employment adjustment costs and hence the

hazard function. Capital-intense establishments are likely to face high adjustment costs, as these



11 Mayhsar and Solon (1993) find that "[w]hen full-time employment declines during a recession,
about one-half of the decline for manufacturing production workers and one-third of the economy-wide
decline occur on late shifts (p.227)."

12 King and Williams (1985) note that the prevalence of a late-shift varies greatly among
manufacturing industries, "ranging from less than 5 percent of the production workforce in such labor
intensive industries as apparel ... to approximately one-half in more capital intensive industries such as
cotton and manmade textiles..(p. 26)."  Mellor (1986) finds that shift-work in manufacturing is most
prevalent in primary metals, automobiles, paper products, chemicals, and rubber and plastics. 
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employment adjustments have a greater chance of  involving an adjustment in the capital stock which

itself faces high adjustment costs. Although adjusting energy may be relatively costless, the energy

intensity of an establishment may reveal information about its technology. Since energy intensive plants

tend to be also capital intensive, one might expect energy intensive establishments to have higher

adjustment costs. The use of shift work can affect the ease with which a plant manager can adjust an

establishment's employment to accommodate a large shock. Adjustment costs associated with planning

and restructuring may be smaller for establishments that employ shifts.11 Shift-work tends to be more

associated with occupations found in the production worker group than the nonproduction worker

group and to be more associated with industries that are capital-intensive.12 Of course, the presence of

shifts does not necessarily mean that it is feasible to adjust over shifts; many establishments that have

shifts are also continuous operators which makes adjustment over shifts infeasible. Continuous

processing establishments have large start-up and shut-down costs that make adjustments over

employment relatively more expensive than for assembly-type producers who have small start-up and

shut-down costs (see Mattey and Strongin (1994)). One would expect that large employment

adjustments are most easily accomplished in establishments that have shifts and are also assembly-type

producers. The age of the establishment can give information concerning the maximum vintage of the
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capital at the establishment, thus allowing for some comparison across establishments concerning

technology. Berman, Bound, and Griliches (1994) found evidence of labor-saving technical change in

the manufacturing sector over the latter part of the sample in this paper. During this period,

nonproduction workers gained in relative importance at establishments. It may be that older

establishments use older, more production-worker intensive technology. The size of the plant may also

reveal information about its technology. Kandel and Pearson (1995) show that in theory larger

establishments will tend to hire relatively more permanent workers ceteris paribus. Hence, increased

establishment size may be associated with less flexibility and thus slower adjustment.

Institutional constraints to adjusting employment include union agreements and laws that constrain

layoffs.  The unionization of an establishment may increase its costs of adjusting or make adjustments

over some margins impossible. There are legal constraints to layoffs on both the federal and state levels. 

In addition, the experience rating system of unemployment benefits, which differs by states, can

produce costs of adjustments for those establishments that are below the threshold level. Many labor

regulations exclude smaller firms and large firms are more likely to be unionized than small firms. While

direct measures of these institutional constraints are not readily available, variation by industry, region,

and size of plant or firm are ways that these constraints may play a role in this analysis. 

Finally, an establishment's access to capital funds can greatly affect its costs and ability to adjust. Plants

that are part of a large multi-plant firm may have greater access to internal funds and have certain types

of financial credit available that are unavailable to small firm plants.  In addition,  interest rates paid have



13 See Brown, Hamilton, and Medoff (1990) and Davis, Haltiwanger, and Schuh (1996).

14  The LRD is composed of data from two sources, the Census of Manufacturers (CM) and the
Annual Survey of Manufacturers (ASM). The CM is conducted every five years and includes all
establishments whose primary activities occur within the manufacturing sector (about 350,000 plants  each
census). The ASM is a rotating sample of establishments from the CM where the probability of selection
for the ASM sample is related to the size of the establishment. The ASM contains roughly between
50,000 and 70,000 plants in a given year.  See Davis, Haltiwanger, and Schuh (1996).   
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been shown to be strongly inversely related to the size of the borrower.13 Thus, these costs of upsizing

may be greater for single-unit, smaller establishments. 

3.  Data  

The data used in this paper are a sample of manufacturing plants from the Longitudinal Research

Database (LRD). 14 The analysis in this paper draws on the set of plants which were continuously

operating over 1972-1980 and that met a certain plant-size requirement in terms of their employment

(the latter is in order to ensure better quality of the hours data). The sample ends in 1980 due to data

availability. The plant characteristics are: age; plant and firm size; ownership; industry; shutdown

technology; region; capital, energy, and production worker intensities; and production worker wage

share. These plant characteristics are collected only annually and in the analysis are held fixed over the

entire sample (either at their average or 1977 value). The sample contains 9,571 manufacturing plants

with about 5.7 million production workers. The sample of production worker employment tracks the

total manufacturing sector relatively well (with a correlation of 0.91). In terms of the plant

characteristics, the sample over represents large, older, multi-unit plants but is relatively representative

in terms of most industries, location, and factor intensities. The sample is better at representing the



15  Caballero, Engel, and Haltiwanger (1997) allow for variation by two-digit industry arguing that
this  “achieves a reasonable compromise between precision and flexibility (p. 120).”

16  This tendency to adjust separately over the intensive and extensive margins has been noted by,
among others, Abraham and Houseman (1992), Lilien and Hall (1986), Rones (1981), and Bry (1959).
Caballero, Engel, and Haltiwanger (1995) note that this pattern is also interesting as the sign of the
relationship changes at the aggregate level. “At the level of the firm, shocks are absorbed mainly along
one of the two margins, while at the aggregate level the response to a given shock is shared by both
margins (p. 11).”
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experience of manufacturing employees rather than the experience of manufacturing plants. (See

Appendix A for more detail.)

A. Estimates of 2

The first step in applying this hazard methodology is calculating the state variable, employment

shortages (z). As shown above in equation 4 this means estimating 2 . One issue in estimating 2 is

whether it should be allowed to vary by the plant characteristics.15  As noted above, 2 is a function of

technology (" and $), wage elasticity (µ) and market structure (0). Its seems plausible that the

production technology parameters especially would differ over many of the plant characteristics

considered in this study as these characteristics indirectly reflect differences in production technology.

The actual regression equation, which relates changes in employment to changes in hours, is derived in

Appendix B.

The regression results suggest that adjustments over employment and hours do not occur in tandem;

plants rely on one margin at a time. Plants initially absorb demand and cost shocks by varying hours per

worker, when plants later adjust employment, the plants bring average hours per worker back to their

preferred level. Thus at the plant-level, hours and employment are adjusted in opposite directions.16 



17   Another nonstructural exercise may be found in Foster (1998). This exercise compares the
volatility of employment adjustments and shocks. The results suggest that differences in both the volatility
of the underlying shocks and the adjustment costs contribute to differences in the volatility of employment
adjustments.  
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Focusing on comparisons of the estimates within a characteristic, the largest variations in 2 are for two-

digit industry. The other characteristics have 2 estimates that are remarkably similar across classes.

Thus for all of the analysis that follows, the 2 used for all plant characteristics is one that varies by two-

digit industry (rather than by the characteristic being analyzed). Having estimated 2,  the state variable,

employment shortages (z), can be created (see Appendix B).

