N $69 \quad 21114$ NASA CR 667342 609

BOEING S: LE COPY

LUNAR ORBITER PHOTO SITE ACCURACY
ANALYSIS PHOTO SITE ANALYSIS

$$
(\mathrm{D} 2-100814-1)
$$

(D2-100814-1)

By. T. J. Hansen

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Contract No. NASL-7954 by THE BOEING COMPANY Seattle, Wash.

for

CODE IDENT. NO. 81205

NUMBER N-100814-1

TITLE: \qquad
Final Report - Photo Site Analysis

ORIGINAL RELEASE DATE \qquad FOR THE RELEASE DATE OF SUBSEQUENT REVISIONS, SEE THE REVISIONS SHEET. FOR LIMITATIONS IMPOSED ON THE DISTRIBUTION AND USE OF INFORMATION CONtained in this document, see the limitations sheet.
MODEL \quad CONTRACT \quad NAS 1-7954
ISSUE NO._ \quad ISSUED TO: \quad

ACTIVE SHEET RECORD

REVISIONS			
LTR	DESCRIPTION	DATE	APPROVAL
A	Revision A is the first version of this document to be released. Pages 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, $26,27,30,32,36,37,38,39,40,4142$ and 43 were revised and pages 13a, 13b, 13c, 36a, 37a, $37 \mathrm{~b}, 37 \mathrm{c}, 37 \mathrm{~d}, 38 \mathrm{a}$ and 38b were added in accord with comments received from INASA Research Center. The revisions are for correction and clarifica- $\frac{\text { UUR B Bun } 2 / 5 / c q}{\text { Supervised by: }}$ W. R. Burr L. B. Eldrenkamp tion.		

UMITATIONS

DDC DOES NOT APPLY

This document is controlled by_ $2-5987$

All revisions to this document shall be approved by the above noted organization prior to release.

FHOTO SITE ACCURACY ANALYSIS FITAL REPORT DOCUMENTS

TASK A - Photo Support Data
F D2-100814-1 - Lunar Orbiter Photo Site Accuracy Analysis - Final Report - Photo Site Analysis

D2-100814-2 - Lumar Orbiter Photo Site Accuracy Analysis - Final Report - Supporting Data

D2-100814-3 - Lmar Orbiter Photo Site Accuracy Analysis

- Final Report - Firror Analysis

D2-100815-1 - Lunar Orbiter Inproved Fhoto Supporting Data - Final Report - Lunar Orbiter I

D2-100815-2 - Lunar Orbiter Improved Paoto Support Data - Final Report - Lunar Orbiter II

D2-100815-3 - Lonar Orbiter Improved Photo Supporting Data - Final Report - Iunar Orbiter III

D2-100815-4 - Lunar Orbiter Improved Fhoto Supporting Data - Final Report - Lunar Orbiter IV

D2-100815-5 - Lumar Orbiter Improved Photo Supportins Data - Final Report - Lunar Orbiter V

D2-100816-1 - Lunar Orbiter Simple Moon Residuals - Final Report

TASK B - Residual Feedback Study
DR-100818-1 - $\begin{gathered}\text { Application of Residual Feedback to Lamar Orbiter } \\ \text { Residual Analysis - Final Report }\end{gathered}$

TASK C - Tracking Data Residuals

DR-100817-1 - Lumar Orbiter Doppler Residual Study - Final Report

ABSTRACT AND KEY WORDS LIST

Abstract

\section*{ABSTRACT}

Analyses have been performed to improve the knowledge of the selenographic location of photographs taken on the five Lunar Orbiter missions. All technical areas affecting the computation of photo site locations have been re-examined, including spacecraft performance, orbit determination and the celestial environment. A checkpoint location technique was developed to measure consistency and accuracy of the results. As a result, the prime site photo location accuracy has improved from about 2.5 km to less than 1 km discrepancy. Revised attitude maneuvers, camera geometry, exposure times and state veciors were produced with improved techniques and used to generate a new set of Lunar Orbiter photo location documents.

KEY WORDS

Lunar Orbiter
Photo Site
Orbit Determination
Attitude Maneuvers
Selenographic

TABLE OF CONIENTS

TABLE OF CONTEITS (Continued)

1.0 IFIRODUCTION

The purpose of this document is to report the work accomplished under Task A of the Lunsr Orbiter Photo Site Accuracy Analysis, Contract NAS 1-7954. It contains a discussion of each phase of the analysis, a description of the production techniques, and summarized results.

1.1 SCOPE

The eatire final report is organized within eleven documents under the three tasks A, B and C identified in the contract by the titles:

Task A - Fhoto Support Data
Task B - Residual Feedback Study
Task C - Tracking Data Residuals.
The documentation follows the numbering system on page v.

1.2 BACKGROUND

The purpose of the Lunar Orbiter Photo Site Accuracy Analygis contract, Tast A, Photo Support Data, was to determine photo locations to greater accuracy than beforc possible. Work began in October, 1967, under the basic Lunar Orbiter coutract (NAS 1-3800) and continued under the present contract upon closing out of the basic contract in March, 1968.

Photo support data had been generated after each Lunar Orbiter flight to define the location of each picture taken during the flight. The data preseatly appear in a set of five final reports as Volume VII, "Post Mission Ehoto Supprring Data." Each volume defines a consistent set of photo locations, out vhen coverage from different missions at the same area is compared, the locaticn of any individual feature in the overlap area is often observed to be significantly different for different missions. For the prime-site photography, these discrepancies were typically about 5 km .

In edditior to the discrepancies noted in the post mission photo supporting ciata, discrepancies had been observed during the flights upon early readout of the pictures, when corners were plotted on lunar maps. It was found that the corner locations were regularly downstream, or along-track, of the predicted zocetions. The post-flight calculation of the corners also verifir: this conclusion. In fact, an empirical three-second bias to the photo timing was used on the last flight, which successfully anticipated this error to large extent. No explanation was found for the phenomenon during the ilights.

1.3 METHOD

The method employed in generating any given unit of photo support data is shown in schematic form in Figure 1. The diagram indicates the relationship of three general areas of analysis to the final resuit (photo support data). These general areas are (1) spacecraft hardware data, (2) orbit determination, and (3) celestial environment, or "universe".

The approach taken in all of these areas was to examine the available data In great enough detail to reveal sources of the discrepancies, and where possible, to re-process the data with improved procedures to obtain more accurate photo locations.

1.4 RESULTS

Average photo location discrepancies have been reduced from about 2.5 km to less than 1 km for the prime-site photographs. This improvement arises largely from more accurate orbit determination. (Figure 2 lists the improvement at each point investigated). A revised set of data for all photos has been generated to replace the old Volume VII set. They are D2-100815-1 through -5 , dash number indicating mission number.
2.0 CHECKPOIHT TECFNIQUE

A method was devised to evaluate the consistency and accuracy of the photo locations. It was based on the use of measurements from photos as a separate data type. Photos of a common feature, or "checkpoint", were obtained from several Lunar Orbiter missions and the X, Y locations of the feature in the photos were measured. These measurements were used together with other inputs (state vector, attitude maneuvers, camera-on time) to calculate the checkpoint location for each mission. This was done in eight separate areas across the front face of the moon. The closeness of the checkpoint grouping in each area and over all areas was the criterion for judging the procedures used to generate photo support data.

Figure 3 shows the coverage by certain photo frames from three missions in a typical checkpoint area. The checkpoint appears within the small region of conmon overlap, and its approximate position in each frame can be seen. This area and all other areas examined for checkpoint consistency are illustrated on the moon's visible disk in Figure 4, labeled by letters "A" through "I". The approximate locations of the areas and the photo frames used for checkpoint anslysis are tabulated in Figure 5.

