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ABSTRACT 

Natural vibration frequencies of orthotropic and anisotropic simply 

supported right circular cylinders are predicted using a higher-order 

transverse-shear deformation theory. A comparison of natural vibration 

frequencies predicted by first-order transverse-shear deformation theory and 

the higher-order theory shows that an additional allowance for transverse 

shear deformation has a negligible effect on the lowest predicted natural 

vibration frequencies of laminated cylinders but significantly reduces the 

higher natural vibration frequencies. A parametric study of the effects of 

p l y  orientation on the natural vibration frequencies of laminated cylinders 

indicates that while stacking sequence affects natural vibration 

frequencies, cylinder geometry is more important in accurately predicting 

transverse-shear deformation effects. Interaction curves for cylinders 

subjected to axial compressive loadings and low natural vibration 

frequencies indicate that transverse shearing effects are less important in 

predicting low natural vibration frequencies than in predicting axial 

compressive buckling loads. The effects of anisotropy are more important 

than the effects of transverse shear deformation for most strongly 

anisotropic laminated cylinders in predicting natural vibration frequencies. 

However, transverse-shear deformation effects are important in predicting 

high natural vibration frequencies of thick-walled laminated cylinders. 

Neglecting either anisotropic effects or transverse-shear deformation 

effects leads to non-conservative errors in predicted natural vibration 
4 

frequencies. 
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INTRODUCTION 

Laminated composite materials have high strength-to-weight and 

stiff-ness-to-weight ratios that make them useful for building light-weight 

structural components. However, composite materials also have low 

transverse shear moduli which permit more transverse shearing to occur in 

composites than in metals. As a result, composite cylinders can have lower 

natural vibration frequencies than predicted by conventional first-order 

transverse-shear-deformation shell theory. Since laminated composites are 

increasingly being used as structural components, the effects of transverse 

shear deformation should be taken into account in designing laminated 

components to assure that the natural vibration frequencies of these 

structures are evaluated accurately. An extensive survey of shell vibration 

work up to 1973 is presented in reference 1. In reference 1, transverse 

shear deformation and orthotropy are discussed but anisotropy is only 

briefly mentioned. 

composite cylinders (e.g., ref. 2 - 5 ) ,  but few studies account for both 

transverse shear deformation and anisotropic effects. 

Some work has been done in the area of vibration of 

For laminated cylinders, the effects of transverse shear deformation on 

low natural vibration frequencies with long wavelengths are small and 

conventional first-order transverse-shear deformation theory accurately 

predicts the lowest frequencies. For higher frequencies with short 

wavelengths, transverse-shear deformation effects can become important and 

predictions based on the first-order theory are not always accurate. 

order transverse-shear deformation theory takes into account some of the 

effects of transverse shearing and predicts accurate natural vibration 

frequencies for low frequencies, but this theory is insufficient to account 

First- 
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for the amount of transverse shearing in some thick-walled laminated 

cylinders vibrating at high frequencies. 

Predictions of natural vibration frequencies are found by using a 

procedure similar to that used to find critical buckling loads. In the 

theory developed in references 6 and 7 for predicting buckling loads of 

shells, the three-dimensional equations of elasticity are reduced to two 

dimensions by assuming trigonometric functions in the thickness direction 

for strains and displacements in addition to the constant and linear terms 

more commonly used. The assumed displacements and stresses can be reduced 

to those of the first-order transverse-shear deformation shell theory by 

removing the through-the-thickness trigonometric terms. 

procedure is applied to the equations of elasticity to obtain differential 

equations using the potential energy method. 

terms are used in reference 6 so the variational procedure yields nine 

simultaneous second-order differential equations. These resulting 

differential equations are left in terms of integrals in the axial and 

radial directions and are functions of stresses and derivatives of stresses. 

These differential equations are solved to find numerical values of buckling 

loads in reference 8 .  

A variational 

Nine assumed displacement 

In the present paper the natural vibration frequencies of orthotropic 

and anisotropic simply supported right circular cylinders are predicted 

using a theory which takes into account higher-order transverse-shear 

deformation effects. The equilibrium equations presented in reference 8 are 

solved to find natural vibration frequencies instead of critical buckling 

loads. 

vibration frequencies of several types of cylinders. 