B.  Nonparametric Analysis of Employment Adjustments

The exercises in this section are intended to illuminate broad features of employment adjustments by

plant characteristics without imposing structure.17 The first exercise simply plots the relationship

between the changes in employment and the employment shortages for all of the plant-quarter

observations in the sample. As can be seen in Figure 1, this relationship has three distinctive features: 1)

a large mass of points close to the origin (small adjustments and small shortages); 2) a mass of points

scattered along the line of employment deviations at zero employment adjustments; and 3) a stark

positive relationship between adjustments and shortages. In sum, the plot shows two types of behavior

in reaction to employment deviations: adjustments that occur in tandem with the discrepancies and

inertia in the face of discrepancies. Concerning the symmetry of adjustments, the firing side (the left side

of the plot) appears to have a less steep positive relationship and more inertial episodes than the hiring

side (the right side of the plot). That is, for a given absolute deviation, the firing side either adjusts by



18   To summarize the results of the plots by characteristics, the adjustment hazards are increasing
for all plant characteristics, however, the steepness of the adjustment hazard varies enormously. With few
exceptions, the adjustment hazards are markedly asymmetric with higher adjustment rates for positive
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less or is less likely to adjust.

The second exercise plots the empirical hazard function for the sample. As has been argued above, the

shape of the hazard function gives information about the underlying adjustment costs and has

implications for the aggregate employment dynamics. The empirical adjustment hazard function shows

the average adjustment rate for a plant conditional on the size of the deviation of actual employment

from desired. A plot of the empirical hazard functions can give information about the adjustment

process, and thus also give an indication about the nature of the underlying employment adjustment

costs, over three dimensions. First, the average vertical height of the adjustment function gives

information about the average rate of adjustment and hence the level of total adjustment costs. Second, 

the steepness of the adjustment function relates to the relationship between the size of the discrepancy

and adjustments and hence the convexity of the adjustment costs. Third,  the symmetry of the curve

describes differences between adjustments on the employment expansion and contraction sides and

hence gives an indication of the relative importance of expansion and contraction adjustment costs.  

Figure 2 shows the (smoothed) empirical adjustment hazard for the entire sample of plants.  The

adjustment hazard is clearly increasing in the size of the employment deviation.  In addition, there is an

asymmetry as the adjustment rate rises more quickly over the deviations on the side of employment

expansions (the right side of the plot). Together these suggest that the underlying employment

adjustment costs are not convex and that adjustment costs on the contraction side exceed those on the

expansion side.18 



employment adjustments. In many cases, the relative positions of the adjustment hazard functions by plant
characteristics switches as one moves from small deviations to large deviations. See Foster (1998) for
more details about the plots by characteristics.
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4.  Estimated Hazard Functions

The plot of the empirical hazard function described in the previous section suggests that  nonlinearities

and asymmetries are important at the plant level. In order to test the significance of the differences along

these two dimensions, five different hazards functions embodying different assumptions about these two

features are estimated. The five hazard functions are: a) constant and symmetric, b) constant and

asymmetric, c) increasing and symmetric,  d) increasing and asymmetric over slopes, and e) increasing

and asymmetric over slopes and intercepts. The hazard functions are substituted into equation (2) to get

the following plant-level regression equations:  

Where I- is an indicator dummy for z<0 and I+ is an indicator dummy for z$0.

The results of the estimation for the total sample are presented in Table 1.  For each of the functional

forms, the estimated constant is small suggesting that in the absence of an employment shortage,

employment adjustments are negligible. Starting with the simplest cases,  relaxing the symmetry of the

constant hazard case (i.e., moving from equation 5a to 5b) yields an improvement in the adjusted R2



19  Looking at Table 2, the three sets of F-tests can be described as:
1) Plant characteristics matter: whether the dummy classes are all zero within a characteristic for 80, 8+

1,
and 8-

1. That is, comparing jointly all of the rows except the first one in each cell box.
2) Nonlinearities matter: whether the omitted class and dummy classes are all zero within a characteristics
for 8+

1, and 8-
1. That is, comparing jointly all of the rows in each cell box.
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from .409 to .422.  In the asymmetric constant hazard case, the coefficient on the hiring side (8+
0)

exceeds that on the firing side (8-
0) and this difference is significant. This result on the nature of the

asymmetry is consistent with the empirical adjustment hazard. The next set of results allow for relaxing

the constant hazard assumption. In both the symmetric and the asymmetric cases, this yields an

improvement in the adjusted R2. For the symmetric case, the adjusted R2 improves from .409 to .423

(equation 5a to 5c); in the asymmetric case it goes from .422 to .462 (equation 5b to 5d). And in either

case the coefficients on the increasing hazard (82 ;  8+
1 and 8-

1) are significant.  In both cases the

coefficient on the hiring side (8+
1) exceeds that on the firing side (8-

1) and they are significantly different

from one another. Finally, there is not much improvement in moving from the increasing asymmetric

functional form (equation 5d) to the combination asymmetric form (equation 5e). The second panel of 

Figure 2 plots the estimated adjustment hazard for the increasing asymmetric hazard case. Comparing

this to the first panel in Figure 2, this estimated hazard captures the main features of the empirical

hazard.

The estimates by plant characteristics are reported only for the increasing asymmetric hazard since it is

the hazard that appears to best fit the data for the whole sample. All of the coefficients are allowed to

vary by plant characteristics with the exception of the constant. The results, which are reported in Table

2, show that heterogeneity, nonlinearities, and asymmetry are  significant at the 5% level for all eleven

plant characteristics.19 That is, over any characteristic, adjustment hazards have the same general



3) Asymmetries matter: whether for each class the total effect of the nonlinear term on the positive side
equals that for the negative side.  That is, for each row comparing the appropriately transformed last two
columns.

20  Recall that because of the nature of the sample, all plants in the sample are aging over the
sample, hence some of the age differences might be obscured by the general aging of the entire sample. 
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asymmetric U-shape with the left arm lower than the right-arm, but the exact shape differs by plant

characteristics. This implies that the traditional assumption of convex adjustment costs with its constant

hazard is not the best representation over any plant characteristic.

Turning to the individual plant characteristic regressions, the first regression results in Table 2 show that

younger plants have a higher fraction of adjusting (80) but have flatter slopes of the adjustment hazard

function (8+
1 and 8-

1).  Older plants have a lower fraction of adjusting over small deviations than

younger plants, but over some range of large employment deviations older plants have a higher fraction

of adjusting.20  Looking at the results for plant size, smaller plants have a higher fraction of adjusting

than do larger plants, but the slopes of the adjustment hazards for smaller plants are generally less steep

on the side of positive adjustments (but more steep on the negative adjustment side).  One interpretation

is that small plants have technologies which are flexible enough to allow them to adjust to small changes

or large negative changes, but that their lack of access to capital markets constrains these small plants

when it comes to large positive employment adjustments.  For plants grouped by firm size, one sees that

the slopes of the adjustment hazard tend to be steeper for plants that are part of larger firms.  The

fraction of adjustment for multi-units is significantly higher than for single-units, which is consistent with

the adjustment cost story in which plants in a multi-unit firm have greater access to capital funds and

hence can make adjustments that entail changes in scale with more relative ease. With roughly equal



21  And most of these differences are significant. Out of the 190 pairs of industries, only 15 pairs
of the industries fail to pass an F-test for being significantly different from one another. For the increasing
hazard, pair wise F-tests have the following results concerning failures to pass: 18 pairs for the vertical
intercept, 17 pairs for the positive nonlinear term, and 25 pairs for the negative nonlinear term.
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slopes, this relationship appears to hold over both small and large deviations in employment.

