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Abstract—A significant challenge in diagnosing cardiac disease
is determining the viability of myocardial tissue when evaluating
the prognosis of vascular bypass surgery. A finite-element mechan-
ical model of the left ventricular myocardium was developed to
evaluate mechanical properties of the myocardium, which is an
important indicator of viable myocardial tissue and of several as-
pects of congestive heart failure. The model of the heart muscle me-
chanics was derived from the passive and active behavior of skeletal
muscle, which is considered to be a quasi-incompressible trans-
versely isotropic hyperelastic material of a specified helical fiber
structure configuration. Contraction of the myocardium was repli-
cated by simulating active contractions along the helical fibers,
then solving (quasi-statically) for the associated boundary valued
problem at a sequence of time steps between end-diastole and end-
systole of the cardiac cycle. At each time step, the finite-element
software package ABAQUS was used to determine the deformation
of the left ventricle, which was loaded by intraventricular pressure.
An ellipsoidal and a cylindrical model of the left ventricle were de-
veloped under both passive loading and active contraction. Param-
eters that describe the material properties of the myocardium were
estimated for the cylindrical model by fitting the radial motion de-
scribed by the model to gated SPECT and cine MRI data. We found
that the estimation was sensitive to the measurement of the motion.
Results from the finite-element analysis were compared to those
from a purely mathematical description of the cylindrical model.

Index Terms—Cine MRI, finite element, gated cardiac SPECT,
left ventricle mechanical model, myocardial mechanical proper-
ties.

I. INTRODUCTION

I N THE past few decades, numerous mechanical models of
the left ventricle have been developed [1]–[14]. In devel-

oping those models, assumptions were usually made about the
geometry, fiber orientation, and constitutive equations. Then the
boundary valued problem is solved, from which the motion of
the left ventricle can be predicted and compared with actual
data. Utilizing that data, an evaluation can be made about the
accuracy of the original assumptions. The most challenging task
is finding the correct constitutive equation for the myocardium.
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Mechanical properties of the myocardium are an important
indicator of viable myocardial tissue and of congestive heart
failure. In particular, knowing the mechanical properties of the
myocardial tissue can help in determining viable myocardial
tissue when evaluating the prognosis of vascular bypass surgery.
Reliable measurements of the mechanical properties of myocar-
dial tissue are difficult to obtain sinceex vivouniaxial and bi-
axial experiments performed on sections of myocardial tissue
can give measurements of the mechanical properties that are
different from the properties of the intact myocardium. Also, it
has been found that measurements taken using different loading
protocols generally derive different results [3]. Because of these
experimental limitations, various mechanical models of the left
ventricle have been developed to investigate the properties of
the intact myocardium and fiber orientation [15]–[17]. These
mechanical models were used to estimate the mechanical prop-
erties of the myocardium utilizing the measured motion of the
left ventricle.

Here, a finite-element model of the three-dimensional (3-D)
deformation of the left ventricular myocardium is developed and
used to simulate the motion of the midventricle during a car-
diac cycle. A cylindrical geometry is assumed for the midven-
tricular section of the left ventricle in the finite-element anal-
ysis. Though an ellipsoidal model can better predict the correct
twisting, a cylindrical model can provide adequate information
about the radial motion [17]. Overall, a cylindrical model pro-
vides a good approximation of the midventricular section of the
left ventricle and gives a good approximation for the radial mo-
tion of the midventricular section. We will concentrate on that
region in this paper.

