ITER FEAT Operation

Presented by Y.Shimomra ITER Joint Central Team and HœmTeams Oct. 5, 2000 Sorrento, Italy

The technical requirements for the new ITER (ITER-FEAT)

- 1) Demonstrate inductively-driven plasmas at Q10,
- 2) Aim at demonstrating steady-state at Q5
- 3) Do not preclude ignition.
- 4) Demonstrate availability and integration of essential fusion technologies, and
- 5) Test components for a future reactor including blankets (> 0.5 MW/m², > 0.3 MW·a /m².)

ITER is planned to be the first fusion experimental reactor.

- Flexibility is required to
 - 1) cope with uncertainties,
 - 2) study/optimize burning plasma for various objectives, and
 - 3) introduce advanced features
- Involvement of the world-wide fusion community is essential to
 - 1) use ITER efficiently and
 - 2) promote scientific competition among the Parties

ITER Machine Capability

	Reference Performance	Flexibility
I _P (MA)	15 (flat top 400-500 s)	17 (flat top 100-200 s)
Fusion Power (MW)	500 (~2000s)	700 (100-200s)
κ_x/δ_x	1.85/0.49	2.0/0.55(a=1.85m)
Pumping	200 Pam³/s	higher in shorter pulse

	Initial	Possible	Upgrade
NB (MW)	33	50	33
RF (MW)	40	80	100
ECCD for NT (MW)	(20)	(4	0)
Saddle coils for RWM	20KA/10G/2Hz	~50	KA

Divertor/Diamate Dixentangeable concept	Divertor/Blanket Exc	nangeable concept
---	----------------------	-------------------

ITER Poloidal Field Coils

<u>Correction Coils</u> 6x3, 100-150kA/coil For Resistive Wall Mode ~10G/20kA

Electron Cyclotron System

Neutral Beam Injection for ITER

(1 MeV, 16.5 MW/Port) Initial Installation 33 MW, Upgrade 50 MW

Beam Driven Current Profile

Phased Operations

Hydrogen Phase

Confirmation of the machine performance and crease of reliability of the operation Full commissioning of the ITER systemin a non-nuclear environment Development of operation scenarios with semi-detached divertor and ~70 MW Better control/nitigation of disruptins/VDEs/ELMs/runaway electrons Characterization of dusts Build-up of experimental groups in the world wide fusion community

Deuterium Phase

Nuclear commissioning and confirmation of the basic plasma characteristics No human access into the vessel

Deuterium Tritium Phase

Research of long burning plasmas Optimization of operations for various objectives Engineering tests including blanket tests for the next step

*Average Fluence at First Wall (Neutron wall load is 0.56 MW/m2 in average and 0.77MW/m2 at outboard midplane.)

Net consumption of tritium

The first ten yars Average 0.3/Blanket test area 0. MWa/m² Average 0.5/ Blanket test area **.7** MWa/m²

~30kg of tritium could be supplie with external surces

- ~ 5kg
- ~ 15 kg (Minimum requirement)
- ~ 25 kg (Design value)

Remote Experiment Efficient use of ITER, Involvement of worldwide fusion community and Promotion of Scientific Competition

Example:

- 3 shift/day on site: Most people during day(1st/2nd shifts) for experimentation. Is people during night shift of machine monitoring and suppt of remote experiments.
- 1 or 2 shft(s)/day on remote experimental sites: Experimentation dyrday

In any case, experimentation will be doe within the envelope of the machine parmeters agreed to inadvance.

Standard OperationsELMy H- mode

$$\begin{split} P_{LH} &= 2.84 M^{-1} B_T^{0.82} \overline{n}_e^{0.58} R^{1.00} a^{0.81} \\ \tau_{E,th}^{IPB98(y,2)} &= 0.144 I_p^{0.93} B_T^{0.15} P^{-0.69} n_e^{0.41} M^{0.19} R^{1.97} \varepsilon^{0.58} \kappa_a^{0.78} , \quad \tau_E = H_H \tau_{E,th}^{IPB98(y,2)} \\ (\text{s, MA, T, MW, 10}^{20} \text{m}^{-3}, \text{AMU, m and } \kappa_a = \text{S}_x / \pi a^2) \end{split}$$

Fusion Power v.s. Density with 15 MA

 $H_{H} = 1.0, \qquad \tau_{He}^{*} / \tau_{E} = 5, \qquad Peak \ divertor \ heat \ load < 10 \ MW/m^{2}$ $n_{G} = I_{P} / \pi a^{2} \ \text{and} \ \beta_{N} = \beta(\%) / [I_{P} / aB_{T}]$

Operation Space with Q =10

Density v.s. Fusion Power with 15 MA

Ion Heating with 15MA

Operation branches with constant heating power and constant fusion power with $n_e/n_G = 0.85$ and 15 MA

Very High Q and Q \approx with 17 MA

 $< n_e > = 1.1 \propto 10^{20} / m^3 \ (< n_e > / n_G = 0.81), \tau_E = \tau_E(y, 2)$

Possible experiment of the thermal instability with 17 MA

Inductive \Rightarrow Hybrid operation with $_{H}H= 1$ Longer pulse smaller current driven parking by non-inductive method

Operation for blanket test : 00s, 500 MW and 0.77 MW/m² for the test area

Non-inductive steady-state operation with Q=5 and flat density *jle*of

R/a/ κ_{95} = 6.5m/1.7m/2.0, P_{FUS}P_{CD} = 500 MW/100 MW (**n**,**o**). Argon impurity (up to 0.5%) and carbon impurity (up to 1.2%) are seeded (**n**). 30 MW of P_{Divetor} is corresponding to ~5 MW/m² of target heat load.

$$\begin{split} P_{FUS}/P_{CD} &= 500 \text{ MW} / 100 \text{ MW} \text{ (Q=5),} \\ Z_{eff} &= 2.7 \text{ (Be/C/ Ar} &= 2\% / 0.4\% / 0.45\% \text{), } P_{Divertor} \text{ 20 MW, } H_{H} &= 1.5, \beta_{N} = 3.5 \\ \text{On axis (EC, IC or NB : 5 MW), off-axis (NB and EC : 60 MW) and peripheral regio(EC and LH : 35MW)} \end{split}$$

Time Behavior of Non-inductive Operation with Internal Transport Barrier

Conclusions

The flexibility of ITER will allowresearch in a large operation spac (P_{fusion} , Q, n, β , pulse length, J_{μ} -----) (Confirm predictable operation \Rightarrow Explore frontier)

- Predictable operations and extended operations with Q~10, apd15 MA 150 \neq 700MW, n/n_G=0.5 \neq 1 β_N =1.2 \neq 2.4
- Very high Q or ignition operations at 17 M A high possibility to achieve the ignition Research of control very highQ/ignition and higher β/higherP_{fusion}
- Hybrid and non-inductive operations 1000 s / 500 MW/Q=5 with reasonable parameters for blanket test (0.77 MW/m²)

Research of fully noninductive diven operations aiming at Q=5 (higher β /higher confinement, methods included in ITER)

The remote experimental concept will increase efficiency, violve the worldwide fusion community and romote scientific competition