The checkpoint areas and photo frames were selected with the purpose of obtaining the maximu number of cases of best quality (i.e., low altitude, near vertical, telephoto; three-mission coverage of the checkpoint). This insured that no one error source would be overpowering with respect to the others. An example of possible problems thus avoided is in the case of Mission IV, which was not used for checkpoint analysis because its high altitude magnifies measurement and attitude errors to an unacceptably high degree. Mission I was excluded, also, because the telephoto plctures were unussble. See Figure 6 for an illustration of typical checkpoint location errors resulting from various error sources.

Measurement of the checkpoints' position on the photos was made in an X, Y ccordinate system located at the lower lefthand corner of the photo. The photo was oriented with edge data along the left side, thus X measurements were perpendicular to the edge data and Y measurements were parallel to the edge data. Measurements were finally scaled to the frame inside dimensions, resulting in equivalent distances in millimeters on the spacecraft film.

Eertain techniques were employed to maximize the measurement accuracy. The principal one was to use the reseau retwork found on all pictures except Mission I. The reseau marks were calibrated before each mission and have a precise X - relationship to the frame. Accordingly, measurements were small, being indexed to the nearest reseau mark; and the long distences between the index reseau marks vere obtained simply by counting the intervals. Whenever a measurement was made, a measurement was also made of the local reseau interval and a proportion was obtained by dividing the measured interval into the measured distance. The sum of the proportion from the X, Y origin to the first index reseau, plus the number of reseau intervals between indixes, plus the proportion from the last index reseau to the checkpoint, multipiled by the ealibrated reseau interval, yields the desired result. Figure 7 illustrates this method of measurement.
2.0 CHECKPODNT TECHMIQUE (Continued)

Use of the reseau pattern made it possible to avoid errors arising from mismatch between framelets during re-assembly. No measurements were made across framelet bounderies, eliminating y errors; and since the reseau pattern shifts with the framelet in the x direction, x errors were also eliminsted thereby. In addition, negative and print non-iinearities were avoided by restricting the measurements to small values in the local region of the index reseaux.

The results achieved in improving consistency and accuracy of the data are illustrated in Figure 8. In this iigure, effect of the individual contributions in attitude maneuvers, orbit determination and lunar radius are shown by changes in the checkpoint locations at area "B". The checkpoint locations illustrated are three of the twenty-three indicated in Figure 5 which were used to judge the procedures.

3.0 SPACECRAFT HARDWARE DATA

Several aspects of the performance of the spacecraft itself were investigated to secure improved inputs for the calculation of photo locations. They were: attitude maneuvers, camera-on times, camera geometry and field of view. The improvement that was achieved was due principally to the maneuver angle improvement, reducing errors by about 0.4 km on the lunar surface for prime site photography. A discussion of each of the analyses is contained in the following paragraphs.

3.1 ATTITUDE MANEUVER ANGLES

The spacecraft's angular orientation for each of the exposures was previously assumed to be the designed orientation, in ccmputing the old Volume VII photo support data. The use made of flight telemetry had been to verify that the commanded rotations had occurred in each axis, and to monitor position in the dead-band for the purpose of anticipating errors at camera-on time and applying "windage". Thus, with few exceptions, the attitude maneuver inputs were identical to the designed values appearing in the final command conference forms.

To improve the attitude maneuver data, a telemetry-analysis technique was employed whici can be briefly described as "integration", in the sense of frequent adjustments over successive tine intervals.

A computer program was developed which operates on the telemetered rates and positions from the Inertial Reference Unit and from the Canopus and Sun sensors. Using known attitude control system characteristics, e.g., angular acceleration levels, and keyed to readily discernible events, e.g., maneuver start points where gyro mode switching occurs, spacecraft rotation is described as a series of body axis oriented rotations. These ordered rotations cover the span from alignment with celestial references to photo time. They are determined with full account of grro rate integrate mode drift and positions in attitude deadzones, and are adjusted for cross-coupling during maneuvers. The corrections for the effects of gyro non-orthogonality-coupling (because of gyro and body axis misalginment due to limit cycling) and inertial or geometric coupling (due to rates about other than the maneuver axes). The series of maneuvers thus determined is finally converted to three equivalent body rotations, a yaw-roll-yak sequence which is the input to photo support data.

Accuracy of this method of handling attitude maneuvers was checked by making use of the procedure generally followed in flight, of rotating the spacecraft back as closely as possible to the original orientation (defined by SunCanopus lock) and then obtaining pitch and yaw readings from the Canopus sensor output. In the absence of errors in the analysis, the final equivalent three-axis maneuver should result in pitch and yaw positions exactly equal to the flight readings. The checks that were made showed accuracy at time of return to cruise orientation better than 0.2°, indicating accuracies at camera-on time typically 0.1° or less. This compares with about 0.5° typical errors previously.

3.1 ATIITUDE MANEUVER ANGLES (Contimued)

A list of the attitude maneuvers for all exposures is given in D2-100814-2 of the final report, "Supporting Data."

3.2 CAMIERA-ON TTMES

The spacecraft clock times associated with the exposures were carefully checked by re-reading the digital lamp time code on the GRE (Ground Reconstruction Equipment) framelet adjacent to the iilm and converting to decimal clock times. In the case of photo sequences, two or more frame times were checked. In the case where the time code was not read out, an estimated time was assigned based on the predicted time. These frames are presented in the table below:

I/O	Frames
I	115
II	-
III	$33-36,37,38,39,40-43,44-51,72,73$,
	$74-77$
IV	19,21
V	-

For most photo sequences, it was possible to improve the relative accuracy by curve-fitting through the lamp code times. This is because the time code resolution was 0.1 seconds; since the frame interval for most sequences was only about two seconds, alterations of 0.1 seconds or less could be made which resulted in noticeable improvement relative to the neighboring frames in the sequence. A second-order least-square fit through the times was thus obtained. A sample of the results of smoothing is seen in Figure 9. The identification of every smoothed sequence is ilsted in Figure 10.

The link between spacecraft clock time, as indicated by the lamp code exposed on the film, and times of the telephoto and wide-angle exposures, was also reexamined, on the basis of the photographic subsystem design (see Reference 1 and 2).

As a result, telephoto camera-on times are nominally 0.09 seconds earlier than the old Volume VII set indicates. The time between telephoto and wide-angle exposures is 0.12 seconds.

A complete list of the camera-on times for all telephoto wideangle exposures for all missions is included in D2-100814-2 of the final report, "Supporting Data."

3.3 CAMERA GEOMEIRY

Geometry of the camera's field of view was analyzed by measuring the position of the telephoto corners located in the same wide angle picture. The results were reduced to data describing the angular difference between the directions of the two axes and their orientations about the axes. This analysis covered Lunar Orbiter spacecraft for missions II, III and V. Lunar Orbiter I was not done because the telephoto pictures were unusable, and Lunar Orbiter IV was not done because the wide angle corners were not visible, being in deep space for the most part. Telephoto film platen motion was considered in the analysis because the time difference between frames results in silghtly different frame positions.

Final results were assumed to modify only the wide angle field of view, since the telephoto system was installed to the closer tolerances. Thus, the telephoto axis is described by the nominal values and the wide angle axis is described by adding the computed differences to the telephoto values. Figure 11 presents a table showing the difference (wide-angle - telephoto) for the three quantities; cone angle of axis, clock angle of axis, and frame orientation about the axis. The wide angle inputs to photo support data calculation are listed in D2-100814-2 of the final report, "Supporting Data." Note that frame orientation difference for EVAL inputs was assumed zero.

4.0
 ORBIT DETERNTMATTOM

The process of orbit determination (OD) requires a combination of many complex operations such as tracking data editing, least squares minimizing, trajectory prediction, and the like. The techniques used in these operations to obtain an OD solution are called the "procedures." The procedures are used in the operation of the computer program ODPL, which was supplied for the Lunar Orbiter project by JPL and inich was modified both before end during the flights. Certain $O D$ procedures were mastered during fligit experience, and these formed the hasis from winch to start the procedures Investigation for photo location improvement. A list of the flight procedures is given in Figure 12.