The estimated coefficients for plants grouped by industry vary the most of any plant characteristic.21 In

many cases, there is a significant difference in the behavior of adjustments over large and small

employment deviations. For example, plants in Printing have a relatively small fraction of adjusting, but

this obscures the steep slope of the adjustment hazard for both positive and negative deviations. 

Similarly, when looking at the industry classification for shutdown technologies, plants in the

continuously operating industries have a significantly lower fraction of adjusting but since they also have

steeper slopes of the adjustment hazard, they have higher adjustment rates over large deviations than

plants that are variable processors. Recall that plants in continuously operating industries have very high

startup and shutdown costs so this is somewhat surprising. The hazards vary over regions so that in

some cases the employment adjustments critically depend on the size of the deviation (e.g., Mountain

has a relatively steeply sloped  hazard) and in other cases, the size of the deviation does not matter as

much (e.g., East South Central has a relatively flat hazard). For capital intensity, the least and most

capital intense plants have the highest fractions of adjustment and relatively steep hazards on the

positive side. There is no discernable pattern for plants grouped by energy intensity.  The last

characteristics concern the general skill level of the workforce at the plant. Production worker intensity

and production worker wage shares have an increasing vertical intercept for greater production worker

intensities or wage shares with the exception of the last class (note that the differences for the wage



22  The three ranges of shortages are those from Caballero, Engel, and Haltiwanger (1997) and
are as follows: 
1) Small positive refers to employment deviations in the range [0.2, 0.3],
2) Large negative refers to employment deviations in the range [-1.2, -0.8],
3) Large positive refers to employment deviations in the range [0.8, 1.2].
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share variable are mostly not significant). However, the last class of both of these production worker

variables has steeper slopes on both the positive and negative adjustment sides. This suggests that for

the most production worker intense and largest wage share group, the adjustment rates are higher than

for the other groups over large employment deviations. Comparing just the first and last groups of these

two variables,  the most skilled groups (the least intensive and the smallest wage share groups) have

lower vertical heights as well as flatter adjustment hazard functions. The differences between the

adjustment rates of the most skilled and least skilled workers is thus greatest over the ranges of large

employment deviations.

 

B.  Distributions of Adjustment Rates

Since the hazard function is by definition the average adjustment, it may obscure a variety of plant-level

behaviors. For example, it is not possible to distinguish for a given shortage whether all plants partially

adjust or some plants adjust fully while others do not adjust at all.  This exercise teases out some of the

obscured plant-level behavior by picking three segments of the adjustment hazard function and looking

at the full range of adjustments over these segments. The three segments are chosen based on the size

of the employment deviation and are: large negative employment shortages (the upper left arm of the

hazard function), small positive employment shortages (the section near the zero point), and large

positive employment shortages (the upper right arm of the hazard function).22  Figure 3 plots the full



The two modes of adjustment are defined as follows:
1) No adjustment refers to adjustment rates in the range [-.05, .05)
2) Full adjustment refers to adjustment rates in the range [.95, 1.05).
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range of employment distributions over the entire sample for these three ranges.  The first panel shows

the distribution of adjustment rates for small employment deviations. The greatest percent of

observations lies at the zero-bar with a gradual tapering off over large adjustment rates. (The negative

adjustment rates represent adjustments in the “wrong” direction. These are indicative of some

measurement or specification error.) The second panel shows the distribution of adjustment rates over

large negative employment deviations.  It is striking that the percent of observations that represent

plants not adjusting exceeds that for small deviations.  In addition, rather than tapering off the

distribution of adjustment rates falls and stays flat until a small jump up at the full adjustment bar (1.0). 

That is, there is weak evidence of (S,s)-type of behavior over the range of large negative deviations.

This (S,s)-type of behavior is more evident over the range of large positive deviations which is shown

in the last panel. In this panel there are two distinct modes at no adjustment and full adjustment.  

In sum, the left arm of the hazard function appears to be dominated by inertial plants and some plants

that adjust varying amounts while the right arm of the hazard function appears to be more dominated by

(S,s)-type behavior.  Employment smoothing is not in evidence over large employment deviations and

there appears to be significant differences in adjustment behavior between the employment contraction

and expansion sides.  The (S,s)-type of  bimodal adjustments on the positive side suggest that fixed

adjustment costs are particularly important for large employment expansions (perhaps because these

may entail substantial reorganizational costs as well as hiring costs). On the employment contraction

side, the mode at zero adjustment indicates some inertial behavior suggesting the presence of fixed



23    A table showing the individual results can be found in Foster (1998).
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adjustment costs, but the many instances of adjustments of different sizes suggest that many plants do

not face prohibitively large fixed adjustment costs. Thus not only is the average fraction of adjusting

different over the three sections of the hazard function, but the adjustment behaviors differ over these

three arms. 

Extending this analysis to the plant characteristics, the focus is narrowed to whether plants’ employment

adjustments are best described by all plants partially adjusting by the same amount or by the some

plants fully adjusting while others do not adjust at all. That is, the exercise checks whether the

distributions have two modes (at zero and full adjustment) or are scattered over all adjustment rates by

looking at the percent of observations that are full adjustments or zero adjustments for each of the three

ranges conditional on the plant characteristic in question.23 This general pattern of inertial behavior at

large negative shocks (a mode at zero), (S,s)-type behavior at large positive shocks (modes at zero and

full), and varied adjustment behavior at small shocks (scattered distribution) appears in most

distributions by plant characteristics. Table 3 shows a selected group of distributions of adjustment rates

by plant and worker characteristics. In particular, (S,s)-type behavior (on the positive side) seems most

evident for large, continuous processing, capital, energy, and skill intensive plants. This is consistent with

existing literature which suggests that employment adjustments may be particularly difficult for these

types of plants and hence their adjustments tend to be lumpy. However this story is not as strong when

one looks at these distributions by 2-digit industry. There are some industries with bimodal behavior but

there are also a significant number of industries with one mode over the range of large positive

deviations.
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5.  Aggregate Employment Dynamics

The previous sections have shown that employment dynamics at the plant-level are characterized by

significant nonlinearities (including asymmetries) and by heterogeneity across plants with different

characteristics. An obvious question is whether the nonlinearities and heterogeneity uncovered at the

micro level significantly affect aggregate dynamics. Recall from the discussion of Caballero and Engel’s

characterization of aggregate employment that the aggregate dynamics reflect the interaction of the

adjustment function and the cross-sectional distribution of deviations.  When the adjustment hazard

function is not constant, as the empirical hazards and estimations imply is the case, then the higher

moments of the cross sectional distribution impact the aggregate dynamics. One would expect that the

constant hazard model would perform best for those characteristics that have the flattest adjustment

hazards, the narrowest distribution of deviations, and the least volatility of shocks to this distribution.