The material model of the myocardium is based upon the
local mechanical properties of the myocardium and the geomet-
rical configuration of its helical fiber structure. The constitu-
tive equation defining the myocardium is derived from the pas-
sive and active behavior of skeletal muscle, which is considered
to be a quasi-incompressible transversely isotropic hyperelastic
material [18]. The myocardial muscle and skeletal muscle have
similar ultrastructures: Each cell consists of sarcomeres, con-
taining interdigitating thick myosin filaments and thin actin fil-
aments. The basic mechanism of contraction is similar in both
[19]. However, there are differences. For instance, heart cells act
as a whole (all-or-none response), whereas skeletal muscle has
a graded contraction of different cells. Another difference is the
much larger number of mitochondria and more capillary blood
vessels in myocardial muscle, both the direct result of energy
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needs that require immediate supply of oxygen and substrate for
its metabolic machinery. Mechanically, the most important dif-
ference is the resting tension [19]. Overall, a similar mechanical
model of a quasi-incompressible transversely isotropic hypere-
lastic material can be used. However, the differences between
cardiac and skeletal muscle must be considered.

The contraction of the myocardium is replicated by simu-
lating active contraction along the helical fibers, then solving
(quasi-statically) for the associated boundary value problem at
a sequence of time steps between end-diastole and end-systole
of the cardiac cycle. At each time step, the finite-element soft-
ware package ABAQUS1 is used to determine the deformation
of the left ventricle which is loaded by intraventricular pressure.

First, we define the constitutive properties that are assumed
in our mechanical model of the myocardium. A mathematical
cylindrical model of the midventricular region of the my-
ocardium, based upon the work of Guccioneet al. [17], is then
developed using these constitutive properties. The material
constants for the passive myocardium are estimated from
MRI data using the mathematical model. The finite-element
implementation of the cylindrical model is then presented using
the finite-element software package ABAQUS. A parameter
that describes the extent of the active contraction is estimated
for the contracting left ventricle from both MRI and SPECT
data by using ABAQUS

II. CONSTITUTIVE EQUATION

Here, constitutive equations are presented for a mechanical
model of the left ventricle of the myocardium. It is shown that
the expression for passive loading can be modified to include
active contraction.

A. Passive Loading

An important step in defining a mechanical model of a ma-
terial is the specification of the stress-strain relationship. These
relationships are denoted as the constitutive properties of the
material. For a hyperelastic material, its mechanical property
is uniquely determined by its strain-energy density. From the
strain-energy density, the stress-strain relationship can be cal-
culated.

A nearly incompressible version of Humphrey and Yin’s
model [3] for passive myocardial behavior is proposed. Based
on histological observations, they assumed that certain soft
tissues consisted of various noninteracting families of densely
distributed thin hyperelastic extensible fibers and a homo-
geneous matrix. The strain-energy density (energy per unit
volume) can be described as

(1)

where is the strain-energy density, which is the sum of

(2)

(3)

(4)

1Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, RI.

where
strain-energy density for the isotropic material matrix;
strain-energy density for the fiber structures;
strain-energy density for the related volume change.

The material constants, , , and depend on the mate-
rial specimen and the loading protocol. Generally, an increase
in and increases the stiffness of the isotropic matrix, while
an increase in and similarly increases the stiffness of the
fiber family. The determinant of the deformation gradient
is equal to one for an incompressible material. (However, in the
finite-element implementation, is not constrained to exactly
one, which sometimes is called “nearly incompressible.”)

denotes the fiber stretch ratio and is the first invariant of the
right Cauchy–Green tensor . The short bar distin-
guishes these quantities from their actual values by associating
them with the normalized deformation gradient tensor instead
of the actual deformation gradient tensor.

The Cauchy stress tensorcan be calculated from the strain
energy as

(5)

where denotes the tensor product. is the normalized left
Cauchy–Green tensor, which equals

(6)

with denoting the deformation gradient tensor.is the unit
vector along the current fiber direction, which can be calculated
from the undeformed fiber direction by

(7)

is the second-order unit tensor. The following gives the
meaning of the derivatives in (5):

(8)

(9)

(10)

B. Active Contraction

The constitutive model developed by Martinset al. [4] for
active behavior of skeletal muscles is applied. The model ex-
tends Humphrey and Yin’s model [3] by incorporating Hill’s
model [20] of active contraction for a one-dimensional segment
of muscle fiber in order to derive a three-dimensional model
of active contraction for myocardial tissue. Using Hill’s model
[20], a similar expression to that in (1) for the strain-energy
density is derived through the introduction of a nondimensional
quantity , which is proportional to the strain of the contrac-
tile element. This quantity is used as a time-varying input for
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the model of active contraction. The total strain-energy density
per unit volume is given by

(11)

where is the modified strain-energy density for the
fiber structures and is defined in [18].

