Table of Contents

- 1. Summary
- 2. Longitudinal acceptance
- 3. Transverse emittance dilution during injection
- 4. Painting study
- 5. AC chromaticity
- 6. DC chromaticity
- 7. Acceptance decrease due to orbit bumps and doglegs

<u>1. Summary</u>

- Longitudinal acceptance of the Booster:
 - Two different measurements (one by varying the linac beam energy, another by varying RPOS) give similar result: $\Delta p/p = \pm 0.15 0.2\%$
- Transverse emittance dilution during injection:
 - The first 50-turn IPM data shows a fast dilution during the 10-turn injection. After that the dilution slows down.
 - > This dilution is intensity dependent.
 - The results agree with space charge simulation using the code ORBIT.
 - Lower linac current and longer pulse (while keeping the total injected beam intensity a constant) seem to reduce the dilution in the first 50 turns. (But this gain could be washed away in 200 turns according to simulation.)
- Injection painting:
 - Painting by using the falling side of the orbit bump pulse seems to reduce the dilution. But this result is inconclusive.
- AC chromaticity:
 - Chromaticity throughout the cycle was measured with the normal sextupole setting.
 - The vertical chromaticity in the early stage of the cycle is measured positive. This causes concerns

about possible head-tail instability. (It will be adjusted in the follow-up study.)

- DC chromaticity:
 - It was measured at 400 MeV for nine different sextupole settings.
 - The data were used to find the unknown body sextupoles of the main magnets. The results: sd = -0.0454, sf = -0.003
 - These two parameters are now included in the MAD lattice model.
- Acceptance decrease due to orbit bumps and doglegs:
 - There is a good pattern match between the MAD prediction and measurement on the changes of tune and dispersion due to edge focusing of the orbit bumps and doglegs at 400 MeV.
 - This effect leads to about a factor of two reduction in the machine acceptance at injection.
 - Investigations of possible corrections are under way.

2. Longitudinal Acceptance Measurement

Linac beam energy calibration (1 cm = 1 MeV)

Linac beam pulse (green trace)

Measured momentum acceptance

Notes:

1. The 400 MeV line was not retuned when the linac beam energy was varied. So the result is a combination of the acceptance of the 400 MeV line and that of the Booster.

2. A separate measurement by varying RPOS gives the Booster acceptance in the range of ± 0.15 -0.2%, consistent with this result. (see the dc chromaticity measurement)

<u>3. Transverse Emittance Dilution during First 50 Turns</u></u>

ORBIT simulation: emittance histogram at 12th turn, with and without space charge

Measurement at 43 mA, 10 turns

Measurement at 20 mA, 10 turns

ORBIT simulation: same bunch intensity, different number of injection turns (tracking 50 turns)

Measurement at 43 mA, 6 turns

Measurement at 20 mA, 12 turns

<u>4. Painting Study:</u>

Painting study: injection timing

Measurement at 43 mA, 12 turns, with painting

5. AC Chromaticity Measurement

Chromaticity sextupole setting (normal operation)

Note: The measurement was done at four different Roff values: 0, +2 mm, -2 mm, -4 mm. In this plot, Roff = 0.

Dp/p for Roff = 0 mm

Dp/p for Roff = +2 mm

Dp/p for Roff = -2 mm

Dp/p for Roff = -4 mm

Booster Vertical Chromaticity (fixed) Jan 28 2003

<u>6. DC Chromaticity Measurement</u>

Note: VGOOD and HGOOD are correlation coefficients for the linear regression

RPOS	SEX	TL S	SEXTS D	P/P	NUH	NUV	HCHROMA	HGOOD	VCHROMA	VGOOD	ΙΓ		HChroma			0.84	VChroma		
[mm]	[A]	[/	4]									0.7	·		_	0.835		•	
	0	0	-10	0.0022	0.651	0.834						0.7				0.825		•	
	1	0	-10	0.00155	0.672	0.827						0.7				0.82	•		
	2	0	-10	0.0008	0.7	0.819						0.	7.	Series1		0.81			◆Series1
	3	0	-10	-0.00005	0.725	0.809						0.6	8			0.8			
	4	0	-10	-0.0015	0.762	0.791								•		0.79			
							-30.167966	0.99368	3 11.625675	0.99869		-0.002 -0.001	0 0.001	0.002 0.003	-0.002	-0.001 0	0.001	0.002	0.003