That is, given an increasing adjustment hazard function, one also needs to know if the distribution of

deviations is such that much of the observations are at the portions where the adjustment hazard

function is steepest. This section presents two exercises intended to shed light on whether the

interaction of the adjustment hazard and cross-sectional distribution is such that the nonlinearities and

heterogeneity uncovered at the micro level significantly affect aggregate dynamics.  The first exercise,

the sectoral counterfactual analysis, compares actual sectoral employment growth rates to the growth

rates implied by the nonparametric, constant, and increasing, asymmetric hazard models. The second

exercise is similar but is for the aggregate level.

A.  Sectoral Counterfactual Exercise



24  Caballero, Engel, and Haltiwanger (1997) note that “this R2 is not bounded below by zero since
there is no restriction of a zero covariance between the predictions and residuals generated from these
exercises (p. 127).” The nonparametric model appears in their decomposition as the combination of the
average adjustment function and the actual cross-sectional distribution. See their table 1.
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This counterfactual exercise compares the actual average sectoral employment growth rates to the

predicted average sectoral employment growth rates from the nonparametric, constant, and

asymmetric, increasing hazard models. In all three cases, the actual cross-sectional distribution of

employment shortages is used. Furthermore, the predicted sectoral employment growth rates can be

calculated allowing for differences in the adjustment hazards by plant characteristics. One measure that

summarizes the differences in the actual and predicted employment growth rates is R2 as measured

below:

Where Nf refers to forecasted sectoral employment. Unlike the R2 for the plant-level estimations, this

R2 is not bounded below by zero and  is not necessarily higher for unrestricted regressions (i.e., those

allowing for either greater flexibility in the hazard function or those that allow for variation by plant

characteristics) than restricted regressions.24  

The R2 's calculated over the different functional forms and assumptions about heterogeneity are

reported in Table 4.  The first row shows the R2's for the entire sample.  Since the plant-level

regressions have significant nonlinearities, one would expect that the increasing, asymmetric hazard

employment growth path would probably have a higher R2 than the constant hazard employment



25  Obviously the plant-level regression R2’s are higher for the asymmetric, increasing hazard
case than for the constant hazard case. 
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growth path and that the nonparametric case would have the highest R2 of all three cases since it does

not impose a functional form.25  The R2 for the total sample are ranked as expected: the employment

growth path associated with the constant hazard has the worst fit and that associated with the

nonparametric hazard has the best fit. This ranking holds over most of the subsequent rows which show

the R2 for each class by plant characteristic. Of the 71 characteristics, the asymmetric, increasing

hazard model outperforms the constant hazard model in all but 15 cases, 9 of which are in the industry

groups. There are 5 cases in which the nonparametric hazard is dominated by either (or both) of the

parametric hazard models. In sum, a broad conclusion evident from the table is that at the sectoral level,

the asymmetric, increasing hazard model produces an employment growth path that is more consistent

with the actual employment growth path than is the employment growth path generated by the constant

hazard model.  Looking beyond the particular functional form chosen to represent the adjustment

hazard function, in all but two cases the nonparametric employment growth path dominates the constant

hazard path. That is, nonlinearities clearly matter at the sectoral level. 

Switching the focus to plant heterogeneity, comparing the R2 across the rows of Table 4, one sees a

tremendous amount of variation. Repeating a pattern that has been consistent across the different

empirical exercises, the largest variation in the results occurs for plants grouped by industry. Not

surprisingly given the often offsetting interaction of the adjustment hazard function shape and distribution

of deviations there are not many clear cut patterns in the R2 by plant characteristic.  For example, recall

that young plants have relatively flat adjustment hazards suggesting that of the age groups this would



26  See Dunne, Roberts, and Samuelson (1989); Davis, Haltiwanger, and Schuh (1996); and
Foster (1998).
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have the highest R2 for the constant hazard model. On the other hand, there is evidence in the literature

that young plants face very volatile shocks, which suggests that much of the observations might occur

over the relatively more nonlinear parts of the hazard and hence the R2 for the constant hazard would

be relatively low.26  As it is, the constant hazard model performs most poorly for the oldest plants

(steeper adjustment hazard functions, but relatively less volatile shocks).   A similar story of the

offsetting effects of the shape of the adjustment function and the cross-sectional distribution holds for

plant and firm size and hence its not surprising that no clear pattern over size classes emerges for these

characteristics either. For both plant and firm size, the smallest classes have the flattest hazards and yet

are subject to the most volatile shocks.  Similarly, single unit plants face more volatile shocks and have

flatter hazards than plants that are part of multi-unit firms. 

As noted above, the greatest variation in R2 by plant characteristic occurs by industry. Two of the

industries where one would expect to see interesting differences in the counterfactuals are in Tobacco

and Paper as these represent opposite extremes of the hazard shapes. Tobacco has a very steep

adjustment hazard while Paper has a flatter adjustment hazard and hence one would expect ceteris

paribus nonlinearities to be more important for Tobacco. Looking at Table 4, these expectations are

borne out: the improvement in the R2 in going from the constant hazard model to the nonparametric

hazard is .109 for Tobacco and only .018 for Paper. Still it is important to keep in mind that the

steepness of the adjustment hazard function and the shock volatility can have offsetting effects making it

difficult to predict how relatively important the nonlinearities will be. Turning to industries by shutdown



27  The one exception is industry: under a constant hazard model, allowing for hazards to vary by
industry has more of an effect on R2 than does moving from a constant model that varies by industry to an
increasing, asymmetric model that varies by industry.
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technology, continuous processors which has a hazard that is relatively flat up to large positive

shortages where it becomes relatively steep, has the highest  R2 for the employment path associated

with the constant hazard. For regions, an example of the differences in nonlinearities  significance can be

seen by comparing Mountain with its relatively steep hazard to West South Central with its relatively flat

hazard on the positive side. In moving from a constant hazard to an increasing hazard, the R2 improves

for Mountain, but actually falls for West South Central. The nonlinearities have most of their effect on

the higher classes of capital and energy intensity. It is also the case that the nonlinearities have their

greatest effect on the least skilled workers (the most intensive and largest wage share group). Recall

that these skill groups tended to have steeper hazards.  

 

B. Aggregate Counterfactual Exercise

One can conduct a similar counterfactual exercise at the aggregate level. The R2  calculated over the

different functional forms and assumptions about heterogeneity are reported in Table 5.  At the most

general level of comparison, allowing for nonlinearities (i.e., comparing column 2 to column 1) has more

impact on the goodness of fit than does allowing for heterogeneity by plant characteristic (i.e.,

comparing row 1 to any subsequent row). This is also generally true even when the nonlinearity is

assumed to be represented by the asymmetric, increasing hazard model.27  Comparing across hazard

functional forms (i.e., across columns), the R2  increase from the constant hazard to the asymmetric

hazard to the nonparametric hazard. The relative importance of the nonlinearities differs by plant
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characteristics (but not as strikingly as at the sectoral level); nonlinearities matter most for production

worker intensity and least for industry and region.   

Although not as important as nonlinearities, in general, heterogeneity also matters at the aggregate level.