The eigenvalue problem is solved numerically to obtain the natural 

A comparison is made 
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between results based on first-order transverse-shear deformation theory and 

the  higher-order theory. 

Ply orientation can affect the reduction in natural vibration 

frequencies due to transverse shear deformation. 

study of ply orientations for two classes of laminates, [+6/90],s and [ + 6 I s ,  

Results of a parametric 

0 are presented for values of 6 ranging from 0 to 90'. The interaction of 

critical axial compressive loads and natural vibration frequencies for 

laminated cylinders of orthotropic and anisotropic stacking sequences is 

also presented. 

ANALYSIS APPROACH 

The results presented in this paper are obtained by applying the theory 

presented in references 6-8. 

method is used to obtain equations for the buckling of right circular 

cylinders using a coordinate system with axes (x, 6 ,  z ) ,  displacements 

(u, v, w), and cylinder dimensions (L, R, t) as shown in the sketch. 

In these references the potential energy 
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Vibration of OrthotroDic Cylinders 

The cylinder displacements assumed in this study to represent the 

higher-order thickness effects o f  transverse shear deformation in 

orthotropic cylinders are shown in equations (1). 

0 a u = u + u (z/t> + u1 sin(rz/t) 

v = v + v (z/t> + v1 sin(rz/t> 

w = w + w (z/t) + wl cos(rz/t) 

0 a 

0 a 

The series in equations (1) have three types of terms, all of which are 

functions of x and 0 .  The traditional terms from classical Kirchhoff- 

Love theory (those independent of position in the radial direction) are 

represented by superscript 0. The displacements of classical Kirchhoff- 

Love theory can be obtained by neglecting the superscript 1 terms and the 

a a 0 a 0 w term and by assuming that u = -w and that v = -w in equations 
' X  *Y 

(1). The additional terms associated with conventional Reissner-Mindlin 

first-order transverse-shear deformation theory (those linear in z )  are 

represented by superscript a. The displacements of  conventional Reissner- 

Mindlin first-order transverse-shear deformation theory can be obtained by 

neglecting the superscript 1 and the wa terms. The assumed displacement 

series also includes trigonometric terms in the through-the-thickness 

(radial) direction, which are represented by the terms with superscript 1. 

By including these additional terms in the assumed displacement series, a 

more accurate solution can be obtained because more three-dimensional 
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effects are permitted than in the solutions with fewer assumed displacement 

1 ci-in:; . 

Differential equations and boundary conditions for predicting the 

buckling loads of right circular cylinders are developed in reference 8 by 

using the potential energy method. 

predicting buckling loads is used in this paper to predict natural vibration 

frequencies. The virtual work of the cylinder is shown in equation (2). 

The method used in reference 8 for 

( (7  6 E  + u 6 E  + u 6 E  -t s x  0 6  z z  sn = J 
Vol 

- p W *  ( U ~ U  + V ~ V  + W ~ W )  ) d V O ~  xz6’xz + rzQ6yz0 + r  
‘ X e 6  Yxe 

xt ‘ e ’  U U 7 r and r are the stresses, E 
B Z  

where u 
Yj e ’  x0’  X Z ~  

are the strains, p is the density, and w is yez and z’ ’x6’ ‘xz’ E 

the natural vibration frequency of the cylinder. 

The differential equations used to derive equilibrium equations based 

on the displacements in equations (1) are presented in references 6 - 8 .  

The differential equations in references 6-8, modified to account for 

vibration frequencies instead of compressive buckling loads, are presented 

in equations (3). Since there are nine assumed displacement terms, there 

are nine differential equations. 
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p L w 2 / 2  w]6wodz = 0 Bz’8 7 u e  
x z ’ x  + R - [ - R + 7  

c c 

‘ X e v  z xz z a  + -  ) t - t - p L w 2 / 2  u - 1 6 ~  dz = 0 R t [ 

7 7 
Z ez 8 2  z Z a - p L w 2 / 2  v f] SV dz = 0 8 ’ 8  U 

(R + 7x8’x) t - - + - t R f  

7 
Xe’B R Z  R RZ + -) sin (--> - rXz cos (-) - 

[ (axjx R t t J -t/2 

( 3 )  

RZ 1 p L w 2 / 2  u sin (-) ]6u dz = 0 t 

1 
- p L o 2 / 2  v sin (E )  ] 6v dz = 0 t 

B Z ’ 8  ) cos (-) RZ + R - u sin (-) RZ 
7 

+ -  u e  [ ( -  - + 7 
R xz’x R t t z  t 

RZ 1 
t - p L w 2 / 2  w C O S  (-) ] SW dz = 0 

0 a 1 where Su , Su , Su , . . .  are the displacement variations. The 

equilibrium equations for the cylinder are obtained from equations ( 3 )  by 

integrating by parts. 

