Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity

S. M. Opalka, X. Tang, D. A. Mosher, B. L. Laube, R. J. Brown F.-J. Wu P. A. Berseth United Technologies Research Center J. Strickler D. L. Anton Albemarle R. Zidan Corporation Savannah River National Laboratory W. Huang **B. C. Hauback** C. Qiu **DOE Hydrogen Program** H. W. Brinks G. B. Olson O. M. Løvvik Annual Peer Review Arlington, VA QuesTek, LLC/ Institute for Energy

Northwestern U.

Project ID ST13

This presentation does not contain any proprietary, confidential, or otherwise restricted information

May 16, 2007

Kjeller, Norway

Overview

Timeline

- 11/30/02 Start
- 8/31/07 End
- 95% Complete

Budget

- \$2.9M Total Program
 - = \$2.1M DOE
 - \$0.8M UTC & Alb.
- \$0.59M DOE FY06
- \$0.38M DOE FY07

Barriers/Targets Addressed

- System Gravimetric Capacity: 1.5 kWh/kg
- System Volumetric Capacity: 1.2 kWh/L
- Discharging Rate: 0.02 g/s/kW

Partners

- Albemarle Corporation
- Savannah River National Laboratory
- Institute For Energy Norway
- QuesTek, LLC

Objectives

Overall

• Develop new complex hydride compounds capable of reversibly storing H_2 with capacities ≥ 7.5 wt % to meet DOE system gravimetric goals.

Assess potential volumetric capacity of new materials.

2006 - 2007

 Deploy integrated methods to design and optimize high H₂ capacity mixed metal borohydrides with and without ligand stablization.

Approach

Task Phase	First Principles Modeling	Solid- State Processing	Solution- Based Processing	Molten- State Processing	Thermo- dynamic Modeling
2004	Implement	Search	Establish		
Known	finite T	encompass	thermo.		
Alanates	predictions.	Validate atom	databases.		
2005	Predict	Search out	Implement		
Novel	candidate	alkaline earth	reaction		
Alanates	properties.	Characterize	design.		
2006 Novel Boro- hydrides	Refine phase structure & thermo. predictions.	Synthesize high capacity borohydrides containing alkaline earths, transition metals and/or stabilized with ligands.			Design high capacity reactions.
2007 Final	Probe rx.	Down-select best system and synthesis method. Optimize reversibility and kinetics.			Design
Phase	mechanisms.				reversibility.

Iterative design and synthesis of high H₂ capacity systems.

Program Scope

System	Compositions	Method
Alanates	Na-Li-Al-H	FPM, SSP, MSP
	Na-Tm-Al-H	FPM, SSP, SBP, MSP
	Li-Tm-Al-H	FPM, SSP, SBP, MSP
	Na-Mg-Al-H	FPM, SSP, SBP, MSP
	Li-Mg-Al-H	FPM, SSP, SBP
	Li-Na-Mg-(Ti,V,Cr,Mn,Ni,Co,Fe)-H	SSP, MSP
Borohydrides	Tm-B-H w/ ligands & coreactants	SBP
	Mg-B-H w/ & w/o ligands or coreactants	FPM, SSP, SBP, MSP
	Ak-Tm-B-H w/ & w/o ligands	FPM, SSP, SBP

UTRC/FPM – First Principles Modeling, UTRC/SSP – Solid State Processing, Albemarle/SBP – Solution-Based Processing, SRNL/MSP – Molten State Processing, Ak = alkali, Tm = transition metal

Broad range of compositions surveyed and approaches used. Ak-Tm-B-H systems are the most promising.

Characterization Methods

2.E-09 1.E-09 0.E+00 0 100 200 300 400 500 600 Temperature(°C) Desorption temperature & species

Η,

TGA-MS

No co-reactant

5.E-09

4.E-09

3.E-09

on count /mg

(TGA)-MS 10°C/min

Crystalline structure & phase

DRIFTS

Amorphous & crystalline bond identification

United Technologies Research Center

PCI / Sievert's

potential

ND - IFE

Crystal / hydrogen structure

New Borohydrides – 6/2006 to Date

Ligand-Stabilized Mg(BH_{4})₂:

- SBP Mg(BH₄)₂*2NH₃ with up to **16 wt% H**₂ capacity. SSP Mg(BH₄)₂*3THF complexes also synthesized.
- Ligand complexation alters decomposition mechanism and significantly lowers dehydrogenation onset T.
- Varying complex stability observed by experiment and predicted by FPM.

Ak-Tm-B-H (Ak = alkali, Tm = transition metal):

- Partially reversible SSP material with up to **11.7 wt% H**₂ capacity.
- Ligand-stabilized SBP complexes with up to 7.3 wt% H₂ capacity.
- Metastable & stable Ak-M-B-H compositions identified by FPM.
- Continuing work with novel additives to improve Ak-Tm-B-H reversibility.

Identified multiple alkali/alkaline earth borohydrides with above target gravimetric capacities; all with issues that need resolution.