Comparing adjustment hazards for the total sample to those by plant characteristics (i.e., comparing the

first row to subsequent rows) shows that, with few exceptions, the R2 improve when allowing for

differences by plant characteristics.   Regardless of the specification, the R2 improve the most when

allowing for differences across industry and across region.  On the other hand, ownership and shut-

down technology either show very little improvement or actually have lower R2 than for the total case.

In some cases, allowing for the hazards to vary by plant characteristics matters more under different

adjustment hazard functional forms. For example, as compared to the total sample production worker

intensity adds very little explanatory power in the constant model (.633 vs. .635) but is more important

in the increasing, asymmetric model (.683 vs. .692). Plant and firm size have the opposite pattern:

allowing the hazard to vary over either size measure increases the R2 of the constant hazard function

(.633 vs. .643 and .643), but has no virtually no effect on the asymmetric, increasing hazard function

(.683 vs. .683 and .684).   Although the micro-level empirical and estimated hazards strongly reject the

constant hazard model for all plant characteristics, it still may be the case that at the aggregate level, the

dynamics associated with the constant hazard case may be more suitable for some plant characteristics

than others.

6.  Conclusions

This paper has explored employment adjustments at the establishment and aggregate levels by applying
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the theoretical framework of state-dependent hazards to an empirical analysis of highly disaggregated

data. The following conclusions emerge from the various exercises undertaken in this paper.

1.  At the micro level, adjustments at the intensive (hours) and extensive (employment)

margins are undertaken separately. This holds for plants grouped by any of the plant

characteristics considered here. The largest variation in this relationship occurs over plants

grouped by their two-digit industry classification.

Although this paper focuses exclusively on adjustments over the employment margin, in order to create

the state variable the relationship between hours growth and employment growth is estimated. Estimates

over all of the plant characteristics show a negative relationship between hours growth and employment

growth at the micro level. This suggests that plants initially absorb demand and cost shocks by varying

hours per worker, and then when they later adjust employment, bring average hours per worker back

to their preferred level. This runs counter to the relationship at the aggregate level where the correlation

between hours per worker and employment adjustments is positive. This result serves as yet another

example of how aggregation obscures the underlying micro interactions.

2.  Adjustment hazards for plants are increasing and asymmetric. This finding holds for the

total sample and for plants grouped by any of the plant characteristics in consideration.

Nevertheless, within this general functional form, there are significant differences in the

adjustment hazards by plant characteristics. 

The increasing nature of the adjustment hazard means that plants with large (absolute) deviations adjust
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disproportionately more than plants with small (absolute) deviations. The asymmetry is such that plants

with positive employment deviations adjust disproportionately more than plants with negative

employment deviations of the same magnitude. Using a parametric approach and applying significance

tests to estimates of the adjustment hazard functions reveals that the nonlinearities are significant for

each of the eleven plant characteristics.  Applying significance tests to the estimates of the asymmetries

shows that the apparent difference between the contraction and expansion side estimates is significant

for each of the classes of the eleven plant characteristics. However, within this general functional form,

there are significant differences in the height and steepness of the U-shaped adjustment function even

across classes within a plant characteristic. The most striking differences within a characteristic occur

across industry classes. 

3.  The plant-level employment adjustments underlying the adjustment hazard show different

behavior depending on whether the employment shortage is large and negative, close to zero,

or large and positive. This general pattern is repeated for most plant characteristics.

The empirical adjustment hazard by definition shows average adjustment rates as a function of

employment shortages and hence can obscure very different plant-level adjustment behavior. For

example, for a given shortage, it could be that all plants adjust by the average amount or some plants

adjust fully while others do not adjust at all.  One exercise picks three segments of the adjustment rate

function hazard and looks at the distributions of adjustments over these segments in more depth. The

pattern that emerges is that there are three different general behaviors depending on the size and sign of

the employment shortage. In short, there is a substantial amount of inertial behavior for large negative
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employment shortages, there is varied behavior over shortages close to zero, and (S,s)-type of bimodal

adjustments to shocks (either no adjustment or full adjustment) in response to large positive

employment deviations.  Although the general finding holds over most plant characteristics, there are

notable exceptions. For instance, for industry classes, much of the adjustments over the large positive

range of deviations have only one mode (either zero or full adjustments but not both).

 

4.  At the sectoral level, the employment growth path associated with the asymmetric,

increasing hazard more closely matches the actual employment growth path than that

associated with the constant hazard for almost all of the values of any of the plant

characteristics. Nevertheless, the importance of nonlinearities differs over many of the plant

characteristics. 

The aggregate implications at the sectoral level of the micro nonlinearities are evaluated via a sectoral

counterfactual exercise. This exercise compares a measure of the goodness of fit relative to the actual

employment growth path for the path predicted by each of the three alternate hazard functions

(nonparametric, constant, and asymmetric, increasing). The sectoral employment growth path results

from the interaction of the hazard function with the distribution of employment deviations. For example,

if the micro hazard is highly nonlinear and/or the sector is subject to a high variability of sectoral or

idiosyncratic shocks, then the micro nonlinearities will, by construction, be more important at the

aggregate level. In some cases, the hazard and volatility of employment deviations have offsetting effects

making predicting the relative importance of nonlinearities difficult.  At the sectoral level, the

employment path associated with the nonparametric hazard (and to a lesser extent that of the
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asymmetric, increasing hazard) dominates that of the constant hazard. The conclusion is that

nonlinearities clearly matter at the sectoral level.  The importance of these nonlinearities varies over the

plant characteristics, with the most variation across industries.

5. At the aggregate level, accounting for nonlinearities (including asymmetries) is more

important than accounting for plant heterogeneity.   

A similar counterfactual exercise compares the goodness of fit relative to the actual employment growth

path at the total manufacturing aggregate level for the path predicted by each of the three adjustment

hazard functions. For this exercise, the nonlinearities and allowing the hazards to vary at the micro level

by observable plant characteristics are both evaluated in terms of their contribution to aggregate total

manufacturing employment dynamics. For the total sample and for any plant characteristic, the

employment path predicted by the nonparametric hazard has a better fit relative to the actual

employment path than the constant hazard path. The relative importance of the nonlinearities differs by

plant characteristics (but not as strikingly as at the sectoral level), nonlinearities matter most for

production worker intensity and least for industry and region. Allowing for plant heterogeneity also

improves the goodness of fit but it is not as important as allowing for nonlinearities at the aggregate

level. The largest improvement in the measure of goodness of fit for allowing for heterogeneity occurs

for industry (over any of the hazards). In sum, the nonlinearities (including asymmetries) and plant

heterogeneity uncovered at the establishment level have a significant impact on aggregate employment

growth. 
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Table 1: Hazard Estimations over Various Functional Forms for Total Sample      
              (OLS1, using plant level data)

                                      Functional Form of Hazard

Parameter Constant,
Symmetric 

Constant,
Asymmetric

Increasing,
Symmetric

Increasing,
Asymmetric 

Combination,
Asymmetric

c .002   *
(.000)

-.015   *
(.000)

.002   *
(.000)

-.002   *
(.000)

-.005    *
(.000)

80 .478   *
(.001)

.440   *
(.001)

 .351   *
(.001)

8+
0 .600   *

(.002)
 .371    *
(.002)

8-
0 .386   *

(.001)
 .335    *
(.002)

8+
1  .220    *

(.001)
 .212    *
(.002)

8-
1 -.055    *

(.001)
-.061    *
(.001)

82 .015    *
(.000)

Adjusted R2 .409 .422 .423 .462 .462

* Individual coefficient estimate significant at the 5% level.
For each specification, where relevant, coefficients on the asymmetries are significantly different
from one another at the 5% level.