It was determined early that $O D$ errors were the main contribution to prime-site photo location discreparcies. This is show by example in Figure 13, where two different sets of harmonics tailored in obtaining an OD solution prodsce results about 4 km apart. (Other cases, without tailoring harmonics, shoved even more sensitivity to the particular choice of procedures). Therefore, a careful search was made for an improved set of procedures which would ensure greater accuracy. As a result of this search, it was possible to inprove photo site consistency by about 1 kn due to $O D$ improvements alone.

Sections 4.1 and 4.2 below, sumarize the portion of the investigation done in the earlier stages of the contract, for which a more complete report is given in Reference 4. Sections 4.3 and on deai with the woric done since that portion was completed.

4.1 STANDARD PROCEDURES IIVESTIGATION

The initial stages of the improvement effort were directed toward an analysis of the procedures already found usable based on flight experience, especially Lunar Orbiter V. In particular, variations in the following items were tested with respect to their effects on the consistency of the photo suppont data:

4.1 STANDARD PROCEDURES INVESTIGATION (Continued)

A tabulation of the specific combinations tested is given in Figure 14.
An illustration of the improvement attained by using a selected combination of procedures is given below, where "discrepancy" is defined as the largest distance observed between checkpoint locations.

Area		Discrepancy, km Imominal
Improved		

The combination of procedures which produced this improvement is as follows:
Data arc $\quad 10$ hours, starting 1 hour before camera-on time
Gravity model LRC 7/28B
Harmonics not in solution vector
Ho tracking data excluded on the basis of residual oscillations

Standard Procedures Conclusion

The investigation showed that some improvement was possible in certain lunar areas using. selected procedures. Since the selected procedures did not reduce discrepancies to the neighborhood of 2 km , however, further work was directed toward improving the accuracy of orbit determination, as described below.

4.2 SHORT ARC PROCEDURES INVESTIGATION

A deviation to the standard $O D$ technique was investigated in an attempt to provide a backup method and.to gain insight into short-arc solutions. The method tested is called the "weak filter."

The weak iflter technique employed the concept that a short data arc surrounding camera-on time will result in a more realistic orbit determination in the

4.2 SHORT ARC FROCEDURES INVESTIGATION (Continued)

vicinity of camera-on time. The short arc will better represent local conditions as opposed to fitting a long multi-orbit data arc that tends to average the perturbations along the orbit.

Short arc solutions are a problem for areas of one-station viewing due to a lack of sufficient tracking data for rapid convergence. The weak filter procedure used the a-priori covariance matrix to direct the final short arc solution but eliminated the constraint imposed by the a-priori state vector in standard OD procedures. Information in the covariance metrix was built up by two different methods in this study in order to compare the accuracy and consistency of the solution and also the operational characteristics.

A minor change to ODPL was required to install two weak ifiler options.
Method I - Short Arcs Prior to Fhoto Site
The first weak filter methol was initiated by fitting a short data arc with two-station view as lake as possible before camera-on time. Subsequent short data arcs were solved by epoch forwarding about an orbit at a time until the data arc surrounding camera-on time was reached. The covariance matrix from each solution was mapped forward and scaled (if required) to provide a-priori information to help hold together the solution from the new data. The amount of scaling of the covariance matrix was one of the critical parameters In this study, as it was necessary to retain enough information to influence the next solution but not so much as to dominate or distort it. Too much information also slows the rate of corrergence.

Method II - Long Arc Prior to Photo Site
The other version of the weak filter procedure used a long deta arc (10 hours) just prior to the photo site to generate a covariance matrix that was mapped forward to epoch of the short data arc surrounding camera-on time. This a-priori covariance matrix alded the final short arc solution but again, normally required scaling to reduce the influence from the previous information.

Shoryt arc solutions using the weak filter for a variety of tests were run in search of a common technique giving consistent checkpoint locations. The variables were as shown in the table below:

Item \quad Range of Values

- Data arc length

Previous data arcs Successive 1-hour arcs, previous

Epoch placement
Doppler bias solution

10-hour arc
60, 75, 90 minutes

0,10 minute change
with, without
4.2 SHORT ARC FROCEDURES INESTIGATION (Continued)

Item
Model
Mession
Area
Number of stations viewing
Scaling of cov, matrix

Range of Values
TBC S-5, LRC 7/28B
Lmar Orbiter III, II, V
C, D
1, 2
$\times 1$ to $\times 256$ as required

The specific combinations tested are ahown in Figure 14.

Short Arc Procedures - Conclusion

Results of the tests, discussed in some detail in Reference 4, showed that consistent solutions were not attainable via short data arcs with either version of the weak filter (I or II). Work was thus directed toward the evaluation of the residual feedback, or Kalman filter, wifch was incorporated into ODPL as part of Iask B. A discussion of this work is contained in the following paragraphs.

4.3 EPHEMERIS TINE - UNIVERSAL TINE CORRECTIOH

Through frequent analysis of OD results and separate checks by NASA/MSC, it was found that an inconsistency existed in the usage of DUT (or ETUT, ephemeris time minus universal time) in various ODPL links. The evidence came partly from the experience in flight noted in section 1.0 (downtrack prediction error), and partly from the checkpoint analysis carried out in the present work. As iliustrated in Figure 15, the checkpoints were invariably being located too far back in their motion-at least from a consistency standpoint. This characteristic was noted in five different areas. Upon closer examination, an irregularity in ODPL was detected and repaired. The error had been causing no more than 1.5 seconds discrepancy, depending on the mission. When repaired, the new checkpoint locations moved mostly, but not entirely, downtrack; and improved the consistency. The reason the effect was not entirely downtrack is that the timing change implied, in addition, a geometry change, which affects station doppler prediction. This alteration to the program provided the greatest overall benefit in grouping checkpoints, compared to the other techniques investigated.

4.4 RESIDIAL FEEDBACK

A separate job, Task B, was the developnent of a residual feedback modification to ODPL. (A report of this task is presented in D2-100818-1 of the final report.) Though its principal use was expected to be in generating statistics, it was tried in an attempt to improve the state vector solutions.

4.4 RESIDUAL FEEDBACK (Continued)

The variables in this investigation were principally program options. As shown in Figure 16, many options were made available; so the sequences of options which best carried out the test plan were exercised, namely, (0,3 , 2,0) and ($0,1,2,0$). Figure 16 illustrates the tracking data used in solutions of these types.

In addition to the two sequences of options, the following variables were included in the analysis:

Item
Gravity model
Short data arc length
Missions (Area D)

Range of Variables
IRC 7/28B, TBC $5-5, \operatorname{LRC} 11 / 11$
30, 60 mimutes
II, III, V

Figure 17 shows the results of use of the two sets of options compared to the standard OD solution; there is an insignificant change.

Additional results are shown below, indicating similar results using different data arc lengths.

EAFFECT OF 30 MIMUTE REDUCTION IN FINAL DATA ARC

Mission	Checkpoint A Long.	ocation \wedge° Lat.
II	0	0
III	-. 008	-. 0004
V	-. 001	+.032

Residual Feedback - Conclusion
110 option or sequence of options in the residual feedback capability could be found to significantly improve the checkpoint locations.
4.5 FINAL SEIECTION OF PROCEDURES

Having eliminated short arc and Kalman filter procedures from among the possibilities, but with a corrected ET-UT conversion in ODPL, the problem of improving orbit determination was again attacked from the standpoint of selection of standard type procedures.