The differential equations represented by the arguments of equations 

( 3 )  can be reduced to linear equations containing only the displacements and 

natural vibration frequencies as unknowns by using the following stress- 

strain and strain-displacement relations as derived in references 6 and 9 

(and neglecting all nonlinear terms). 

7 



a 
W l7T T Z  

E = -  - w - sin (-) z t  t t 

a 
U 7 f 1  7TZ 

- - - + - u cos (-) + w,x yxz t t t 

1 V 7 7 1  7TZ - - - + - v cos (-) + - (w, - v) 
a 

Y O Z  t t t R B  

where ICij ] is the orthotropic material stiffness matrix. 

The dependence o f  the displacements on the axial and circumferencial 

coordinates can be expressed in the form: 

- 0  -a -1 u = [u + u (z/t) + u sin(.rrz/t)] cos(mTx/L) sin(n0) 

v = [v + v (z/t> + V’ sin(nz/t>l sin(mrx/L) cos(n0) 

w = [w + w (z/t) + w cos(nz/t)] sin(mTx/L) sin(n0) 

- 0  -a 

- 0  -a -1 

(5) 

where the superscripted terms are constants (independent of position). The 

cylinder displacement pattern is assumed to consist of m half waves in the 

longitudinal direction and n full waves in the circumferencial direction. 

Simple support boundary conditions w = w, = v = u, = 0 are assumed. xx X 

Substituting equations ( 4 )  and (5) into equations ( 3 )  and integrating 

in the radial direction gives the following equations: 
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-0 2 -1 0 au + pGO + *io + -* w = pLw2/2 u 
A 

- 0 - I  2 -1 0 P;" + A G O  + ICW - + 2<v + - n w = pLw2/2 v 
A 

-0 mA - a  2 m ~  -1 -1 2 -1 $Go + tcv + qwo + Gxz - u + 5nGa + G~~ - u + 2n5v + - q  w 
A 

= pLw2/2 (wO+ "I ?) 
A 

m7r -0 a xz - a  + p ;a + * ;a a 2 -1 
+ (7 + Gxz f>U - w  +(T2+-)u Gxz L t 

G 

12 
A 

12 

- <Go + en;' + J!- ;a + [A/12 + Gzo/t]Ga + w -a + p i 1  + 

2 -1 2n- 1 V [A/n2 + G ] v + 5-w = pLw2/2 (E + 2 3 )  E: zo A 

12 12 
a 1 

933) -a II, -1 n -1 */12 u + - v + (12 + - w + -2 u + 2 v = pLw2/2 wa/12 ( 6 )  
- a  n -a tl 

t 
A A 

12 

4 -a 1 A2 -1 (-1) u + p/A2 + - w + -(a + G -) u Gxz w + (--+ Gxz 
2 m ~  -0 a 2~ -a 

2 2 xz t A 
2 

A 

mA -0 a 1 
U 

2 1 -1 
w = ph2/2 ( 2 > + T )  + $3 v + Gxz 

2 -0 2 -0 2 -0 2m -a 2n -a mr2 -1 nA -1 
7r - < u  + - t c v  A + - q w  A + Gxz u + <TV + Gxz 2L u + T < V  + 

2 2 where a =[C (mA/L) + Gxo(n/R) ] t 11 

P =(C12 + Gxo ) m n A t /(R L) 

$ = - C  12 m t A /(R L) 
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2 2 
A =[C 22 (n/R) + Gxo(mn/L) + Gzd/R2] t 

K. -(C22 + Gxo ) ( n / R )  t 

=G /R  
20 

and Gox are properties of the cylinder c12. c22' Gxd' Gxzt and C l l ,  

wall. 