III. M ATHEMATICAL CYLINDRICAL MODEL

For a complicated material model with a transmurally varying
fiber angle, an analytical solution defining the deformation of
the left ventricle is difficult to obtain. Simplifications of the
kinematics must be made to reduce the problem to solving a
few integral equations. The closest thing to an analytical solu-
tion was presented by Guccioneet al. [17]. They proposed that
a cylindrical model be used to represent the midventricular re-
gion of the left ventricle. In their model, simplifications of the
geometry (a cylinder) and its kinematics were made so that the
parameters describing the deformation could be solved numer-
ically.

In their model, a cylindrically symmetric deformation (infla-
tion, stretch, torsion, azimuthal, and axial shear) was then pre-
scribed to simulate the effects of passive loading and active con-
traction. The strain energy used in their model was quite com-
plicated and difficult to implement into ABAQUS. In our cylin-
drical model, we utilized the kinematic assumptions from Guc-
cione’s model. The cylindrically symmetric deformation of the
left ventricle was composed of inflation, stretch, torsion, and
azimuthal shear. The current coordinates of the point
are related to its undeformed coordinates by the fol-
lowing equations:

(12)

(13)

(14)

The parameters, , , and describe azimuthal shear, tor-
sion, stretch, and deformed inner radius, respectively. They are
assumed to be constant and can be calculated by solving the
quasi-static equilibrium equation . To calculate the
Cauchy stress , we must know the strain-energy density
and deformation gradient. The constitutive equations (1) and
(5) are used for describing the myocardial behavior for passive
loading and for active contraction. From (12)–(14), the defor-
mation gradient tensor is obtained with the following matrix of
components in cylindrical coordinates:

(15)

The normalized left Cauchy–Green tensor is

(16)

Neglecting external body forces and inertial effects, the quasi-
static equilibrium equation is . Note that the compo-
nents of the Cauchy stress tensor in these cylindrical coordinates
for this axisymmetric deformation are functions ofalone. The
equilibrium equation can be expressed by the following system
of differential equations in terms of the components of the stress
tensor:

(17a)

(17b)

(17c)

Integrating (17b) and (17c) gives

(18)

(19)

Since there are no shear forces acting upon the inner and outer
surfaces of the cylinder, (18) and (19) will be satisfied automat-
ically on these surfaces. Integrating (17a) gives

(20)

Since we treat the cylinder as having closed ends, the net axial
force is

(21)

Here is the intraventricular pressure.
Similarly, the resulting torsional moment around the-axis

of the shear forces on the ending planes is

(22)

To solve (20)–(22) simultaneously, the following sum of
squares is minimized:

(23)

Here the Simplex method [21] was used to minimize (23).
We will use this mathematical cylindrical model to estimate the
passive material properties from MRI data in Section VI.
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IV. FINITE-ELEMENT CYLINDRICAL MODEL

In the mathematical cylindrical model described above, the
calculation of the deformation gradient tensor was performed
after simplifications had been made to the kinematics. This re-
duced the differential equilibrium equation to three
integral equations [(20)–(22)]. For a more accurate solution to
the equilibrium equation , the finite-element method
should be used.

In the finite-element method, the material region of the
problem is divided into many small elements with node points.
In our application, the nodal displacements are the primary
variables. For a nonnodal point in an element, its displacement
is calculated by interpolating between the nodal displacements
of the element. The deformation gradient tensor is calculated
numerically for each point as a function of the displacements
of the nodal points.