RPOS	SEX	TL SE	XTSD	P/P	NUH	NUV	HCHROMA	HGOOD	VCHROMA	VGOOD
[mm]	[A]	[A]								
	0	0	10	0.00215	0.682	0.83				
	1	0	10	0.00145	0.69	0.824				
	2	0	10	0.001	0.7	0.817				
	3	0	10	0.00007	0.709	0.811				
	4	0	10							
							-13.341456	0.97749	9.367008	0.97485

RPOS	S SEXTL SEXTS DP/P					NUV	HCHROMA	HGOOD	VCHROMA	VGOOD
[mm]	[A]	[A]								
	0	-10	0	0.0021	0.666	0.834				
	1	-10	0	0.00145	0.684	0.824				
	2	-10	0	0.00077	0.7	0.817				
	3	-10	0	-0.00002	0.717	0.807				
	4	-10	0	-0.0009	0.738	0.795				
							-23.651808	0.99835	12.721725	0.99751

RPOS	SE)	KTL SEX	XTS D	P/P	NUH	NUV	HCHROMA	HGOOD	VCHROMA	VGOOD
[mm]	[A]	[A]								
	0	10	0	0.0022	0.664	0.832				
	1	10	0	0.00155	0.68	0.827				
	3	10	0	0.00015	0.713	0.812				
	4	10	0	-0.00075	0.733	0.8				
	2	10	0		0.697	0.819				
							-23.40152	0.9997	10.873174	0.99276

RPOS			EXTSD	P/P	NUH	NUV	HCHROMA	HGOOD	VCHROMA	VGOOD	HChroma	0.84 VChroma
mm]	1 2	[A 10 10 10 10 10] -10 -10 -10 -10 -10 -10	0.0023 0.0016 0.00087 0.0001 -0.0001		0.828 0.818 0.811					0.78 0.74 0.72 0.72 0.72 0.72 0.75	0.835 0.835 0.825 0.82 0.815 0.815 0.85
	Impro	oved I	by remo	oving last p	oint	>			12.212976 10.777903		-0.0005 0 0.0005 0.001 0.0015 0.002 0.0025	-0.0005 0 0.0005 0.001 0.0015 0.002 0.0025

RPOS	SE>	(TL SE	EXTSD	P/P	NUH	NUV	HCHROMA	HGOOD	VCHROMA	VGOOD	T	HChroma	U.835 VChroma
[mm]	[A]	[A	.]										0.83
	0	-10	10	0.0021	0.682	0.83						0.72	0.825
	1	-10	10	0.0014	0.692	0.823						0.715	0.82
	2	-10	10	0.0007	0.702	0.814						0.705	0.815 • • • • • • • • • • • • • • • • • • •
	3	-10	10	-0.00005	0.711	0.807						0.695	0.805
	4	-10	10	-0.0008	0.72	0.8						0.69	• 0.8
							-13.092431	0.99788	3 <mark>10.473564</mark>	0.99651		-0.001 -0.0005 0 0.0005 0.001 0.0015 0.002 0.0025	-0.001 -0.0005 0 0.0005 0.001 0.0015 0.002 0.0025

7. Acceptance Decrease due to Orbit Bumps and Doglegs

 $A = \left\{\beta_{max} \times \epsilon_N / \beta \gamma \right\}^{-1/2} + D_{max} \times \Delta p / p + C.O.D.$

Good field region (horizontal): ± 1 inch (TM-405)

At injection (400 MeV): $\beta \gamma = 1.0$ $\Delta p/p = \pm 0.13\%$ (measured) C.O.D.= 2 mm (optimal)

 $\frac{Without \text{ orbit bumps and doglegs:}}{\beta(x)_{max} = 33.7 \text{ m}, \text{ } D_{max} = 3.19 \text{ m}, \text{ } \beta(y)_{max} = 20.5 \text{ m}}$

Max allowable beam emittance: $\varepsilon_N(x) = 11 \pi$ mm-mrad

 $\frac{With orbit bumps and doglegs:}{\beta(x)_{max} = 46.1 \text{ m}, D_{max} = 6.13 \text{ m}, \beta(y)_{max} = 27.0 \text{ m}}$

Max allowable beam emittance: $\varepsilon_N(x) = 5.2 \pi$ mm-mrad

 \rightarrow a factor of 2 reduction in acceptance due to large β and D!