Natural vibration frequencies can be found by reducing equations ( 6 )  

to matrix form as shown in equation (7). 

- 0  
U 
-0 
V 

- 0  
W 

-a 

-a 

-a 

-1 

-1 

-1 

U 

V 

W 

U 

V 

W 

- - u2 [ B ]  

-0 
U 
-0 
V 

-0 
W 1 Ga 
-a 

-a 

V 

I :1 U 
-1 

-1 
V 

W 

I 

(7 )  

The matrix [K] contains the coefficients of the displacement terms on the 

l e f t  hand side of equations ( 6 )  and the matrix [B] contains the 

coefficients of the displacement terms associated with the natural vibration 

frequency on the right hand side of equations (6). The values of u2 which 

are solutions to the eigenvalue problem in equation (7) are the squares of 

the natural vibration frequencies. 
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If the natural vibration frequencies of a cylinder subjected to axial 

compressi.on a r e  to he found. a value for the applied compressive I.oad must 

he selected and included in the matrix [K] as discussed in reference 8. 

Vibration of Anisotrovic Cylinders 

The formulation of the eigenvalue problem for anisotropic cylinders is 

similar to the formulation o f  the eigenvalue problem for orthotropic 

cylinders. The same equilibrium and strain-displacement equations are used 

in the analysis of the anisotropic cylinders as in the analysis of the 

orthotropic cylinders, as shown in equations (2-4). The stress-strain 

equations are altered to include the anisotropic effects which are 

represented by the and C26 terms in equations (8). ‘16 

267xe u = C12 Ex + c22 E e  + c e 

The displacements used in the anisotropic analysis are similar to those 

given in equations ( 5 ) ,  but the series are expanded to include the sum of 

several values of m while retaining only one value of n. Several values 

of m are included to account for displacements in the axial direction 

which are not in the shape o f  a pure sine wave. Two Fourier series in the 

axial direction are used to represent the displacements in the radial 

direction. One series includes symmetric modes and one series includes 

antisymmetric modes. Each series is truncated when enough terms have been 
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included to reach convergence. Similar assumptions are made for the 

displacement series in the axial and circumferencial directions. The 

assumed displacements for an anisotropic cylinder are given in equations ( 9 )  

where a total of  N terms are included in each displacement. 

The same procedure for reducing the differential equations of 

equilibrium to linear equations used for the analysis of the orthotropic 

cylinders is used for the analysis of the anisotropic cylinders. The same 

boundary conditions assumed for the orthotropic analysis are assumed for the 

anisotropic analysis. There are nine equations and nine unknown 

displacements for each value of m for the displacements represented by 

equations (9). The matrix [ K I A  contains all the orthotropic terms in [K] 

-0 -a N 
[ui + u (z/t> + i1 sin(.rrz/t>l cos(m..rrx/~) sin(n8) i=F , 3  , 5  i i 1 

u =  

-0 -a -1 N 
+ C [uj + u (z/t) + u sin(~z/t)] cos(m.nx/L) cos(n8) 

j=2,4,6 j j J 

- 0  -a -1 N 
[vi + v (z/t) + v sin(rz/t)] sin(m..rrx/L) cos(n8) i=F, 3 , 5  i i 1 

v =  

-0 -a - 1  N 
+ z [vj + v (z/t) + v s in( . r rz / t ) ]  sin(m.nx/L) sin(n0) ( 9 )  

j=2,4,6 j j J 

-0 -a -1 N 
[wi + w (z/t) + wi sin(~z/t)] sin(m.nx/L) sin(n8) i=F, 3 , 5  i 1 

w =  

-0 -a N 
+ [wj + w (z/t> + W’ sin(nz/t)l sin(m.nx/L) cos(n8) 

j=2,4,6 j j J 

e 

for several axial wavelengths (mode shapes) and the anisotropic terms which 
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a 

result from the combination of wavelengths. Similarly, the matrix [ B I A  

contains all the terms found in [ B ]  for several wavelengths. There is no 

anisotropic contribution to [B] because of orthogonality. Therefore, for 5 

values of m, N=5 in equations ( 9 )  and the matricies [ K I A  and [ B I A  have 

dimensions 45 by 45. The eigenvalue problem whose solutions are the square 

of the natural vibration frequencies of an anisotropic cylinder is shown in 

A 

equation (10) 