1/ Regressions use desired employment based on 22-digit. There are two potential difficulties of using
OLS to estimate these adjustment functions: specification error in choosing the adjustment hazard
functional form and measurement error for the employment deviation variable. These imply that an
IV estimation may be warranted (see Griliches and Hausman (1986)). An IV estimation yields
coefficients that are consistent with asymmetry and an increasing hazard. Furthermore, Caballero,
Engel, and Haltiwanger (1995) provide evidence that classical measurement error will tend to
obscure evidence of an increasing hazard.
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Table 2: Increasing, Asymmetric Hazard Estimation by Plant Characteristics
 
For each panel, the first row reports the coefficient on the omitted characteristic. Subsequent rows
report the coefficients on the dummy variable associated with that characteristic. 

Plant Characteristic Height (80) Positive side (8+
1) Negative side (8-

1)

Age
 Youngest  (1)
 Medium (2)
 Oldest  (3)

 .42     (.009) *
-.05     (.009) *
-.09     (.009) *

 .18     (.007) *
 .01     (.007)  
 .07     (.007) *

 .04     (.010) *
-.09     (.010) *
-.10     (.010) *

Plant Size
   250-499   (1)
   500-999   (2)
   1000-2499   (3)
   2500-4999   (4)
   5000 or more   (5)

 .36     (.002) *
-.01     (.003) *
-.04     (.005) *
 .01     (.008)
-.07     (.010) *

 .21     (.001) *
 .03     (.003) *
 .05     (.006) *
-.03     (.007) *
 .09     (.008) *  

 
-.08     (.001) *
 .04      (.002) *
 .09      (.003) *
 .10      (.005) *
 .03      (.003) *

Firm Size
   250-499   (1)
   500-999   (2)
   1000-2499  (3)
   2500-4999   (4)
   5000-9999   (5)
   10000-24999   (6)
   25000-49999   (7)
   50000 or more   (8)

 .34     (.003) *
 .01     (.005) *
 .02     (.005) *
 .02     (.005) *
-.03     (.005) *
 .00     (.004)  
-.06     (.006) *
 .06     (.007) *

 .22     (.003) *
 .00     (.005) 
 .01     (.004) *
 .05     (.005) *
 .02     (.005) *
-.04     (.004) *
 .05     (.006) *
 .07     (.009) *

 
-.10     (.003) *
-.02     (.004) *
 .01     (.004) *
 .06     (.004) *
 .08     (.004) *
 .06     (.004) *
 .06     (.004) *
 .17     (.009) *

Ownership
 Multi-Unit 
 Single Unit 

 .35     (.001) *
-.02     (.006) *

 .22     (.001) *
 .00     (.007) 

-.05    (.001) *
-.01     (.006)



Table 2: Increasing, Asymmetric Hazard Estimation by Plant Characteristics
 
For each panel, the first row reports the coefficient on the omitted characteristic. Subsequent rows
report the coefficients on the dummy variable associated with that characteristic. 

Plant Characteristic Height (80) Positive side (8+
1) Negative side (8-

1)
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Industry
 Food (20)
 Tobacco (21)
 Textile Mill (22)
 Apparel (23)
 Lumber (24)
 Furniture (25)
 Paper (26)
 Printing (27)
 Chemicals (28)
 Petroleum (29)
 Rubber & Plastics (30)
 Leather (31)
 Stone, Clay, Glass (32)
 Primary Metals (33)
 Fabricated Metals (34)
 Machinery ex. Elect. (35)
 Electrical Machinery (36)
 Transportation (37)
 Instruments (38)
 Miscellaneous (39)

 .35     (.004) * 
 .57     (.018) *
-.03     (.008) *
 .09     (.008) *
-.10     (.009) *
-.14     (.009) *
-.15     (.008) *
-.09     (.009) *
-.09     (.007) *
-.14     (.017) *
 .09     (.008) *
 .04     (.015) *
-.05     (.009) *
-.05     (.007) *
-.05     (.006) *
-.07     (.005) *
 .07     (.006) *
 .07     (.006) *
-.07     (.009) *
 .14     (.010) *

 .29     (.003) *
-.30     (.013) *
 .03     (.012) *
-.14     (.007) *
-.07     (.007) *
 .02     (.008) *
-.07     (.007) *
 .07     (.014) *
-.03     (.007) *
-.00     (.013)
-.12     (.007) *
 .13     (.029) *
 .01     (.009) 
-.06     (.005) *
-.11     (.004) *
-.10     (.004) *
-.03     (.008) *
-.04     (.006) *
-.08     (.008) *
-.14     (.009) *

-.12     (.003) *
 .26     (.011) *
-.00     (.009) 
 .12     (.011) *
 .02     (.007) *
-.09     (.007) *
 .09     (.004) *
 .05     (.009) *
 .06     (.004) *
 .02     (.008) *
 .08     (.005) *
-.03     (.025)  
 .05     (.005) *
 .03     (.004) *
 .02     (.004) *
 .07     (.004) *
 .08     (.006) *
 .08     (.003) *
 .08     (.009) *
 .11     (.011) *

Table 2 (con’t): Increasing, Asymmetric Hazard Estimation by Plant Characteristics
 
For each panel, the first row reports the coefficient on the omitted characteristic. Subsequent rows
report the coefficients on the dummy variable associated with that characteristic. 

Plant Characteristic Height (80) Positive side (8+
1) Negative side (8-

1)

Shutdown Technology
 Variable
 Continuous
 Other 
 Not Classified 

 .37     (.002) *
-.10     (.005) *
-.03     (.003) *
 .01     (.006)  

 .21     (.002) *
 .05     (.004) *
 .03     (.003) *
-.03     (.004) *

-.06     (.001) *
-.03     (.003) *
 .05     (.002) *
-.01     (.005)   

Region
 New England (1)
 Middle Atlantic (2)
 East North Central (3)
 West North Central (4)
 South Atlantic (5)
 East South Central (6)
 West South Central (7)
 Mountain (8)
 Pacific (9)

 .30     (.006) *
-.02     (.007) *
 .04     (.007) *
 .07     (.008) *
 .06     (.007) *
 .06     (.008) *
-.01     (.008)  
 .05     (.011) *
 .11     (.007) *

 .27     (.009) *
-.02     (.010)  
-.06     (.010) *
-.04     (.011) *
-.08     (.010) *
-.09     (.010) *
-.07     (.010) *
 .03     (.013) *
-.01     (.010)  

-.00     (.007)  
-.09     (.008) *
-.03     (.008) *
-.06     (.009) *
-.08     (.008) * 
-.05     (.008) *
-.09     (.008) *
-.15     (.010) *
-.05     (.008) *



Table 2 (con’t): Increasing, Asymmetric Hazard Estimation by Plant Characteristics
 
For each panel, the first row reports the coefficient on the omitted characteristic. Subsequent rows
report the coefficients on the dummy variable associated with that characteristic. 

