Ingersoll-Rand Building Cooling, Heating and Power (BCHP) Integrated Energy System

Presented to 2003 Distributed Energy Resources Peer Review by Joseph Gerstmann Advanced Mechanical Technology, Inc.

December 4, 2003

BCHP Integrated Energy System Program Objective

Integrated system that generates steady grid independent power with concurrent production of cooling capacity and hot water year round.

- Secure electric power 30 to 100 kWe
- Exhaust-driven, air-cooled, cooling system
- Factory integrated, turnkey product
- Custom package for supermarket applications
- Single-skid, roof-top installation

Ingersoll-Rand BCHP Team

IR Energy Systems (Prime)

 Microturbine manufacturing, sales, installation, financing, service, energy systems management programs.
 Project Manager. Work on packaging, integration, and cost reduction.

IR Hussmann

 Worlds largest manufacturer of equipment for supermarkets, convenience stores, food service industries, and commercial/industrial refrigeration, including cold storage warehouses and processing plants.

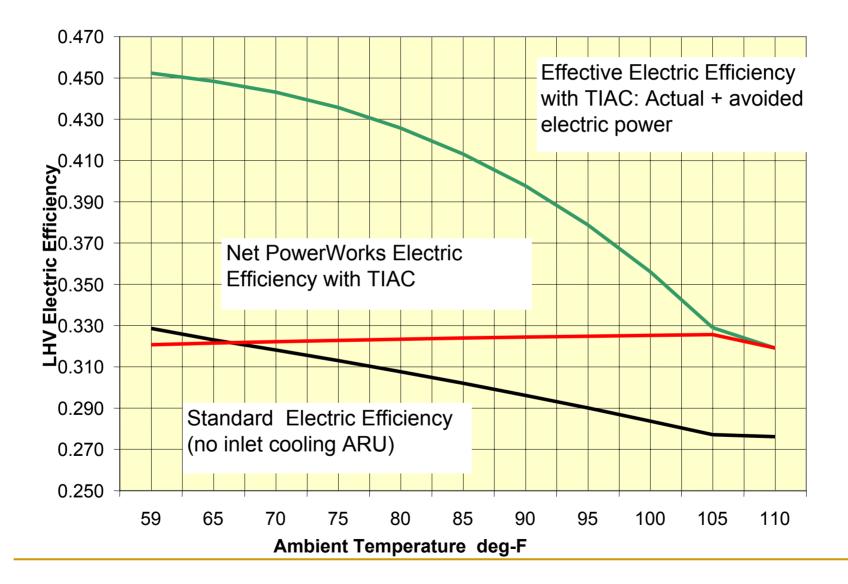
Support development of the package that is attractive to supermarkets. Assist in commercialization.