- ct 

u1 
- 0 
V 1 

1 
- 0 
W 

- i. 
I u1 

-a 
N W 

4 
-1 

N 
-1 
N 

V 

W 

- 0  

u1 

v1 

w1 

-0 

-0 

1 ;I 

I ,. N 
-1 
N 
-1 
N 

-1 
N 

U 

V 

W 

The nurnuer U L  wavelengths 

to obtain accurate frequencies 

of the cylinder. Including an 

w t i L c i i  LICGUS L; be ikluded in equations (10) 

is dependent on the geometry and properties 

infinite number of wavelengths would give the 

most accurate solution. Approximate solutions are obtained by using a 

limited number of wavelengths. The more wavelengths used, the more accurate 

are the frequencies, but as each additional wavelength is added, the 

difference between frequencies predicted by equation (10) with N and with 

N + 1  wavelengths decreases until the predicted load has converged to the 
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same frequency as predicted by an infinite number of wavelengths. The 

natural vibration frequency for an axially loaded cylinder is found in the 

same way a s  f.or the orthotropic cylinder. 

RESULTS AND DISCUSSION 

Natural vibration frequencies of laminated cylinders are determined 

from the conventional first-order transverse-shear deformation theory and 

the present higher-order transverse-shear deformation theory. 

are assumed to be simply supported and without any initial geometric 

The cylinders 

imperfections. 

Natural Vibration Frequencies of Orthotropic Cylinders 

Natural vibration frequencies predicted by the convent-mal first-order 

transverse-shear deformation theory are compared to frequencies predicted by 

the present higher-order theory for cylinders of laminates [ ?45 /90 ]  and 4s  

[?45] in figure 1. Several radius-to-thickness ratios, R/t, and length- 6 s  

to-radius ratios, L/R are included for each laminate. Vibration 

frequencies predicted by the first-order theory are represented by the solid 

curves and those predicted by the higher-order theory are represented by the 

dashed curves. Frequencies for circumferencial wave numbers n=l through 10 

are presented for three cylinder geometries. The natural frequencies are 

expressed in terms of a nondimensional parameter, = uJT, based on the 
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of the material and the radius, R, and 
Et' density, p ,  and stiffness, 

i ~ t t r i r a  I 1 rcciwncy , w ,  of the cylinder. 

The in-plane material properties of Hercules Incorporated AS4-3502 

graphite-epoxy unidirectional preimpregnated tape are assumed for the study 

(i.e., E /E = 11.3, G /E =.53). The transverse properties assumed for the 1 t  It t 

study are based on references 10 and 11 and are Glz/Glt= l., GtZ/EZ - 1. 

and Gtz/Glt = . 5 7 ,  (where 1, t, and z represent the longitudinal, 

transverse and through-the-thickness directions of a 0-degree unidirectional 

laminate, respectively). In laminate definitions stacking sequences are 

defined such that each lamina of a given cylinder is of the same thickness 

(i.e., t # .005 etc.). Calculations are based on the radius, length and 
PlY 

total thickness of each cylinder. 

Including anisotropic effects in the analysis of the [ +45 /90 ]4s  and 

the [+45] laminated cylinders has no effect on the natural vibration 6 s  

frequencies. These laminates are mildly anisotropic and can be considered 

to be orthotropic. For cylinders of both laminates and with R/t-100 and 

L/R=10, the first-order theory accounts for all effects of transverse 

shearing which are predicted by the higher-order theory. The solid and 

dashed curves are identical. For the cylinder geometries with R/t-10 and 

L/R=10 and with R/t=5 and L/R=2, the first-order theory does not account 

for all effects of transverse shearing which are predicted by the higher- 

order theory. The difference between the predictions of the two theories 

can be seen for the higher wave numbers. The larger the wave number, the 

more significant is the reduction in vibration frequency due to transverse 

shearing 
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Natural Vibration Frequencies of Anisotropic Cvlinders 

A i ~ i , , o l  r c ~ i i y  C , I I I  1i;ivt. , I  * , i y , n i  f i c n r l t  c f  f c c t  O I I  t l i c  naturcll \ribration 

frequencies of laminated cylinders. In the study of natural vibration 

frequencies which follows, only the effects of the material properties and 

cylinder geometries are examined. 