Plant Characteristic Height (80) Positive side (8+
1) Negative side (8-

1)
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 Capital Intensity
    Class 1 (lowest)
    Class 2
    Class 3
    Class 4
    Class 5 (highest)

 .37     (.003) *
-.05     (.004) *
-.03     (.004) *
-.02     (.004) *
-.01     (.004) *

 .25     (.004) *
-.08     (.005) *
-.02     (.005) *
 .00     (.005)  
 .00     (.005)  

-.04     (.003) *
-.05     (.004) *
-.01     (.004) *
-.03     (.004) *
-.00     (.004) 

 Energy Intensity
    Class 1 (lowest)
    Class 2
    Class 3
    Class 4
    Class 5 (highest)

 .38     (.003) *
-.08     (.004) *
-.02     (.004) *
 .00     (.004)  
-.05     (.004) *

 .19     (.002) *
 .07     (.004) *
 .02     (.003) *
 .07     (.004) *
 .04     (.003) *

-.05     (.002) *
-.03     (.003) *
 .04     (.003) *
 .02     (.003) *
-.03     (.002) *

  Prod. Worker Intensity
    Class 1 (lowest)
    Class 2
    Class 3
    Class 4
    Class 5 (highest)

 .27     (.003) *
 .04     (.004) *
 .09     (.004) *
 .13     (.004) *
 .10     (.004) *

 .19     (.002) *
 .06     (.004) *
 .03     (.004) *
 .02     (.004) *
 .05     (.004) *

-.07     (.002) *
 .01     (.003) *
 .02     (.003) *
 .05     (.003) *
-.04     (.003) *

  Prod. Worker Wage Share
    Class 1 (lowest)
     Class 2
    Class 3
    Class 4
    Class 5 (highest)

 .28     (.003) *
 .04     (.004) *
 .06     (.004) *
 .14     (.004) *
 .08     (.004) *

 .19     (.002) *
 .03     (.004) *
 .04     (.004) *
 .03     (.004) *
 .04     (.003) *

-.10     (.002) *
 .06     (.003) *
 .05     (.003) *
 .10     (.003) *
-.04     (.003) *

* Individual coefficient estimate significant at the 5% level.

Table 3: Selected Distributions of Adjustment Rates over Three Ranges of Shortages
   Percent of Observations at the No Adjustment and Full Adjustment Nodes

Characteristic
Large Negative Small Positive Large Positive

No Full No Full No Full

Total Manufacturing 30.1 * 5.7 16.6 * 2.6 14.7 * 13.7 *

Age 
   Oldest   (3) 31.8 * 5.8 17.4 * 2.3 14.1 * 13.1 *

Plant Size 
     5000 or more   (5) 44.4 * 3.7 21.9 * 2.6 11.1 * 44.4 *
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 Firm Size
     50000 or more   (8) 30.8 * 4.7 17.2 * 3.1 9.5 19.0 *

 Ownership
   Multi-unit  (2)   30.3 * 5.6 16.6 * 2.6 14.6 * 13.8 *

Industry
   Textile Mill   (22) 19.1 * 8.5 12.4 3.6 20.8 * 29.2 *

Shutdown Technology
   Continuous processors  (2) 47.0 * 3.0 20.2 * 2.2 15.0 * 25.0 *

Region 
  New England   (1) 37.2 * 3.5 16.5 * 2.3 17.5 * 17.5 *

 Capital Intensity
   Class 5 (highest) 35.0 * 5.4 18.6 * 1.8 11.4 * 19.2 *

 Energy Intensity
   Class 5 (highest) 35.0 * 6.4 18.1 * 2.2 12.7 * 21.5 *

  Prod. Worker Intensity
    Class 1 (lowest) 36.3 * 4.4 18.9 * 2.7 20.3 * 13.0 *

 Prod. Worker Wage Share
    Class 1 (lowest) 36.5 * 3.4 18.2 * 2.9 18.6 * 11.2

* Denotes that the percent of observations at this node is one of the two highest in the distribution.

The three ranges of shortages are as follows:
1) Large negative refers to employment deviations in the range [-1.2, -0.8]
2) Small positive refers to employment deviations in the range [0.2, 0.3]
3) Large positive refers to employment deviations in the range [0.8, 1.2].

The two nodes of adjustment are as follows:
1) No refers to adjustment rates in the range [-.05,.05)
2) Full refers to adjustment rates in the range [.95, 1.05).
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Table 4: Sectoral Counterfactual Exercise Comparing Predicted Values of Employment Growth. 
(R2 of the predictions.)

Plant Characteristic Nonparametric
Hazard

Constant Hazard Increasing,
Asymmetric Hazard

Total Manufacturing      .702 .633 .683

Age 
   Youngest   (1)  
   Medium   (2)
   Oldest   (3)

.862

.774

.660

.765

.767

.521

.787

.765

.624

Plant Size 
   250-499  (1)
   500-999  (2)  
   1000-2499   (3)
   2500-4999   (4)
   5000 or more   (5)

.706

.708

.618

.761

.722

.623

.638

.575

.639

.501

.688

.671

.556

.694

.483

 Firm Size
   250-499   (1)
   500-999   (2)
   1000-2499   (3)
   2500-4999   (4)
   5000-9999   (5)
   10000-24999   (6)
   25000-49999   (7)
   50000 or more   (8)

.691

.729

.741

.670

.628

.727

.655

.780

.654

.579

.528

.580

.577

.688

.561

.701

.705

.648

.688

.622

.583

.704

.585

.724

 Ownership
   Single unit   (1)
   Multi-unit   (2)

.663

.704
.561
.635

.624

.685

Industry
  Food   (20)
  Tobacco   (21)
  Textile Mill   (22)
  Apparel   (23)
  Lumber   (24)
  Furniture   (25)
  Paper   (26)
  Printing   (27)
  Chemicals   (28)
  Petroleum   (29)
  Rubber & Plastics (30)
  Leather   (31)
  Stone, Clay, Glass (32)
  Primary Metals   (33)
  Fabricated Metals  (34)
  Mach. ex. Elect (35)
  Electrical Mach.  (36)
  Transportation   (37)
  Instruments   (38)
  Miscellaneous   (39)

.840

.955

.693

.731

.763

.703

.541

.645

.553

.709

.802

.556

.696

.755

.594

.653

.650

.779

.446

.630

.662

.846

.484

.686

.685

.613

.523

.155

.535
-.333
.719
.459
.687
.694
.527
.637
.600
.732
.463
.533

.776

.869

.650

.695

.679

.709

.474

.393

.533

.318

.707

.504

.621

.744

.555

.635

.597

.723

.433

.534
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Table 4 (con’t): Sectoral Counterfactual Exercise Comparing Predicted Values of Employment Growth.  
(R2 of the predictions.)