4.5.1 Gravitational Model

The effect of solution for harmonics received the most emphasis, since lack of knowledge of gravitational model was seen to deteriorate many of the other

4.5.1 Gravitational Model (Continued)

types of solutions. (In addition, solving for harmonics had been developed as a flight technique in order to reduce size of the doppler residuals.) According, the basic rodel chosen was that which was derived from Lunar Orbiter tracking data taken from the same type orbit; and all the highestorder coefficients, ten in number, were solved for. Thus the basic model for the low-inclination missions, IO I, II, and III, was LRC 11/11. For the highinclination missions IO IV and V, the IRC $7 / 283$ was used. The most noticeable benefit from this choice wes the improvement in the "problem" checkpoints, single solutions located far from the mean. See Figure 18.

It was determined that coefficients should not be solved for in 10 IV runs since the high altitudes prevented effects of the coefficients from being separated, and high correlation between state and harmonics made the.results questionable.
4.5.2 Data Arc

The major part of the job of choosing data arc length had been done during the flights. Normally, the arcs were of three-orbit duration for two reasons: (1) fcrwarding considerations, in which the amount of forwarding beyond the data arc should be no greater than the data arc itself; (2) minimum data for convergence, in which with one orbit of single-station data convergence was impossible, and with two-orbits it was not always possible. The first reason, of course, has no bearing on post-flight work. The second reason does; since it has to do with ODPL operation.

A spot-check at Area D showed a checkpoint change of less than 1 km for oneorbit reduction in arc length. See Figure 19. This amount of change is approximately equal to perturbations from other sources, but no method was suitable by which superior data arcs could be chosen in every case. Thus, the nominal data arc was chosen as part of the procedures ${ }_{y}$ with the exception of III P-12, where all four passes were put on the same data arc to preserve consistency.
4.6 PRODUCTION PRODUCURES

The orbit determinationsfor Lunar Orbiter Photo Site Accuracy Analysis were rum using the general procedures iisted in Figure 20. The program, ODPL, had been changed to correct the Ephemerts Time-Universal Time conversion.
4.6.1 Input Data

The planetary ephemeris used for all production orbit determinations is designated Developmental Ephemeris 19 and was originally provided by Jet Propulsion Laboratory for the Lunar Orbiter missions.

Tracking data used in the orbit determinations was from the Lunar Orbiter Tracking Data Master Tape Library compiled under CCN 157B (NAS 1-3800) and documented in Reference 3.
4.6.1 Input Data (Continued)

Lunar gravitational potential is input as a set of spherical harmonic coefficients provided by Langley Research Center. The basic lunar harmonic models used for production are the LRC 11/11 for Mission I, II and III orbit determinations and the LRC 7/28B for Missions IV and V. See Figures $21 \& 22$.

High order lunar harmonics were estimated with ODPL for all missions except Lunar Orbiter IV. Ten coefficients--C32, C42, C33, C43, C44, S32, S42, S33, S43, 544 , were estimated as a standard procedure. The number of estimated harmonics was reduced to eight (C44 and 544 reset to nominal values) only when the ten-harmonic estimate proved to be nonconvergent.

Epoch placement and data arc length were unchanged from the orbit determinations reported in the postmission photo support documents. All of the photo sites are included within these data arcs, with the exception of a few secondary sites. Some of the postmission orbit determinations were not repeated because the photo sites originally associated with those data arcs could be included in other solutions.

The orbit determinations used all available two-way and three-way doppler tracking data, including data taken during photo readout with 20 and 30 second doppler count time and all data surrounding perilune. The inclusion of three-way aoppler dictated the requirement to estimate the value of doppler biss: This was a standard procedure even though bias is known to have been removed from most data in the tracking data master tape library.

The orbit determination solution was mapped to a time about one minute prior to each frame or series of frames within the data arc, using the modified Imar model.

An additional requirement of each production run was to generate a trajectory using the solution state vector fron the orbit determination, but with a gravitational field defined by a simplified triaxial model ($J 20=2.073 \times 10^{-4}$; $\mathrm{C} 22=0.203 \times 10^{-4}$) rather then the modified high order harmonic model used in the solution. Doppler residuals were then computed from this special trajectory and plots of the residuals were obtained. The residual plots are published in D2-100816-1, Lunar Orbiter Simple Moon Residuals - Final Report.

4.6.2 Program Output

The most concise form of output from orbit determination production runs is the computer generated orbit determination report. Each report includes the epoch of the data arc, selenocentric spacecraft state vector at epoch, selenographic orbital parameters corresponding to the state vector solution, and a listing of the lunar harmonic model (up to fourth order) as modified by the ODPL solution. A summery discussion and a list giving identification number, epoch, date arc length and a mapped photo sites are in each mission's "Improved Fnoto Supporting Data" document (D2-100815-X). The epoch reports for each mission are also included.

4.6.2 Program Output (Continued)

Additional output is from the photo site mappings in the form of orbit determination reports. The map time reports are identical in format to the epoch reports although the lunar harmonic model is not relisted. The content of these mapping reports is used as input data to the Fhoto Evaluation Program (EVAL). The map time report listings are published in the "Supporting Data" document D2-100814-2.

The identification numbers for the orbit determinations and the mappings are derived primarily from the photo site desisnations used during the Lunar Orbiter missions. The first digit indicates the mission number and the next character (A, P, S or V) indicates a primary or secondary site followed by the site number. The letters A, P, S or V are the identifiers used during the mission. During Mission I prime sites were designated by A. Mission II and III used P for prime site and S for secondary site. Mission IV is designated by orbit number. Mission V used V for photos at perilune and A for photos at apolune. Sites with no site designation during the missions, such as fill set frames are identified by F. The orbit determination number is the same number as the first photo site in the data arc with the exception of Item 16 (an oversight) and Mission IV. The orbit number provided a better reference for Mission IV OD identification.

The complete printed output from all ODPL production runs, including simple moon residual plots; is recorded on micropilm for ease in storage of the data.

5.0 CELESTIAL ENTIRONMENT

A combination of mathematical models were used to express the celestial environment as it influenced the I/O trajectories and the data gathered. Where photo site locations were adversely affected by the assumptions, improvements were incorporated if possible. The principal departure from convention was in the adoption of different ralues of lunar radil as an input constant to the photo data program EVAL. These radil varied from 1733 to 1738 km across the Apdllo region and typically affected photo corners 0.5 km or less for prime-site photography. It was not possible to simulate the recently revealed mass concentrations near the lunar surface due to the timing of this work. However, it is reasonable to expect that photo location accuracy will be markedly improved when such a gravitational model becomes available.

The following paragraphs describe the investigation of the "universe."

5.1 LUNAR EPHEMERIS

The JPL lumar ephemeris tape DE-19 was used in the production ODPL solutions. This ephemeris includes the revised Eckert corrections to Erown's theory, plus some second order terms. The integrated ephemeris was also tried, but produced insignificant differences in the doppler solutions when compared with the solutions using DE-19. The ephemeris tapes used in the pubilshed post mission data were as follows: Missions I and II "EFHEM I", Missions III and IV DE-15, and Mission V DE-19.

5.2. MOON'S SIZE AND SHAPE

The physical dimensions of the moon were investigated based on Lunar Orbiter data from three different viewpoints: station occultations, checkpoint consistency, and angular separation between features photographed from high and low altitude. For the production photo support data, values varying from 1733 km to 1738 km were input depending on photo site location. A discussion of the analysis is given below.

5.2.1 . Station Occultation

Size and shape of the moon was briefly examined in the "Occultation Study" of NAS 1-3800 (CCN 157B), confined, of course, to the visible lunar disk. A final report on this work is found in Reference 4. The results, though. having considerable scatter, indicated a smaller radius than the nominal. (1738 km). This agrees with Ranger impact data (Reference 5) and Lunar Orbiter V/H ratio telemetry (Reference 6).
5.2.2 Mean Radtus Study

Background

Using cases like those selected for the checkpoint consistency tests, oyerall effect of lunar radius was examined by using lunar radius as an independent variable and monitoring the statistical grouping of checkpoints as a dependent variable.