Vibration frequencies for three cylinder geometries with two stacking 

sequences of unsymmetrically laminated cylinders, [9O/45lT and [45/9OlT, are 

shown in figure 2. The results are presented for predictions based on the 

first-order and higher-order theories by assuming that anisotropic effects 

are neglected (the curves labeled "orthotropic") and by assuming that 

anisotropic effects are included (the curves labeled "anisotropicft). As in 

figure 1, the same frequencies are predicted by the first- and higher-order 

theories for the thin-walled cylinder, with R/t=100 and L/R=10. However, 

there is a reduction in the predicted frequencies due to anisotropic 

effects. For these laminates the effect of anisotropy on the natural 

vibration frequencies is more significant than the effect of  transverse 

shear deformation. Similar effects are shown for the thicker-walled 

cylinders. The first- and higher-order theories predict almost the same 

natural vibration frequencies for low wave numbers but not for higher wave 

numbers. Both transverse shear deformation and anisotropic effects reduce 

the predicted natural vibration frequencies. The difference between the two 

solid lines is the difference between the orthotropic prediction and the 

anisotropic prediction for the first-order theory. The difference between 

the two dashed lines is the difference between the orthotropic prediction 

and the anisotropic prediction for the higher-order theory. The difference 
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between the higher solid and higher dashed lines is the difference between 

the orthotropic prediction of first- and higher-order theories. The 

difference between the lower solid and lower dashed lines is the difference 

between the anisotropic prediction of first- and higher-order theories. For 

each cylinder geometry the difference between the two solid lines or the two 

dashed lines is larger than the difference between the higher dashed and 

solid lines or the lower dashed and solid lines. There is little dependence 

of the natural frequencies on the details of ply orientation, the laminate 

with the 90' ply on the outside and the 45' ply on the inside of the 

cylinder has almost the same natural vibration frequencies as the cylinder 

with the plies reversed. 

The natural vibration frequencies for three cylinder geometries with 

For the thin-walled cylinder and [+45Is laminates are shown in figure 3 .  

the moderately thick-walled cylinder, the effects of anisotropy are more 

significant than the effects of transverse shearing. For the thickest- 

walled cylinder, the effects of transverse shearing are more significant 

than the effects of anisotropy. 

both anisotropy and transverse shearing become more important as the 

circumferencial wave number increases. 

For all three geometries, the effects of 

Effect of Stackinp: - Seauence on Natural Vibration Frequencies 

Results of parametric studies of the effects of stacking sequence on 

the natural vibration frequencies for cylinders with [te/90]4s and [ke] 
S 

laminates are shown in figures 4 and 5, respectively. The same 

nondimensional parameter used to express the natural vibration frequency in 

17 



figures 1 - 3  is used in figures 4 and 5. The dependence of the natural 

0 frequency on the value of 0 ranging from 0 to 90' is shown for three 

cylinder geometries. Natural frequencies for two wave numbers, the one 

producing the lowest natural vibration frequency (generally n=l or n-2) and 

n=10, are shown for the first-order and the higher-order transverse-shear 

deformation theories. 

For the thin-walled cylinders, the effect of transverse-shear 

deformation is negligible for both wave numbers shown in figures 4 and 5. 

However, transverse shearing does decrease the natural vibration frequencies 

in the thicker-walled cylinders. The most significant difference in natural 

vibration frequency between the first-order theory and the higher-order 

theory is when n=10 and R/t=5. For the thick-walled cylinders vibrating 

at high frequencies, the additional effects of transverse shearing predicted 

by the higher-order theory lead to predictions of natural vibration 

frequencies which are 10 percent lower than predictions based on the first- 

order theory for both types of laminates. 

The effects of anisotropy decrease natural vibration frequencies by as 

much as the effects of transverse shearing in strongly anisotropic 

laminates. Anisotropic effects are most significant for the higher 

frequencies with 3 5 O  < 8 < 55'. 