Plant Characteristic Nonparametric
Hazard

Constant Hazard Increasing,
Asymmetric Hazard

Shutdown Technology
  Variable  (1)
  Continuous  (2)
  Other  (3)
  Not classified  (4)

.685

.670

.709

.750

.557

.718

.679

.708

.641

.679

.691

.720

Region 
  New England   (1)
  Middle Atlantic   (2)
  East N. Central (3)
  West N. Central (4)
  South Atlantic  (5)
  East S. Central   (6)
  West S. Central  (7)
  Mountain   (8)
  Pacific   (9)

.314

.438

.706

.745

.757

.721

.772

.900

.825

.154

.334

.688

.706

.516

.672

.763

.777

.661

.223

.428

.683

.711

.701

.676

.727

.865

.750

 Capital Intensity
    Class 1 (lowest)
    Class 2
    Class 3
    Class 4
    Class 5 (highest)

.732

.646

.700

.721

.749

.732

.643

.622

.514

.641

.741

.658

.658

.654

.722

 Energy Intensity
    Class 1 (lowest)
    Class 2
    Class 3
    Class 4
    Class 5 (highest)

.740

.688

.641

.719

.764

.714

.659

.571

.578

.583

.727

.674

.596

.670

.727

  Prod. Worker Intensity
    Class 1 (lowest)
    Class 2
    Class 3
    Class 4
    Class 5 (highest)

.534

.596

.709

.759

.757

.469

.523

.663

.711

.454

.503

.549

.696

.734

.687

 Prod. Worker Wage Share
    Class 1 (lowest)
    Class 2
    Class 3
    Class 4
    Class 5 (highest)

.538

.599

.708

.775

.758

.499

.550

.669

.730

.413

.530

.575

.681

.752

.682
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Table 5: Aggregate Counterfactual Exercise Comparing Predicted Values of Employment Growth. 
(R2 of the predictions.)

Plant Characteristic Nonparametric
Hazard

Constant Hazard Increasing,
Asymmetric Hazard

Total Manufacturing .702 .633 .683

  Age .711 .635 .687

  Plant Size .714 .643 .683

  Firm Size .718 .643 .684

  Ownership .704 .632 .683

  Industry .737 .677 .701

  Shutdown
  Technology

.704 .628 .677

  Region .721 .661 .697

  Capital Intensity .707 .638 .687

  Energy Intensity .716 .634 .686

  Production Worker
  Intensity

.720 .635 .692

  Production Worker
  Wage

.710 .638 .691
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APPENDIX A:  Data    

To get a more complete picture of the representativeness of the sample, I compared the sample to the
total population over the plant characteristics in this study using the 1977 Census.  In 1977, there were

350,648 manufacturing plants with 13.7 million production workers. In general, the sample performs
reasonably well over the plant characteristics except for the age and size variables. Given that the sample
is of continuously operating plants, it is certain that the sample is more skewed to older plants than is the
population (it is not possible to measure age for all plants in 1977). The sample plant-size distribution is

much more concentrated in the middle to large plants than is the total distribution. This is mitigated if one
looks at the distribution weighted by total employment since in manufacturing most plants are small but

most employees work at large plants. Hence the sample is more representative of the average employee
than of the average plant. This pattern holds for each plant characteristic. Plants that are part of a large

firms and/or a multi-unit firm are over-represented in the sample. With a few exceptions, the sample
matches total manufacturing relatively well by two-digit industries. One would expect that industries with
small plants or where births and deaths are concentrated to be under represented. This is evident in the

Mattey-Strongin classification of industries by shutdown technology where continuous processors, which
tend to be larger plants, are over represented in the sample. In terms of regions, the sample tracks the

total generally well.  Finally, the mean factor intensities and skill variables are relatively similar over the
two groups of plants.

Derived Variable Definitions 
Each of the 4 intensity variables are divided into 5 classes based on the distribution of each plant’s

average intensity over the sample in these classes. 

Age: Plants are assigned to age classes based on their age in 1972: young (0-2 years), medium  (3-15
years), and old (16 years or older). Plant age is determined by using the birth year of the plant which is
measured as the minimum of the year in which the plant first appeared in the LRD and the birth year

reported in the 1975 and 1981 ASMs. 
 

Capital Intensity: The capital-labor ratio is the ratio of real equipment and structures capital stocks to
total long-run average employment. Real capital stocks are generated by the perpetual inventory method

using a measure of real investments (see Adams and Jaffe (1994)).

Energy Intensity:  Energy intensity is the ratio of the cost of fuels and electricity to total value of
shipments of the plant.

Production worker intensity: The production-worker intensity is the share of production worker
employment in total employment at the plant. The production-worker wage share is measured as the ratio

of production worker compensation to total worker compensation.

Shutdown Technology: Plants are divided into three groups (continuous processing, assembly-type, and
other) using Mattey and Strongin’s (1994) classification of 1977 four-digit industries (1972 SIC) and a

fourth category of  not classified industries. 

Size:  Plant size is the number of total employees. Firm size is the geometric average of the number of
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total employees in Census years 1972 and 1977. Plant and firm sizes are divided into classes. 
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APPENDIX B: Measuring the State Variable 

Recall that the first task in implementing a state-hazard approach is to measure the state variable. In this
case, the state variable is the deviation in actual employment from the frictionless employment level. This
paper uses the state variable as defined in Caballero, Engel, and Haltiwanger (1997). As in the Caballero
and Engel (1993) model, agents in the Caballero, Engel, and Haltiwanger (henceforth CEH) framework
would keep hours constant in a frictionless world, but use hours to adjust to shocks when employment

adjustment costs exceed those of hours. Thus hours per worker at a plant contains information concerning
the plant’s employment shortages. Following the latest round of adjustments, the employment shortage

(z1) is related to the excess of hours relative to the frictionless constant (hG at a plant):

Then the state variable which measures the deviation in actual from desired prior to the latest employment
adjustments is just:

As a first step in being able to estimate the parameter 2 in the above equation, the equation can be
rewritten by substituting in the definition of z and taking the first differences:

Or equivalently the key equation for measuring the employment gap is,

Once one has 2 and the initial conditions one can measure the employment deviation. With the assumption
that

one can generate the initial employment deviation (ze0) given equation (10). Then using equation (10) and
the initial employment deviation one can generate the entire time path of deviations. 

To estimate 2 they exploit equation (9) in the following manner. Defining , as an error term
encompassing both the shock )n* and measurement error terms,  equation (9) then can be rewritten as

the regression equation:



28   See Kmenta (1986) p. 355 and Kennedy (1992) p. 146.

29  In practice, the regression algorithm includes a correction for small samples. 
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In practice CEH note, this regression is likely to yield downward-biased results for two reasons. The first
problem is that changes in hours and the error term are positively correlated (through the part of the error

term that is due to frictionless shocks). A partial solution used by CEH is to use only large changes in
employment and hours in the estimations (as in these episodes the changes should be of one order of

magnitude larger than the error). The second problem is that the measurement error in hours and changes
in hours are positively correlated. To reduce this problem, they run a reverse regression using

employment, which yields an upward biased estimate. When both the independent and dependent
variables are subject to measurement error, the interval between the OLS regression and reverse

regression contains the value of the coefficient.  It is assumed that the measurement errors for the two
variables are uncorrelated and have equal variance which are themselves equal to the variance of the
signals. Under the assumption that the ratio of measurement errors’ variances is unity, the appropriate

estimator is the orthogonal regression estimator which minimizes the sum of squared perpendicular
distances of the observed dependent variable from the regression line.28  Hence they pick a value from
this interval by taking the convex combination of the two estimations where the weights are chosen to

minimize the mean-squared error of the estimator.29 