The sketch in Figure 23 illustrates how lunar radius affects the computation of feature location. Note that the more obliquely the feature is viewed, the more sensitive is its location to lunar radius.

Results
Several different values for the mean lunar radius were used to compute the coordinates of the checkpoint features and a single value was chosen as most appropriate to the multi-mission consistency. This value, 1736 km , reduces the deviations from the mean checkpoint locations in nine of eleven areas and reduces the standard deviation by 10%.

Assumed Lunar Redius (km)	Standard Deviation, (km)
1738	1.08
- 1736	0.97
1734	1.19

The number of sample cases included in the calculation of the above standard deviations was 23. A later analysis, using results from the inproved orbit

5.2.2 Mean Redius Study

detersination procedures, and having 14 sanple cases, shows similar results (see Pigure 24).

While the reduction in sigma is significant in itself, it may be noted that the situations have nearly vertical viewing and therefore exhibit little sensitivity to variations in lunar radius. A more substantial case for a reduced moon radius is found in the high tilt angle photos of the above checkpoints, where the deviation from the mean was typically reduced 50 to 75 percent, to approximately 1.0 or $1.5 \mathrm{kilometers}$. The table below illustrates the inprovement observed in these cases.

CHECKPOINT IDENTIFICATION

Area	Frame No.	Tilt Angle
G	III-136	54°
E	I-137	41°
E	II-169	25°
H	III-171	56°
C	V-76	35°
F	III-161	65°

DEVIATION FROM THE MEAN (KM)

$\mathrm{Rm}=1738$	$\mathrm{Rm}=1736$
3.1 km	1.0 km
$21 . \mathrm{km}$	1.2 km
2.1 km	1.2 km
5.9 km	1.5 km
1.3 km	0.7 km
5.1 km	1.3 km

5.2.3 Site Elevation Study

A separate study was made of the local lunar radius at several areas. The principle involved here was one of triangulation; a comparison of the angular separation between two surface features, subtended at the spacecraft, seen in high altitude vs. low altitude photos. A sketch illustrating the geometry is shown in Figure 25.

Low altitude photos from Mission II and III were found which could be located in L/O IV (high altitude) telephoto pictures. Features found at or near the corners of the low-altitude wide-angle photos were measured on the L/O IV photos, then located by latitude and longitude using the program OPAL. With these surface locations, and the best known low-altitude spacecraft position, the angle between pairs of features, subtended at the low-altitude spacecrs' , were computed. This angle was compared against the "known" angle as determined by measurement on the low-altitude photo. The local lunar radius was found that produced the best agreement between computed and known angles, on a least squares basis. Finally, the set of local lunar radii determined in this manner were plotted vs. longitude. See Flgure 26. Since most of the prime sites were near-equatorial, the plotted site elevation represents all sites at the aame longitude within the Apollo zone.

5.2.3 Site Elevation Study (Continued)

Data were also generated using features located on LAC charts instead of by Lumar Orbiter IV photo measurements; these points are separately identified on Figure 26. A comparatively large number of points were taken to avoid any local discrepancies in map-matching.

The value of lunar radius found in Figure 26 was used for input to the photo support data up to latitudes of $\pm 10^{\circ}$. Outside the $\pm 10^{\circ}$ latitude band and the longitude range -50° to 40°, a value of 1736 km was input. A list of the lunar radil used for EVAL input is contained in DR-100814-2 of the final report, "Supporting Data."

5.3 SELENOGRAPHIC COORDINATE SYSTEM

Specification of the angular orientation of the moon is part of the job of computing photo site locations. An investigation was made to determine the presence of any significant bies in the moon's orientation, and to apply a correction if necessary. This section describes that investigation, its results, and conclusions.

The positions of the moon's equator and prime meridian are specified with respect to the true equinox of date and the true of date earth equator plane by the three Euler angles $1, \Omega$, and Λ. The formulation of these angles are time variant, empirically detemined based on observation and augmented by lunar libration theory. The naminal expression of orientation, supplied for the Lunar Orbiter software by JPL, is given in Reference 7. . Earth based observation is subject to a number of errors, some of which are (i) uncertainties in the "control" features on which the computations are based, (2) values of the librations, (3) errors in photo plate constants to correct for scale and orientation, and for removal of atmospheric effects, and (4) errors in observation due to the lunar phase effect.

Reference 8 reveals one $s i g m$ (1σ) errors in the coordinates of lunar features of 0.5 to 1.0 kilometers in latitude, and 0.4 to 2.0 kilometers in longitude over most of the front face of the moon, with errors as great as 5 to 10 kilometers for features near the limbs. Since the Euler angles 1 , Ω, and 1 are determined in essentially the same manner as lunar featur cocrdinates (see Reference 9 and 10), the determination of the Euler angles are assumed to have the same order of uncertainty.

5.3.1 Nethod of Investigation

Fhotos from the five Lunar Orbiter missions were analyzed to find a number of frames containing in common a prominent lunar feature which could be used as a checkpoint. Each feature chosen as a checkpoint had been photographed in two to flve independent frames. The selenographic coordinates (latitude and longitude) of a particular feature were determined separately in each incident photo frame and the several solutions compared. The deviations from the mean location were computed as a measure of the accuracy and consistency of the photo location data.

Since the orientation of the selenographic coordinate system is time variant, it directly affects the solutions obtained for the feature identified in the different photos, because they were exposed at different times. This fact permitted an investigation of the validity of various moon orientations.

A computer program (EASE) was written which employed an iteration technique to solve for a set of perturbed Euler angles optimized to produce the most consistent checkpoint locations. Each set of photo frame data input to the program.was individually processed through the photo gemmetry routine to determine the longitude and latitude of its checkpoint. Using the several

5.3.1 Method of Investigation

solutions obtained for a given checkpoint, the density of their grouping was computed in terms of mean longitude and latitude, deviations from the mean, and sum of the squares of the deviations. At this point, the nominal Euler angles were perturbed slightly and the process repeated, resulting in new values for checkpoint locations and the density of the grouping. Continued iteration resulted in a set of modified Euler angles which produced the least sum of the squares of the deviations in longitude and latitude. This technique used the assumption that the perturbation to any Euler angle remains constant over the entire period of time.

5.3.2 Results

In a few areas a modified set of Euler angles was found which resulted in some improvement in the checkpoint consistency. However, in most of these cases the amount of the improvement was negligible with respect to the overall dispersions.

The runs which contained input data for only one or two checkpoint areas generally converged in solutions leading to slight reductions in the dispersions, but the perturbations to inclination, 1, varied in both sign and magnitude. When more than two checkpoint areas were included in the data, the procram exhibited trouble in attaining a solution and often diverged after attempting many iterations.

5.3.3 Conclusions

The present study did not reveal any superior means of expressing the moon's orientation, thus the nominal values were used as described in Reference 7 .

Any improvement made possible by perturbing the moon's orientation is negligible compared to uncertainties arising from other sources, particularly orbit determination.

It should be noted that while this investigation concludes that no sizeable blases exist in the nominal formalation of the Euler angles, the possibility of an improved definition of the selenographic coordinate system is not ruled out. Indeed, preliminary checks versus the Apollo transformation program, which is based on more recent analysis of the moon's orientation, indicates that, in general, the consistency was roughly 0.2 km better using the Apollo data. Unfortunately, it was not possible to incorporate the Apollo grogramming into the Lunar Orbiter software.