Natural Vibration Frequencies o f  Cylinders Subiected to Axial ComDression 

Natural vibration frequencies of laminated cylinders subjected to axial 

compressive loads are shown in figures 6 - 8 .  

interaction of axial compressive loads and natural vibration frequencies 

The solid lines represent the 
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based on the first-order theory. The dashed lines represent the interaction 

based on the higher-order theory. The frequencies are expressed as a 

function of applied axial compressive load for cylinders with laminates 

[+45/90]4s in figure 6 and [+45Is in figure 7 for low wave numbers and with 

[?45/90]4s in figure 8 for high wave numbers. The results are expressed in 

nondimensional parameters based on the frequency when no load is applied and 

the axial compressive buckling load when the cylinder is not vibrating. 

The effects of transverse shearing on the natural vibration frequency 

are very small for low wave numbers for all three cylinders shown. The 

effects of transverse shearing on the axial compressive buckling load is 

significant in the case of the very thick-walled cylinder but not in the 

other cases studied. The frequencies and loads are shown for two wave 

numbers in figure 6 .  

Anisotropic effects are more significant than transverse-shearing 

effects for the lower vibration frequencies of the strongly anisotropic 

laminate, [+45] for both an applied axial compressive load and for a 
S ’  

vibration frequency. However, the effects of anisotropy are more important 

in predicting the axial compressive buckling load. The difference in 

buckling loads predicted by including anisotropic effects and by neglecting 

them is about 15 percent while the difference in the lowest natural 

vibration frequencies predicted by including anisotropic effects and by 

neglecting them is only about 5 percent. The effect of accounting for 

transverse shearing which is neglected by the first-order theory is to 

reduce the buckling load by less than 5 percent and the frequency by less 

than 3 percent. 
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The interaction curves for wave number n=10 of two [ + 4 5 / 9 0 ] 4 s  

laminated cylinders are shown in figure 8 .  

walled (R/t=100) and the second cylinder is thick walled (R/t=lO). Almost 

no difference can be seen in the predictions based on the first- and higher- 

order theories for the thin-walled cylinder. Anisotropic effects do not 

affect the vibration frequency when little axial compressive load is 

applied, but they become important when the axial compressive load 

approaches the critical buckling load of the cylinder. 

compression is applied, neglecting anisotropic effects leads to a predicted 

buckling load which is about 7 percent higher than the predicted buckling 

load found by including anisotropic effects. 

The first cylinder is thin 

When only axial 

There is a significant difference between the predictions based on the 

first- and higher-order theories for the thick-walled cylinder. Transverse- 

shear deformation effects reduce the predicted natural vibration frequency 

by about 7 percent and the predicted buckling load by about 7 percent. 

Anisotropic effects do not affect the vibration frequency when little axial 

compressive load is applied. Neglecting them leads to a predicted buckling 

load which is about 4 percent higher than predicted buckling loads found by 

including them when only an axial compressive load is applied. 

interaction curves of both cylinders have a constant frequency ratio for 

axial compressive loads less than 40 percent of the critical buckling load. 

For the higher wave number, n=10, the minimum eigenvalue is found when the 

axial wave number m is equal to one when the frequency ratio is greater 

than . 9  . The minimum eigenvalue is found at m=l when the axial 

compression ratio is less than . 3  for the thin-walled cylinders and less 

than . 6 6  for the thick-walled cylinders. When the axial compression ratio 

The 
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is greater than .85, the axial wave number is constant for a given cylinder. 

For the thin-walled cylinder that constant wave number is ~ 2 4 .  For the 

thick-walled cylinder it is m=38. The curved section of each interaction 

curve is the transition range when the axial compression ratio is below . 8 5  

for thin- and thick-walled cylinders and is above . 3  for the thin-walled 

cylinders and above . 6 6  for the thick-walled cylinders. 

Natural Vibration Freauencies in Accoustic Range 

Natural vibration frequencies can be of concern when evaluating noise 

transmission characteristics of composite plates and shells (ref. 12). The 

frequency range of most concern is between 100 Hz and 10 kHz. All the 

frequencies shown on figure 1 for the thin-walled shell (R/t-100) are within 

this frequency range except for the minimum frequency for n-2. The 

frequencies for 11-1-3 are in the accoustic range for the thick-walled 

shell (R/t-10) but none of the frequencies shown in figure 1 are in this 

range for the very thick-walled shell (R/t-5). 