The software package ABAQUS was used for the finite-ele-
ment implementation of the cylindrical model of the equatorial
region of the left ventricle. ABAQUS is a standard finite-ele-
ment software package that has a user-defined material subrou-
tine that enables users to define their own material models. In
the user-defined subroutine, the Cauchy stress tensorand the
spatial elasticity tensor ( is the strain) are calcu-
lated for each Gaussian point. Gaussian points subdivide each
finite-element into a mesh of points used for numerical calcu-
lation. Since the fiber direction changes when the left ventricle
deforms, the fiber orientation is also updated at each calcula-
tion. In the following section, several examples that were used
to test the implementation of passive and active material models
are presented.

V. NUMERICAL EXAMPLES

A. Example 1: Humphrey and Yin’s Model Applied to a Cube
with Passive Loading

To verify the implementation of Humphrey and Yin’s consti-
tutive model in ABAQUS, we used a unit length cube (Fig. 1)
consisting of eight nodes. The cube is stretched along the fiber
direction parallel to the 1-axis and a rigid body rotation is per-
formed simultaneously around one edge. Since the displacement
of each node is prescribed, the deformation gradient tensor is
known and can be used to calculate the theoretical value of the
stress along the fiber direction. This theoretical value is com-
pared with the ABAQUS results (Fig. 2).

B. Example 2: Humphrey and Yin’s Model Applied to a
Cylindrical Model of the Heart with Passive Loading

After being validated with the cube, the constitutive model
was applied to the cylindrical model of the heart’s equatorial
region. The mesh used for the cylindrical model is shown in
Fig. 3. Helical fiber angles were assumed to vary linearly from
60 at the endocardium to 60 at the epicardium [4], [22]. It
is assumed that the cylinder is fixed at one end so that effective
stretching pressure will be applied to the opposite end of the
cylinder when the pressure load is applied inside the cavity. The
following three studies were performed using the cylindrical
model.

Fig. 1. Mesh used to test the implementation of Humphrey and Yin’s model.

Fig. 2. Comparison of the stress along the fiber direction calculated by
ABAQUS with theoretical values.

Fig. 3. Mesh used for the cylindrical model of the heart.

1) Comparison with the Mathematical Cylindrical
Model: Results using ABAQUS were compared to the
mathematical cylindrical model proposed by Guccioneet al.
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TABLE I
COMPARISON OFABAQUS RESULTS WITH CALCULATIONS FROM THE

MATHEMATICAL CYLINDRICAL MODEL. (r : INNER RADIUS, �: TWIST,
" = �� 1: ELONGATION OF THE CYLINDER)

(see Table I). Both the mathematical model and the finite-el-
ement model used the same constitutive properties applied in
Humphrey and Yin’s model: , ,
g/(cm ), and g/(cm ). The results did not compare as
well at high pressure (for example, 1.2 kPa) as they did at low
pressure. It is hypothesized that the finite-element method pro-
vides a better representation of the deformation because more
assumptions about the kinematics and boundary conditions are
required when specifying the mathematical cylindrical model.

2) Evaluate the Model Under Different Loading Proto-
cols: In Humphrey and Yin’s paper [3], specimens from
different hearts were tested under biaxial loading that used
various protocols. The best fit material parameters, , , and

depend on both the specimen and the loading protocol. For
example, for specimen #1, the material constants are ,

, g/(cm ), and g/(cm ) under
a protocol that keeps the strain ratio between theand
loading directions during the test at . However,
if the loading protocol is changed to , the best
fitting parameters are , ,
g/(cm ), and g/(cm ). The two sets of parameters
were implemented into the finite-element cylindrical model
separately. The results are presented in Table II. It is interesting
to note that the loading protocols with different values for

did not significantly affect the deformation of the
heart.