6.0 ERRROR ANALYSIS

An error analysis was made for representative photo frames for the five missions. Selenographic latitude and longitude errors were determined for the camera axis intercept, cormer points, and points approximately midway between the corners, for both the telephoto and wide-angle lenses. The associated eigenvalues, rotation angle, and correlation coefficient for each frame point were also determined for the total error. Contributions to the total error were made by navigation, attitude, camere-on time and moon radius errors.

The table on Figure 27 shows the approximate variation of sigma within the frame, in the North-South (IAT) direction and in the East-Nest (LONG) direction. The smaller value generally corresponds to a point in the photo closest to the spacecraft; the larger to a point farthest away. For Missions I, II, III, and V, it is seen that errors typical for Apollo frames are less than 0.4 km in latitude and longitude for the telephoto lens (T) and less than 0.6 km in lati: tude-and longitude for the wide-angle lens (W). For some Apollo frames, larger errors are observed (a few km and more), due to a combination of factors including:

1) attitude error - due partially to large attitude maneuvers for some frames, in conjunction with increased altitude above 46 km for some frames, making the attitude error larger,
2) large camera axis tilt angle - making the error due to moon radius larger.

Generally speaking, for Missions I, II, III, and V frames at low altitude (meaning $45-240 \mathrm{~km}$), the total photo error variance is a combination of significant contributions from attitude and navigation sources, with a significant contribution for some frame points due to moon radius error, especially for the W lens. For altitudes greater than approximately 240 km , the attitude error is the predominant contributor. Errors of a few kn are not uncommon for Missions I, II, III, and V as indicated in the Error Analysis Sumary Table.

The photo errors due to camera-on time error is essentially negligible for all frames.

Frames taken at high altitude reflect the predominant attitude errors, with an increased attitude error for Mission IV frames where the maneuver is not made relative to celestial alignment, but to the previous attitude. The Error Analysis Sumary Table indicates this trend for one, three, and five attitude maneuvers.

The navigation statistics do not include the effects of uncertainty in lun. gravitational harmonics; since this is a major cause of uncertainty in many cases, the total statistics therefore suffer as a result, having unrealistically small sigma values for those cases. The amount of the deficiency is estimated to be on the order of $0.5-1.0 \mathrm{~km}$. Inability to caccurately express the roon's gravitational potential mathemativaliy is seen to be the
6.0 ERROR AKALYSIS (Continued)
reason for the deficiency. The remainder of the navigation error sources are represented, e.g., DSN radar, earth mass, and station location. It is not apparent that gravitational model uncertainties can be expressed even when a more accurate model becomes available; but their effects on navigation statistics will hopefully be umimportant with respect to other contributions.

A more complete discussion of the navigation statistics is given in D2-100814-3 of the final report, "Error Analysis."

7.0 EVAL FROCRAM CHANGES

This section describes the modifications made to program EVAL as a part of the work to improve the photo location accuracy. The purpose of the changes was two-fold, 1) to produce more precise photo data by refining some of the simplifying assumptions made in the original analysis, and 2) to provide more useful data and greater comvenience for the users.

7.1 SEPARATION OF THE CAMERA SYSTEMS

The high resolution camera and the moderate resolution camera were previously considered as having coincident geometry and shutter mechanisms. This assumption greatly reduced the programing task, but nevertheless, introduced some element of error. It was decided to correct this situation with a program change and utilize the results of the camera geometry and camera shutter time investigations (see Section 3.2 and 3.3).

The separation of the two camera systems required extensive internal program modifications while the changes to the output were limited to increased volume with relatively little format modification. The output now consists of two separate pages of photogramnetric data; one page for each camera, labeled near the top.

The eamera on times, and accordingly, the state vectors, are aifferent for each lens system. Since the separation of the shutter times is a constant related to the internal camera hardware, the program input is shutter time for each high resolution frame and a differential time in seconds to obtain the moderate resolution shutter times.

7.2 COORDINAIE SYSTEMS

In order to make the output convenient and useful to as many users as possible, the state vectors at the camera-on times are now referenced in two coordinate systems. These systems, the selenographic of date and the selenocentric 1950.0 are the two in most common usage for lunar study.

7.3 SELEITOGRAPHIC COORDINATES OF THE FIDUCIALS

Prggram OPAL (Oblique Photo Analysis, L/O) was built into the user program EVAL as an additional link for the purpose of computing the location of the projection of frame notch points on the lunar surface. The required inputs to OPAL are the coordinates (X, Y) of the point as it appears in the photo as well as the spacecraft position vector, attitude maneuvers, etc. as used by EVAL. The measured coordinates of the fiducial marks were provided by the Camera Calibration data (Reference 11 through 14). The notch identification adopted in those reports is used in the EVAL output.
7.3 SELMNOGRAPHIC COORDINATES OF THE FIDUCIALS (Continued)

The (X, Y) coordinates output alongside the notch identification are those giving the sawtooth location in a coordinate system whose origin is the center of the photo. The positive X axis is to the right and the positive Y axis is upward as one views the photo positive with the edge data to his left. This differs from the ACIC coordinates, which are indexed to the principal point of autocollimation or a geometric mean.
7.4 EPHEMERIS TO UNIVERSAL TIME CORRECTION

Routine SELCRA called by both OPAL and EVAL was modified to use an input variable for the time correction, Δt, the time difference between Ephemeris Time and Universal Thme. The previous versions of SEICRA relied on a constant value for Δt that was fixed within the routine, thereby introducing a small error, since Δt changes with time. The change puts this variable into the calling sequence of SELCRA and provides the routine with the values of Δt appropriate to the camera-on time.

8.0 : RKFFERENCES

1. L-018375-RU, "Photographic Subsystem Reference Handbook for the Lunar Orbiter Program," (Eastman-Kodak), March 15, 1968.
2. D2-100112, "Spacecraft Photo Subsystem Design Control SpecificationLumar Orbiter, " (Boeing), April 1, 1964.
3. De-100809-1, "User's Guide To the Lumar Orbiter Tracking Data Master Tape Libraries," (Boeing), February 12, 1968.
4. D2-100813-1, "Final Progress Report CCN 157B - Lunar Orbiter Fhoto Site Analysis," (Boeing), April 22, 1968.
5. "Measure of the Moon," Proceedings of the Second International Conference on Selenodesy and Lunar Topography," June 4, 1966.
6. D2-100727-3, "Lunar Orbiter I Final Report, Volume III - Mission Performance."
7. IR 32-41, "Selenographic Coordinates," (JPL), February 24, 1961.
8. Icarus \#7, 1967, "Absolute Coordinates of Lunar Features," G. A. Mills.
9. Prysics and Astronomy of the Móp, edited by Z. Kopal, Academic Prese, 1962.
10. Explanatory Supplement to the Ephemeris, H. M. S. Nautical Almanac office, 1961.
11. Lunar Orbiter I Calibration Report, USAF (ACIC), December 1966.
12. Lunar Orbiter II Calibration Report, USAF (ACIC), March 1967.
13. Lunar Orbiter III Calibration Report, USAF (ACIC), August 1967.
14. Lumar Orbiter II and Lumar Orbiter V Calibration Report, USAF (ACIC), January 1968.
:

* Approximately double the dispersion from mean location.