In comparing graphite-epoxy and aluminum panels designed to carry the 

same load, the graphite-epoxy panels are usually lighter and have higher 

fundamental vibration frequencies. Studies (e.g., ref. 12) indicate that 

composite panels have higher transmission loss than aluminum panels at or 

below the fundamental vibration frequency of the comparable aluminum panel. 

For frequencies above the fundamental vibration frequency of the aluminum 

panel, the aluminum panels have higher transmission loss because of their 

higher weight. Since higher transmission loss is desirable, composite 

panels may be useful for suppressing low frequency noise transmission 

problems. 

2 1  



CONCLUDING REMARKS 

An analytical study of the effects of transverse shear deformation and 

anisotropy on the natural vibration frequencies of orthotropic and 

anisotropic laminated cylinders was conducted. The effects on natural 

vibration frequencies of adding higher-order terms in the form of 

trigonometric terms through-the-thickness to the displacement series of 

conventional first-order transverse-shear deformation shell theories were 

studied. Natural vibration frequencies predicted by the first-order 

transverse-shear deformation theory and the higher-order theory were 

compared to determine which cylinder geometries and laminate stacking 

sequences have a reduction in natural vibration frequencies due to 

transverse shearing. A parametric study o f  natural vibration frequencies of 

cylinders with [+6/90Ins and [%Ins laminates was conducted to determine 

which laminates are most sensitive to transverse-shear deformation effects. 

Anisotropic effects were studied by comparing natural vibration frequencies 

predicted by the first-order transverse-shear deformation theory and by the 

higher-order theory with anisotropic material properties neglected and with 

anisotropic material properties included. The interaction of axial 

compression and natural vibration frequencies was also studied. Natural 

vibration frequencies were evaluated for cylinders subjected to axial 

compressive loadings up to the critical buckling load of the cylinder with 

no vibration. 

Transverse shear deformation and anisotropy have the largest effect on 

natural vibration frequencies in cylinders which are moderately-thick- 

(e.g., R/t=lO) or thick-walled (e.g., R/t=5) and for higher vibration 
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frequencies. In thin-walled cylinders no effects of transverse shear 

deformation are predicted by the higher-order theory which are not predicted 

by the first-order theory. For moderately-thick- and thick-walled 

cylinders, the effects of transverse shear deformation on the natural 

vibration frequencies are significant for higher wave numbers. 

has a significant effect on higher vibration frequencies of strongly 

anisotropic laminated cylinders, such as those with a 

Anisotropy 

[+45Is wall laminate. 

Results of parametric studies of cylinders with [+e/90]4s and [It01 
S 

laminates indicate that first-order theory is accurate at predicting natural 

vibration frequencies for low wave numbers for all values of 0 from Oo to 

90'. 

by the higher-order theory are slightly below those predicted by the first- 

For higher wave numbers, the natural vibration frequencies predicted 

order theory for 0 near 90' but are significantly below those predicted by 

the first-order theory for 

Anisotropic effects are also most significant for the higher frequencies 

0 near 45' for the thicker-walled cylinders. 

when 8 is near 45'. The anisotropic effects are negligible for all values 

of 0 not between about 35' and 55' for both types of stacking sequences. 

Transverse shearing has a significant effect on the axial compressive 

The higher-order theory predicts buckling load of thick-walled cylinders. 

buckling loads which are as low as 65% of those predicted by the first-order 

theory for some thick-walled cylinders. Transverse shear deformation does 

not affect the natural vibration frequencies as strongly as it affects the 

axial compressive buckling load. The natural vibration frequencies of 

laminated cylinders subjected to axial compressive loads indicate that the 

natural vibration frequency is reduced only when the compressive load 
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approaches the critical buckling load of the cylinder which is not 

vibrating. The significance of the applied compressive load on the 

vibration frequencies is dependent upon t h e  laminate, the cylinder geometry 

and the wave number. For higher frequencies an axial compressive buckling 

load is not significantly affected by the applied vibration unless the 

frequency is within 20% of the natural frequency of the unloaded cylinder. 

For lower frequencies the buckling load may be affected significantly when 

the applied vibration is much less than 20% of the natural vibration 

frequency of the unloaded cylinder. 
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