3) Determining Material Parameters Using MRI Data at
End-Diastole: To match the measurements from a set of MRI
data, different specimens from Humphrey and Yin’s paper
were tested. The results in Table III obtained from specimen
#2 in their paper approximately matched cine MRI data at
end-diastole. The mechanical properties for this specimen were

, , g/(cm ), and
g/(cm ).

The MRI data presented in Table III were acquired on a 1.5-T
Eclipse MRI scanner2 using a sequence that acquired 256
128 images at ten different phases of the cardiac cycle. The se-
quence parameters were: TE 2.7 ms, bandwidth 31.3 kHz, flip
angle 35, slice thickness 5 mm, and field-of-view 22.5 cm. The
sequence acquired two averages of four image phase encodings
for each cardiac phase.

2Marconi Medical Systems, Cleveland, OH.

TABLE II
RESULTS FORSPECIMEN #1 UNDER DIFFERENT LOADING PROTOCOLS

(P = 0:6 kPa)

TABLE III
COMPARISON OFABAQUS RESULTS WITH MRI MEASUREMENTS AT

END-DIASTOLE

The endocardial and epicardial radii were measured from the
MRI data at isovolumetric relaxation after end-systole. Regions
of interest (ROIs) enclosing the LV cavity and myocardium were
then drawn. The software SPECTER3 was used to calculate the
enclosed areas, from which the endocardial and epicardial radii
were estimated by

radius
area

(24)

The process of determining the calculated endocardial (r1)
and epicardial (r2) radii involved assuming an intraventricular
pressure of 0.6 kPa and then changing the material parame-
ters until ABAQUS produced a deformation that gave endocar-
dial and epicardial radii that were close to that of the measured
values from the MRI data. Table III gives the best fit for the radii
for the material properties given above.

The agreement of the radii values between those calculated
by the FE method and the measured values indicates that the
assumptions about the material model was reasonable in this
case.

C. Example 3: Martin’s Model—An Extension of Humphrey
and Yin’s Model Including Active Contraction

Martin’s model of active contraction was tested using a cylin-
drical bar [Fig. 4(a)] subjected to various activation and inacti-
vation protocols. The material parameters were different than
those used in Example 2: g/(cm ),

g/(cm ), and . In the model for active contraction,
the parameters and are replaced by the variable , which
denotes the stiffness of the fiber structure. These values of ma-
terial constants were applied to an ellipsoidal model of the heart
using ABAQUS (Fig. 5). The implementation involved passive
loading of 2 kPa followed by an activation of %
[Fig. 4(b)]. The heart underwent simultaneous contraction and
twisting during the simulation of the cardiac cycle.

VI. EXPERIMENTAL RESULTS—FITTING MRI AND SPECT
DATA TO THE MECHANICAL MODEL

Ideally, the image data should provide us with all of the in-
formation about the properties of the mechanical model. For ex-

3Copyright 1998 Duke University.
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(a) (b)

(c)

Fig. 4. The (a) geometry, (b) loading protocol, and (c) results validating Martin’s model.

(a) (b)

Fig. 5. An ellipsoidal heart model at (a) end-diastole and (b) end-systole.

ample, from 3-D tagged MRI data [23] or from image warping
[24], 3-D strain maps can be constructed. Even for SPECT data,
it is possible to estimate twisting [25]–[30]. By applying these
strain maps to the forward mechanical model, we can fit one or
more parameters that describe the fiber structure, material prop-
erties, or loading. At present, we do not use fully constructed
strain maps. Instead, we fit the radial motion of a midventric-
ular section of the left ventricular wall to a cylindrical mechan-
ical model. From gated SPECT or MRI data (Fig. 6), the inner

and outer radius can be measured during every time frame. As-
suming that the material properties, fiber structure, and loading
pressure inside the left ventricle are known, we can optimize
in a least squares sense the extent of active contraction. This is
done by fitting the measured motion of a midventricular section
of the left ventricle to the motion specified by the mechanical
model.

