Table of Contents

1. Summary
2. Longitudinal acceptance
3. Transverse emittance dilution during injection
4. Painting study
5. AC chromaticity
6. DC chromaticity
7. Acceptance decrease due to orbit bumps and doglegs

1. Summary

- Longitudinal acceptance of the Booster:
$>$ Two different measurements (one by varying the linac beam energy, another by varying RPOS) give similar result: $\Delta \mathrm{p} / \mathrm{p}= \pm 0.15-0.2 \%$
- Transverse emittance dilution during injection:
$>$ The first 50-turn IPM data shows a fast dilution during the 10 -turn injection. After that the dilution slows down.
$>$ This dilution is intensity dependent.
> The results agree with space charge simulation using the code ORBIT.
$>$ Lower linac current and longer pulse (while keeping the total injected beam intensity a constant) seem to reduce the dilution in the first 50 turns. (But this gain could be washed away in 200 turns according to simulation.)
- Injection painting:
$>$ Painting by using the falling side of the orbit bump pulse seems to reduce the dilution. But this result is inconclusive.
- AC chromaticity:
$>$ Chromaticity throughout the cycle was measured with the normal sextupole setting.
$>$ The vertical chromaticity in the early stage of the cycle is measured positive. This causes concerns
about possible head-tail instability. (It will be adjusted in the follow-up study.)
- DC chromaticity:
$>$ It was measured at 400 MeV for nine different sextupole settings.
$>$ The data were used to find the unknown body sextupoles of the main magnets. The results:

$$
\mathrm{sd}=-0.0454, \mathrm{sf}=-0.003
$$

$>$ These two parameters are now included in the MAD lattice model.

- Acceptance decrease due to orbit bumps and doglegs:
$>$ There is a good pattern match between the MAD prediction and measurement on the changes of tune and dispersion due to edge focusing of the orbit bumps and doglegs at 400 MeV .
$>$ This effect leads to about a factor of two reduction in the machine acceptance at injection.
$>$ Investigations of possible corrections are under way.

2. Longitudinal Acceptance Measurement

Linac beam energy calibration ($1 \mathrm{~cm}=1 \mathrm{MeV}$)

Linac beam pulse (green trace)

Notes:

1. The 400 MeV line was not retuned when the linac beam energy was varied. So the result is a combination of the acceptance of the 400 MeV line and that of the Booster.
2. A separate measurement by varying RPOS gives the Booster acceptance in the range of $\pm 0.15-0.2 \%$, consistent with this result. (see the dc chromaticity measurement)

3. Transverse Emittance Dilution during First 50 Turns

ORBIT simulation:
different bunch intensity, same number of injection turns (11)

ORBIT simulation:
emittance histogram at 12th turn, with and without space charge

Measurement at $43 \mathrm{~mA}, 10$ turns

Measurement at $20 \mathrm{~mA}, 10$ turns

ORBIT simulation:
same bunch intensity, different number of injection turns (tracking 50 turns)

Measurement at $20 \mathrm{~mA}, 12$ turns

ORBIT simulation:
same bunch intensity, different number of injection turns

4. Painting Study:

Painting study: injection timing

Measurement at $43 \mathrm{~mA}, 12$ turns, with painting

5. AC Chromaticity Measurement

Beam (2-turn), pinger and Roff setting

Note: The measurement was done at four different Roff values: $0,+2 \mathrm{~mm},-2$ $\mathrm{mm},-4 \mathrm{~mm}$. In this plot, Roff $=0$.

Dp/p for Roff $=+2 \mathrm{~mm}$

Booster Vertical Chromaticity (fixed) Jan 282003

6. DC Chromaticity Measurement

Booster Chromaticity Measurement
 Jan 302003
 R. Tomlin, W. Chou, F. Ostiguy

Note: VGOOD and HGOOD are correlation coefficients for the linear regression

RPOS	SEXTL SEXTSDP/P				NUH NUV		HCHROMA HGOOD		VCHROMA VGOOD	
[mm]										
	0	-10	-10	0.0021	0.644	0.836				
	1	-10	-10	0.0015	0.676	0.827				
	2	-10	-10	0.0008	0.7	0.817				
	3	-10	-10	-0.0001	0.727	0.805				
	4	-10	-10	-0.0013	0.768	0.791				
							-35.236111	0.99106	13.236111	0.99731

RPOS	SEXTL SEXTSDP/P				NUH	NUV	HCHROMA	HGOOD	VCHROMA	VGOOD
[mm]		[A]	[A]							
	0	0	-10	0.0022	0.651	0.834				
	1	0	-10	0.00155	0.672	0.827				
	2	0	-10	0.0008	0.7	0.819				
	3	0	-10	-0.00005	0.725	0.809				
	4	0	-10	-0.0015	0.762	0.791				
							-30.167966	0.99368	11.625675	0.99869

RPOS	SEXTL SEXTSDP/P				NUH	NUV	HCHROMA	HGOOD	VCHROMA	VGOOD
[mm]										
	0	10	0	0.0022	0.664	0.832				
	1	10	0	0.00155	0.68	0.827				
	3	10	0	0.00015	0.713	0.812				
	4	10	0	-0.00075	0.733	0.8				
	2	10	0		0.697	0.819				
							-23.40152	0.9997	10.873174	0.99276

RPOS	SEXTL SEXTSDP/P				NUH	NUV	HCHROMA HGOOD		VCHROMA VGOOD	
[mm]										
	0	-10	10	0.0021	0.682	0.83				
	1	-10	10	0.0014	0.692	0.823				
	2	-10	10	0.0007	0.702	0.814				
	3	-10	10	-0.00005	0.711	0.807				
	4	-10	10	-0.0008	0.72	0.8				
							-13.092431	0.99788	10.473564	0.99651

7. Acceptance Decrease due to Orbit Bumps and

Doglegs

$$
\mathrm{A}=\left\{\beta_{\max } \times \varepsilon_{N} / \beta \gamma\right\}^{-1 / 2}+\mathrm{D}_{\max } \times \Delta \mathrm{p} / \mathrm{p}+\text { C.O.D. }
$$

Good field region (horizontal): ± 1 inch (TM-405)
At injection (400 MeV):
$\beta \gamma=1.0$
$\Delta \mathrm{p} / \mathrm{p}= \pm 0.13 \%$ (measured)
C.O.D. $=2 \mathrm{~mm}$ (optimal)

Without orbit bumps and doglegs:
$\beta(\mathrm{x})_{\text {max }}=33.7 \mathrm{~m}, \mathrm{D}_{\text {max }}=3.19 \mathrm{~m}, \beta(\mathrm{y})_{\text {max }}=20.5 \mathrm{~m}$
Max allowable beam emittance: $\varepsilon_{\mathrm{N}}(\mathrm{x})=11 \pi \mathrm{~mm}-\mathrm{mrad}$
With orbit bumps and doglegs:
$\beta(\mathrm{x})_{\text {max }}=46.1 \mathrm{~m}, \mathrm{D}_{\text {max }}=6.13 \mathrm{~m}, \beta(\mathrm{y})_{\text {max }}=27.0 \mathrm{~m}$
Max allowable beam emittance: $\varepsilon_{\mathrm{N}}(\mathrm{x})=5.2 \pi \mathrm{~mm}-\mathrm{mrad}$
\rightarrow a factor of 2 reduction in acceptance due to large β and $D!$