FIGURE 2
CHECKPOINT CONSISTENCY

FIGURE 4

REQ LTP A

CHECKPOINTS MEASURED

AREA	APOLLO DESIGIATION	$\begin{aligned} & \text { APPROXIMATE } \\ & \text { LOCATION } \\ & \text { Long Lat* } \end{aligned}$		CHECKPOINT FRAMES		$\begin{aligned} & \text { POSITION } \\ & \mathrm{X}, \mathrm{~mm} \end{aligned}$	IN PHOTO*
A	IP-1	42	-1	I	66W	-26.900	- 2.215
				III	25W	18.630	-11.660
				V	457	-24.940	109.490
B	IIP-2	34	3	II	$40 T$	1.581	103.816
				III	6 T	- -12.726	-66.335
						14.021	$\text { - } 9.846$
c	IIP-6	24	1	II	83W	-. 195	-14.980
				II	915	- 1.400	32.200
				III	$62 T$	14.710	76.200
D	IIP-8	-1	0	II	114 T	19.396	-72.766
				II	1235	-11.629	77.050
				III	997	- . 927	-83.691
				$\stackrel{V}{V}$	1109	-11.424	5.577
				V	114 T	1.649	7.000
E	IIP-11	-20	0	I	137W	9.350	-17.110
				II	169W	-21.980	32.090
F	IIP-13	-42	$11 / 2$	II	198 T	8.995	-100.600
				II	2057	7.970	53.700
				III	$165 T$	21.620	- .200
0	IIIP-9	-23	-3	I	169W	-26.430	22.180
				III	142W	22.730	21.780
				III	14 WW	27.400	12.950
				III	159W	25.380	31.38
H	IIIP-11	-37	-3	III	1809	21.11	16.00
				V	1709	20.91	-12.10

Origin at center of frame, scaled to actual frame size.

PIGURE 5
CHECKPOINIS

COORDINATES OF FEATURE:

$$
\begin{aligned}
& x=\left(\frac{X_{0}}{\Delta X_{0}}+2+\frac{-X_{f}}{\Delta X_{f}}\right) \cdot R_{x} \\
& Y=\left(\frac{Y_{0}}{\Delta Y}+2+\frac{Y_{f}}{\Delta y}\right) \cdot R_{y}
\end{aligned}
$$

($\mathrm{Rx}, \mathrm{Ry}=$ calibrated reseau intervals)
METHOD OF PHOTO MEASUREMIMTT
FIGURE 7

EXAMPLE PHOTO LOCATION IMPROVEMENT

CAMERA-ON TTME SEQUENCES SMOOTHED

II	III	V
P-1	P-7a	$\mathrm{A}=1$
S-2a	P-7b	A-2
S-2b	8-17	V-1
P-2	S-19	v-8a
P-3a	P-8	V-11a
P-3b	P-9a	V-14
P-4	P-9b	V-23.1
P-5	P-10	- 24
P-6a	P-11	V-27b
P-6b	P-12a	V-28
P-7a	P-12b. 1	V-29
P-7b	P-12c	V-30
P-8a		V-31
P-8b		V-32
$\overline{\mathrm{P}}$-8c		v-35
P-9		V-36
P-10a		V-37
P-10b		V-40
P-1la		V-42a
P-11b		V-42b
P-12a		V-45.1
P-12b		V-45
P-13a		V-48
		V-49
		$v-50$
		V-51

PIGURE 10

WIDE ANGLE GEOMEIRY

WITH RESPECT TO TELEPHOTO

USE FOR TYPEWRITTEN MATERIAL ONLY

* Zeros were input for frame orientation for EVAL input.

FIGURE 11

PROCEDURES DEVELOPED

- lunar models
- LO II - LRC $9 / 4$ (BASED ON LO I TRACKING)
- LO III - TBC C-2 (SIMPLE CONTROL MODEL BASED ON MODIFIED L/O II ORBIT)
- LRC $11 / 11$ (BASED ON L/O I TRACKING)
- LON - LRC $11 / 11$
- LOV - TEC S-5 (SIMPLE CONTROL MODEL BASED ON MODIFIED L/O IV ORBIT)
- LRC 7/28 B (BASED ON L/O III AND L/O IV TRACKING TESTED BY TBC PRIOR TO MISSION. V)
- SOLVE FOR LIST
- WO II, III, V - STATE VECTOR PLUS 10 HIGH ORDER HARMONICS (TAILORING)
- WO N - STATE VECTOR ONLY
- perilune data
- LO II - DELETED
- WO III, N, V - INCLUDED, SINCE IT APPEARED TO be REAL DATA
- DATA ARC LENGTH
- WO II, III, - $\mathbf{N} \mathbf{I 2}$ HOUR ARC USED N, V
- TRUE ANOMALY AT EPOCH :
- L/O II, III - NEAR $\left(\pm 30^{\circ}\right)$ BUT NOT AT APOLUNE

STATE VECTOR FORWARDING

- LO II - \quad (COT) "TAILORED" FOR EPOCH, $9 / 4$ FOR CAMERA-ON-TIME
- LO III - $11 / 11^{\text {rt}}$ TAILORED FOR EPOCH AND COT
- L/O IV - $11 / 11$ FOR EPOCH AND COT
- LO V - 7/28B "TAILORED" FOR EPOCH AND COT

REV ITR_A
EDERNE
No. D2-100814-1
smadard procroures intesticuttin

SHORT ARC Divsstigntion									
$\begin{gathered} \text { IRC } \\ 10 / 4 / 67 \end{gathered}$	$\stackrel{\mathrm{IRC}}{9 / 30 / 66}$	$\begin{aligned} & \text { MODFP. } \\ & 7 / 280 \end{aligned}$	$\begin{aligned} & \text { ARLEA, } \\ & \text { MISSIOH } \end{aligned}$	$\underset{\text { ARC }}{\text { DATA }}$	PRICR ARC METEOD	SPOCH	DOPPLER BIAS SOL'II	$\begin{aligned} & \text { GRAT. } \\ & \text { IRC } \\ & 7 / 28 \mathrm{~b} \end{aligned}$	$\begin{gathered} \text { DEL } \\ \text { TRC } \\ \text { S-5 } \end{gathered}$
	r		D, III	75 min .	I	Hom.	Fo		r
\checkmark	r		"	75	II	Nom.	Ko		r
r		V	"	90	II	Moan.	Ho		r
r	r	V	D, II	90	II	Nom.	No		\checkmark
+									
$\underline{1}$									
r	\checkmark		D, V	60	*	Hom.	110	r	
r	\checkmark		"	60	**	Mow. +10 m .	10	r	
r	r	\checkmark	"	60	**	R'an.	Yes	r	
r			\cdots	60	**	Hom.	Ho		r
r			"	60	**	Hom. +1 cm	Ho		r
r			"	60	*	Hom.	Yes		\checkmark
			c, III	60	II	now.	30	\checkmark	
.									
			c, v	60	*	Hom.	Ho	γ	
			\# 10 or	Ior arc	-2-atat	ipa viev.			
	-	TR ${ }_{\text {R }}$	Al\| ${ }_{\text {dat }}$			tithe			W00:c

KALMAN FILIER OPTIONS AVAILABLE IN ODPL

OPTION	EPOCH	$\begin{aligned} & \text { RESIDUAL } \\ & \text { FEEDBACK } \end{aligned}$	
1	Floating	WITH	AFFECTS ESTIMATE OF
2	FIXIED	WITH	STATE VECTOR
3	FLoATING	WITHOUT	AND STATISTICS.
4	FIXED	WITHOUT	
5	FLOATIIG	WITHOUT	
6	FIXED	WITHOUT	AFFECT ESTIMATE OF
7	Floattig	WITE	STATISTICS ONLY.
8	FIXED	WITH	
0	STAILDARD ODPL LEAST SQUARES FIT		

TYPICAL SEQUENCE OF OPTIONS CHECKED

OPTION 2
OPIION 0

FIGURE 16

3	```LUNAR MODEL, SOLVE FOR LIST -. LO I, II, III (LOW INCLINATION)```	-	LRC 11/11, SOLVE FOR 10 HARMONICS LRC $7 / 28$ B, UNMODI FIED LRC $7 / 28$ B, SOLVE FOR 10 HARMONICS
*	PERILUNE DATA - ALL MISSIONS	-	ALL INCLUDED
8	DATA ARC LENGTH - ALL MISSIONS SAME AS FLIGHT PROCEDURES	-	APPROXIMATELY 12 HOURS
)	true anomaly at epoch, all mi ssions SAME AS FLI GHT PROCEDURES	-	APPROXIMATELY $\pm 150^{\circ}$
*	STATE VECTOR FORWARDING (WITHIN ARC), AL - USE SAME HARMONICS AS IN SOLU		NS