A. Methods

1) Motion Derived from MRI and SPECT Data:In Fig. 7,
the endocardial and epicardial radii of a midventricular section
of the left ventricle is measured over the entire cardiac cycle.
For the MRI data, the inner and outer radii in Fig. 7 were cal-
culated as described in Section V-B3. For the SPECT data, we
drew ROIs by setting an activity threshold for the myocardium.
Both methods were tested using an MCAT phantom, and strong
agreement with known simulated values was obtained.

The intermediate frames a and b between the measured
frames 1 and 2 are introduced to simulate the isovolumetric
contraction state. Frames c, d, and e between measured frames
4 and 5 are introduced to simulate the relaxation process. To
make the seven frames of the MRI data and the eight frames
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(a)

(b)

Fig. 6. (a) Seven-frame 1-D tagged MRI data and (b) eight-frame gated
SPECT data for the same patient.

Fig. 7. Fitting the midventricular region of the LV to a cylinder, the inner and
outer radii are calculated over a cardiac cycle for both MRI data (circle) and
gated SPECT data (triangle).

of the gated SPECT data comparable, it was determined that
averaging the fourth and fifth frames of the gated SPECT data
into one frame gave frames at comparable time points for seven
frames over the cardiac cycle.

2) Pressure–Time Curve Used in the Analysis:Since the in-
traventricular pressure was not measured over a cardiac cycle,
a standard pressure–time curve (Fig. 8) is used in all analyses
[31].

3) Material Model: The mechanical model developed by
Martins et al. [18] is assumed to represent the left ventricle.
This model defines a transversely isotropic, nearly incom-
pressible, hyperelastic material with an adjustable parameter

that determines the extent of the active contraction. The
energy-strain density function is given in (11).

In addition to and the local fiber angle, three parameters
, , and describe the material property. Parametersand

describe the stiffness of the material matrix, while describes

Fig. 8. The assumed intraventricular pressure-time curve over a cardiac cycle.
a–e are intermediate frames.

the stiffness of the fiber structure. The fiber angle is assumed to
vary linearly along the radial direction across a short slice of the
left ventricle wall from 60 at the endocardium to 60 at the
epicardium [4], [22].

The values of , , and were estimated assuming passive
behavior of the mechanical model ( ). First, Humphrey
and Yin’s model [3] was assumed to model the passive be-
havior of the myocardium. The material properties established
in their model were implemented into the mathematical cylin-
drical model [17]. The best set of material parameters from a
table of values in their paper that best predicts the deformation
of the LV when compared with the MRI data was then chosen.

In the next step, we used the mathematical cylindrical model
to compare Martin’s material model with Humphrey and Yin’s
material model. For a range of loading pressures, we calculated
the deformations predicted by the mathematical cylindrical
model for both materials and tried to estimate the values of,
, and in Martin’s model that minimizes the difference

between the total strain energies of the two material models
for all loading states. Utilizing this method, we calculated
the optimum values of, , and to be g/(cm ),

g/(cm ), and g/(cm ). These
parameters were then used in the material model of (11). The
extent of active contraction was then estimated from both
gated SPECT and cine MRI data by using this material model
along with the assumption that the contraction throughout the
entire left ventricle wall was uniform.

B. Results

1) Fitting of MRI and Gated SPECT Data to the Mathemat-
ical Cylindrical Model: Fig. 9 shows estimates of the active
contraction parameter over the cardiac cycle based upon
gated SPECT and cine MRI data. The material deformation de-
scribed above for the mathematical cylindrical model was as-
sumed. The MRI and SPECT estimates of the extent of active
contraction are based on different measurements of the epicar-
dial and endocardial radii throughout the cardiac cycle.

Large differences in the extent of active contraction between
the two data sets can be observed at systole in Fig. 9, which is
presumably the result of the smaller value of r1 at time frame 4
for MRI compared with SPECT in Fig. 7.
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Fig. 9. The absolute value of� , which describes the extent of the active
contraction, is calculated over a cardiac cycle by applying the mathematical
cylindrical model to the MRI data (circle) and SPECT data (triangle).