🖋 United

$Mg(BH_4)_2$ *2NH₃ System with Up to 9 –16 wt% H₂

Coupled H₂ and ligand desorption reaction mechanisms change with processing conditions and thermal history.

Models Show Evolving Mg(BH₄)₂*2NH₃ Structures

 $Mg(BH_4)_2$ *2NH₃ forms adducts of varying stability, exhibiting a range of decomposition reaction products and enthalpies.

Solid-State Processing of THF-stabilized Mg(BH₄)₂

Synthesis reaction: $MgCl_2 + 2LiBH_4 + 3THF \longrightarrow Mg(BH_4)_2(THF)_3 + 2LiCI$

Identified multiple chemical routes to stabilizing $Mg(BH_4)_2$.

Mg Ligands Are a Route to Low T H₂ Release

 $Mg(BH_4)_2$ complexes release H_2 & ligands starting below 300°C.

New Aprotic Mg(BH₄)₂*Ligand Complex

Two-stage thermal-neutral weight losses.

First stage H₂ discharge starts at 60 °C.

Complexing ligands have a significant impact on decomposition. New ligand eliminates possible irreversible BN formation.

New Quaternary Alkali-Tm-B-H Systems

Tm addition to alkali borohydrides by SSP:

- Some outgas during milling.
 Disappearance of alkali borohydride XRD peaks.
 Mostly amorphous structure.
- •Some new XRD peak formation.

Transition metal addition disorders alkali borohydride structure.

United

Ak-Tm-B-H Have Up to 300°C Lower Discharge T

Multistep reactions significantly lower dehydrogenation onset T's. Only trace B_2H_6/B_3H_9 detected in the outgas.

Partial Ak-Tm-B-H Reversibility

Ak-Tm-B-H have up to ~12 wt.% H_2 capacity. Most active composition recharged 3 wt.% H_2 at 250°C and 195 bar H_2 . Reversibility limited by Tm reduction &/or boride formation.

First Principles Survey of Ak-M-B-H Systems

Stability of M incorporation in quaternary complex hydride phase correlates well with M electronic properties.

Ak-Tm-B-H*Ligand with Up to 7.3 wt% H₂ Endothermic

Fast kinetics, rapid H_2 desorption > 60 °C without catalyst. B_xH_y evolution below detection limit.

Technologies Research Center

United

Ligand-Stabilized Ak-Tm-B-H Partial Reversibility

United Technologies

Summary of Materials Discovery to Date

- 1) Compositional surveys of >9 quaternary systems
- 2) Theoretical methods coupled complex reaction design.
- 3) Synthesis & characterization of high capacity materials with > 7.5 wt% H₂ & up to 0.04 kg H₂/L: LiMg(AIH₄)₃ | Mg-B-H-Ligands | M-B-H-Ligand A &-Ligand B
- 4) Discovery of low T, partially reversible, up to 11.7 wt% H₂ & up to 0.04 kg H₂/L capacity Ak_xTm(BH₄)_y materials.
 * H₂ with only trace B_xH_y from SSP material.
 * Good kinetics for SBP material.
- **5) Identification** of stable and metastable constituents for optimizing quaternary Ak-M-B-H capacity and reversibility.

Lessons Learned

Integration of FPM, syntheses and characterization is a successful paradigm for screening, testing and mechanistic understanding of new materials.

Syntheses often leads FPM in material discovery. Multiple synthesis methods maximize opportunities for material discovery. Unique FPM insights guide and focus experimentation for material design and optimization.

FPM yields greatest value when iteratively coupled with experiments for the:

- Determination of new material structures and properties and
- Investigation of experimentally observed material behavior,

and for surveying hypothetical, lesser known or unstable material properties.

Future Work

- Complete evaluation of hydrogen release mechanisms from Mg(BH₄)₂*ligand complexes.
- Complete optimization of reversibility of Ak-Tm-B-H system.
- Final contract reporting and publications.

Summary Table

Progress Toward Hydrogen Storage System Targets*

Target	Units	2007 <mark>System</mark> Targets	'05 to '06 Best Alanate LiMg(AIH ₄) ₃ / System	'06 to '07 Best Borohydride Mg(BH ₄) ₂ *2NH ₃ / System
Gravimetric	kWh/kg	1.5	2.1 / 1.3	3.0 / 1.8
Capacity	(kg H ₂ /kg)	(0.045)	(0.070 / 0.042)	(0.091 / 0.055)
Volumetric	kWh/L	1.2	0.5 / 0.38 ^{***}	1.5 / 1.1
Capacity	(kg H ₂ /L)	(0.036)	(0.015 / 0.011)	(0.044 / 0.033)
Desorption	g/s/kW	0.02	0.019	0.037
Rate ^{**} & T	°C	(<100)	165	100-300

* For system design with material 60% of system mass & 75% of system volume.
 ** Calculated results based on 5 kg storage for 75 kW fuel cell.

*** LiMg(AIH₄)₃ in as received condition – ball milling could improve densification.

Gravimetric & volumetric targets are feasible, but reversibility is a challenge.