FIGURE 20

ORIGINATOR:

TITIS:
DATA USED:
NASA LANGIEY RESEARCH CENTIER
IRC 11/11/66
LUNAR ORBIIER I

$$
\begin{aligned}
& J 20=2.07 \mathrm{E}-4 \\
& \sqrt{3}=-0.446 t-4 \\
& 540=-0.209 \mathrm{E}-4
\end{aligned}
$$

C21 $=0.088 \mathrm{E}-4$
$\mathrm{C} 31=0.435 \mathrm{E}-4$
$\mathrm{c} 41=-0.051 \mathrm{E}-4$
$\mathrm{C} 22=0.276 \mathrm{E}-4$
$\mathrm{C} 32=-0.052 \mathrm{E}-4$
$\mathrm{C42}=.0 .028 \mathrm{E}-4$
C33 $=0.0091 \mathrm{E}-4$
C43 $=-0.00475-4$
C4 $4=0.00094 \mathrm{E}-4$

$$
\begin{aligned}
& s 21=-0.411 E-4 \\
& s 31=0.107 E-4 \\
& s 41=-0.102 E-4 \\
& s 22=-0.058 E-4 \\
& s 32=0.0187 E-4 \\
& s 42=-0.083 E-4 \\
& s 33=-0.033 E-4 \\
& s 43=-0.026 E-4 \\
& s 44=0.0017 E-4
\end{aligned}
$$

FIGURE 21

ORIGINATOR:
TIITE:
DATA USED: LUTLAR ORBIIER IV AND Y

$521=-.5515 \mathrm{E}-5$
S31 $=-.1355 \mathrm{E}-4$
$=.6798 \mathrm{E}-$
S61 =.2231E-5
$S 71=.3413 E-5$
$\mathbf{S 2 2}=-.1667 \mathrm{E}-5$
S32 $=.2090$ E -5
S42 $=-.7879 \mathrm{E}-6$
$\mathrm{s} 62=.5328 \mathrm{E}-6$
$\mathbf{S 7 2}=-.9328 \mathrm{x}-6$
$\mathbf{S 3 3}=.3523 \mathrm{E}-6$
$543=-.9379 \mathrm{E}-6$
$\mathbf{S 5 3}=.9193 \mathrm{E}-6$
S63 $=-.1616 \mathrm{E}-6$
ST3 $=-.2469 \mathrm{E}-6$
s54 = . $9155 \mathrm{E}-7$
$\mathbf{s} 64=-.1047 \mathrm{E}-6$
$574=-.1402 \mathrm{E}-7$
$555=.4836 \mathrm{E}-7$
S65 $=-.2166 \mathrm{E}-7$
S75 = . $6343 \mathrm{E}-9$
$\mathbf{S 7 6}=.5396 \mathrm{E}-9$
$\mathbf{S T 7}=.3969 \mathrm{E}-9$

FIGURE 22

value of h is fousd to minimize $\alpha-\beta$

SIIE EIEVATION GEOMEIRY
FIGURE 25

Error Analysis Summary Table One 8igas Surface Location, Kilometers

USE FOR DRAWING AND HANDPRINTING - NO TYPEWRITTEN MATERIAL

		ErTor Analy One 81gas Surfa	ysis Su ace Loca	ummary cation,	Table Kilomete	r		
		Tote	SPACEE- CAMERA CRAFT AXIS ALTITDE TLLT \angle (KM) (DEG)		Telephoto Lens		Wide-Angle Lens	
					$\bar{\square}_{\text {LAT }}$ (KM)	$\nabla_{\text {LONG }}(\mathrm{KM})$	$\bar{V}_{\text {LAT }}(K M)$	V ${ }_{\text {LNG }}(K M)$
I	42		261.2	16.5	. $113-.940$	595-.677	. $680-2.31$.569-1.11
	216	Large attitude maneuver	1454	4.9	$3.95-7.42$	293-3.40	$6.26-44.3$	$3.05-47.3$
	137	Apollo Site	52.5	43.0	. $185-310$. $435-.590$.132-.956	306-1.34
	154	Typical Apollo errors	49.2	5.0	. $178-.224$.114-.131	.143-.405	.121-.238
	175	Apoile Site	48.5	19.4	.190-.325	.150-. 169	.152-.533	.152-.375
II	22	Typtoal Apollo errors	46.0	3.5	.203-.240	. $107-133$. $171-.379$.109-.278
	134	Large attitude maneurar	1450	16.6	6.87-15.9	3.66-5.20	6.60-14.1	3.85-8.4
	162		45.8	69.5	1.02-2.58	.214-.317	.545-3.21	.228-1.24
IEs	37		393	5.1	1.09-1.16	3.72-4.14	1.16-2.22	4.20-6.64
	39		50.1	66.9	. $212-4.44$	\|.781-12.7	.143-.488	. 391-1.60
	41		57.5	17.0	.184-.573	.157-.190	. $5990-.633$.169-. 379
	69	Typical Apollo errors	47.6	7.0	.160-. 193	. $102-122$. $136-.382$	\|.110-. 260
	121	Large attitude maneurer	1461	12.6	6.60-11.6	3.08-4.65	7.40-10.6	3.30-6.43
	140	Apollo Site	46.4	37.6	231-1.14	607-3.45	. $129-519$	323-2.30
IT	6	One attitude maneurer	3508	2.7	8.80-16.4	9.03-177.	$14.2-17.5$	22.0-28.5
	14	Three attitude maneurers	2746	0.3	16.8-22.2	10.4-14.5	16.3-179.	10.8-125.
	22	Pive attitude maneuvers	2979	1.5	21.1-31.8	$14.4-50.3$	28.9-47.0	22.6-57.0
	75	Large attitude maneuver	6125	0.3	$24.0-49.1$	13.1-32.4	26.9	13.5
V	21.	Large attitude maneurer	3343	17.0	3.57-30.1	15.2-80.0	5.55-19.2	18.4-80.3
	22	Large attitude maneuver	5107	10.1	3.92-34.2	23.5-113.	$4.50-14.8$	23.7-29.2
	32	Large attitude maneuver	1395	21.0	1.28-1.97	$7.09-9.50$	$1.24-5.90$	5.28-26.8
	38	Apollo Site; Large att.mar	. 98.0	59.2	432-2.25	2.96-34.4	407-2.64	$1.92-7.24$
	63	Large attitude maneuver	95.9	29.3	$351-435$.293-.580	. $344-.623$.202-1.34
	102	Large attitude maneuver	247.8	34.1	$1.20-4.10$	4.10-6.93	.740-26.6	2.56-35.5
	109	$\begin{aligned} & \text { Apollo site (Typical Apolf } \\ & \text { lo errors); Large att. } \end{aligned}$	97.3	10.1	. $2488-344$	240-.332	232-.541	,222-.552
	130	Large attitude maneuver	233.5	7.1	. $495-.760$.776-.945	.461-1.21	.821-1.59
FIGURE 27								

PISIRIBUTION LIST

NASI-7954

Copies each

Dr: Donald Wise Department
Department of Geology
Franklin Marshall College
Lancaster, Pennsylvania 17604
1
University of Arizona
Tucson, Arizona 85721
Attention: Dr. G. P. Kuiper
Professor E. A. Whitaker
University of California P. O. Box 109
LaJolla, California 92037
USE FOR TYPEWRITTEN MATERIAL ONLY
Attention: Dr. H. C. Urey 1
NASA Scientific and Technical Information Facility P. O. Box 33

College Park, Maryland 2074017