Fig. 10. The extent of active contraction fitted to MRI data. The absolute value
of � , which describes the extent of the active contraction, is calculated over
a cardiac cycle by applying the mathematical cylindrical model (circle) and the
finite-element model (triangle).

2) Fitting of MRI Data to the Finite-Element Model:The
same material properties were implemented into a finite-ele-
ment model by using ABAQUS. To fit the motion of the left
ventricle wall derived from MRI data, is adjusted at each
frame. The results are compared with results obtained using the
mathematical cylindrical model shown in Fig. 10.

VII. D ISCUSSION

Cylindrical mathematical and finite-element mechanical
models of the left ventricle have been presented. Both of these
models were fit to gated SPECT and cine MRI data. In fitting
the mathematical cylindrical model to image data, passive
material properties were obtained. The parameter that describes
the extent of the active contraction was determined by fitting
the imaging data to a mathematical model and an finite-element
model that also included active contraction.

Finite-element analysis is a good tool for modeling the me-
chanics of the left ventricle. It can manage complex geometries
and boundary conditions. Complex material properties can also
be implemented into the model. Compared to the mathematical
cylindrical model, which requires many assumptions about the
kinematics and boundary conditions, the finite-element method
provides more accurate results.

Fig. 11. Finite-element meshes generated from gated SPECT data. (Top)
End-diastole and (bottom) end-systole.

The mechanical model is helpful for describing the deforma-
tion of the left ventricle. Usually a single imaging modality such
as gated SPECT cannot provide information about twist and
shear strains. If the material properties and boundary conditions
for a mechanical model of the left ventricle are known, then mo-
tion can be determined better. In this sense, a mechanical model
can provide additional information about the motion of the left
ventricle. On the other hand, if the strain map of the left ven-
tricle is available from other sources (such as 3-D tagged MRI
imaging, image warping method, etc.), the material properties
of the myocardium can also be obtained by fitting the deforma-
tion of the left ventricle to the known strain map.

The mathematical cylindrical model was used to estimate the
passive material properties of the myocardium from MRI data.
The measured values provided by Humphrey [3] were chosen
one by one and tested to see which one gave the best fit values.
An alternative approach is to perform a least squares fit using
the mathematical cylindrical model to estimate the material con-
stants. One problem may be that the results are very sensitive to
the input values of the radii at end-diastole. Table II illustrates
this sensitivity. Within the measurement accuracy, the motions
for two sets of material parameters were nearly the same. This
illustrates the sensitivity of the estimation of the activation pa-
rameter at end-systole (Fig. 9).

In future work, it will be important to develop more realistic
geometries of the left ventricle for the mechanical model that is
fit to imaging data. Also, in this paper we did not include ini-
tial stresses in our model. If a heart is sliced, it will spring open,
which is proof of the existence of initial stresses in the unde-
formed state [17]. For a nonlinear material like the myocardium,
lack of knowledge about initial stresses may cause subtle errors
in the estimation of its deformation. The correction of the effect
of initial stresses may be a difficult problem since it is nonuni-
form over the left ventricle and may vary significantly from pa-
tient to patient.
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VIII. F UTURE WORK

Future work will involve using more realistic finite-element
meshes derived from the imaging data. We are developing
algorithms to automatically generate finite-element meshes
from gated SPECT data (see Fig. 11). The use of image-derived
meshes should provide both the ability to track the deformation
of the left ventricle locally and the ability to fit the motion to
the deformation locally. We also propose to fit the motion of
the left ventricle to a map of the deformation derived from 3-D
tagged MRI data or image warping data to obtain estimates
of material properties of the myocardium. We will attempt to
include the initial stresses in the model. Finally, we propose to
introduce electrical propagation into the finite-element model.
In that case, the changing of over time and space may be
described physiologically, which will lead to a real-time model.
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