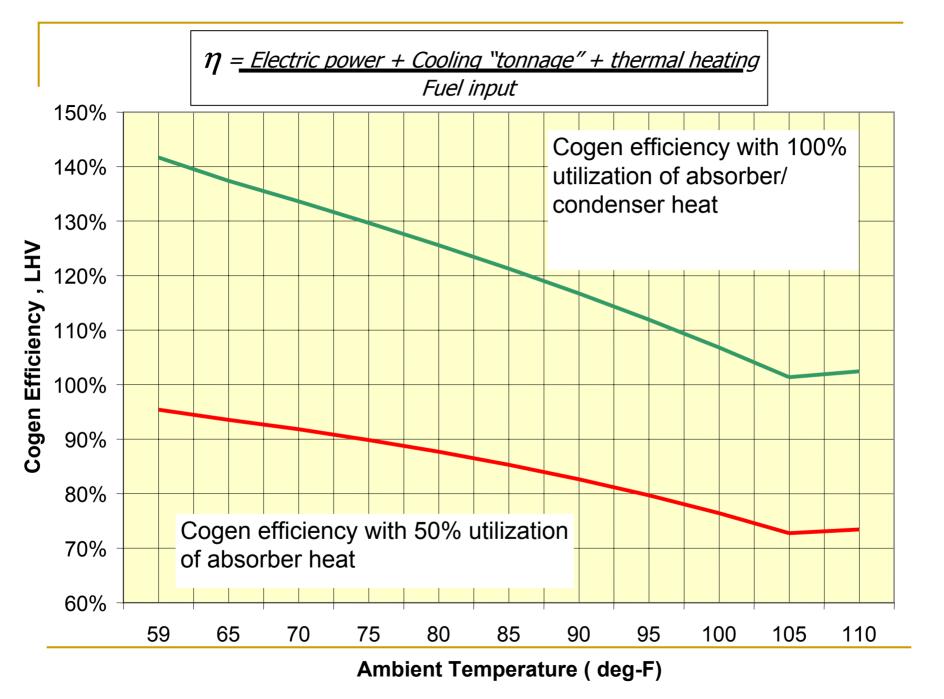
Ingersoll-Rand BCHP Team

- Energy Concepts Company (ECC)
 - Developer of ammonia water absorption systems.
 Optimize and design absorption system to fit Powerworks
- Advanced Mechanical Technology Inc. (AMTI)
 - Developer of advanced heat transfer products.
 - System modeling and analysis; design and development of interface heat exchangers.

PowerWorks BCHP Concept

- Packaged CHP system for supermarkets
- 70 kW gas-fired PowerWorks microturbine
- 15 RT (@ 95°F) exhaust-heated absorption chiller
- Chiller output used for <u>Turbine Inlet Air Cooling</u> (TIAC)
 - Increases power output and efficiency of turbine
 - Solves problem of reduced power output at high ambient temperatures
- Balance of chiller output is used for supplemental cooling (e.g., low-temperature refrigerant subcooling)
- Chiller heat rejection (condenser, absorber) may be used for water and space heating

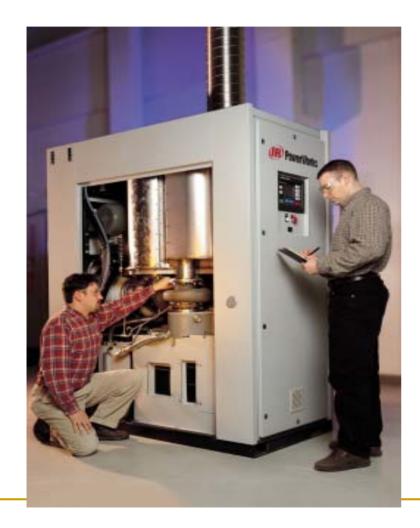

Why Refrigerant Subcooling?


- Refrigeration accounts for 50% of supermarket electrical load
- Low-temperature (-20°F) refrigeration requires ~2.5 kWe/ton
- Subcooling refrigerant at +50°F increases cooling capacity at -20°F at 1:1 ratio with no increase in compressor power
- Thermally activated refrigerant subcooling @ 50°F:
 - Achieves ~0.7 COP
 - Displaces up to 0.5 kWe/kWth; i.e., 50% efficiency
 - Fixed instead of variable evaporator temperature
 - Glycol loop provides simple interface

BCHP Package Summary

- Small well integrated package
- Steady grid independent power
- Minimal maintenance, annual service visit
- BCHP package at 95°F
 - 🛛 75 kWe
 - □ 100 kW or more of 140°F hot water
- BCHP Package at 59°F
 - Up to 100 kWe
 - Or 70 kWe plus 20 tons of subcooling displacing up to 50 kWe of compressor power
 - □ In excess of 100 kW of 140°F hot water

Integrated System Performance


BCHP Operating Cost Savings

	PowerW	orks Only	PowerWorks with TIAC, Subcooling, & Cogen	
City	Savings	Run Time	Savings	Run Time
San Francisco, CA	\$16,107	67%	\$33,476	67%
Los Angeles, CA	\$15,273	67%	\$29,640	86%
New York, NY	\$8,136	66%	\$24,188	67%
Phoenix, AZ	\$7,282	86%	\$22,252	100%
Huntsville, AL	\$889	67%	\$10,956	88%
Boston, MA	-	-	\$9,699	66%
Chicago, IL	-	-	\$7,718	67%
Baltimore, MD	-	-	\$3,451	50%
Minneapolis, MN	-	-	\$2,857	66%
Miami, FL	-	-	\$2,161	38%
Denver, CO	-	-	\$1,295	51%
Houston, TX	-	-	\$1,195	46%

Assumptions:

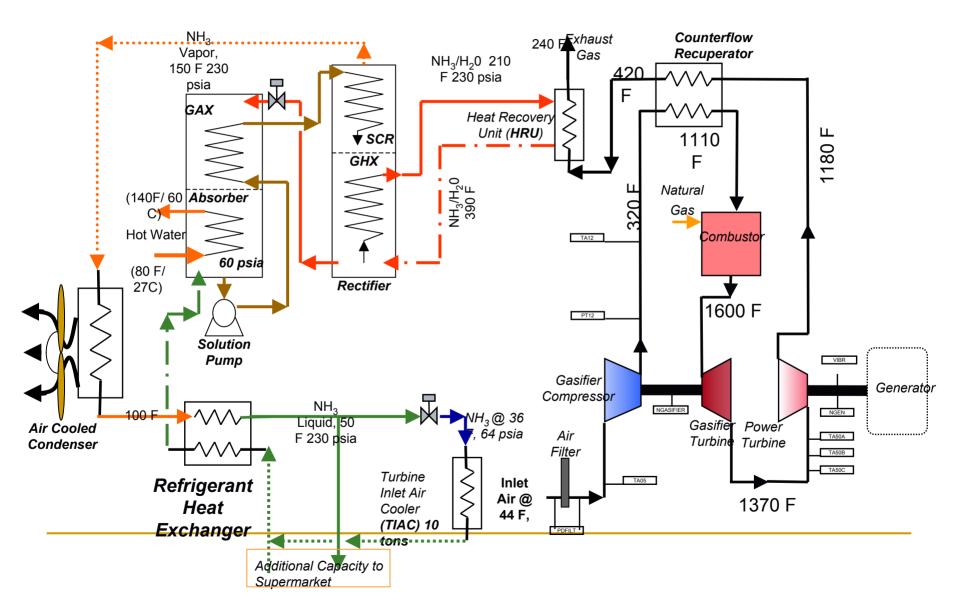
ARU capacity = 15 RT @ 95°F / 21 RT @ 59°F Subcooling load = 24 RT @ 95°F / nil @ 40°F Space heating design-point load = 476 kW @ 0°F 35°F TIAC Max cogeneration = 100 kW

PowerWorksTM Microturbine

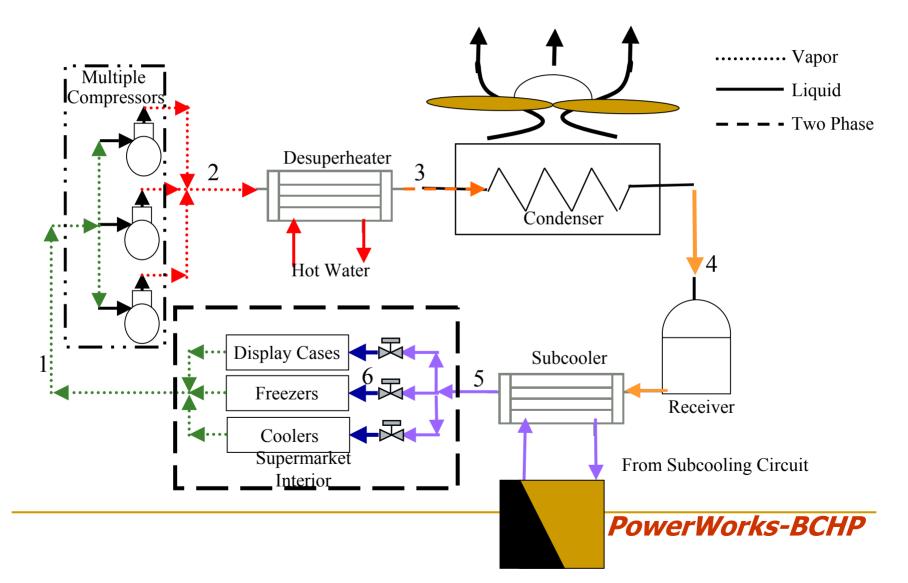
70kWe model

- Has 140% peaking power capacity on cold days (98 kWe)
- High efficiency
 - · 30+% LHV electric
 - Up to 80% total with cogen
- Built-in gas booster
- Remote control and monitoring
- Low emissions
 - <9 ppmv NOx @ 15% O2 (natural gas)
- Dual fuel option (future)
- Compact, low noise enclosures
- 8,000 hour maintenance interval
- Up to 80,000 hour engine life


ECC Absorption System


- Small Size, 2.5'x5, 7 ft high
- 15 tons of cooling @ 95 F
- Higher capacities at lower ambient
- COP 0.6 1.0
- Up to 100 kW of hot water @ 140 F
- Air Cooled condenser & package
- Excellent Part Load Characteristics
- Low refrigeration temperatures
- Simple controls
- 8,000 hour maintenance interval
- 20 year life

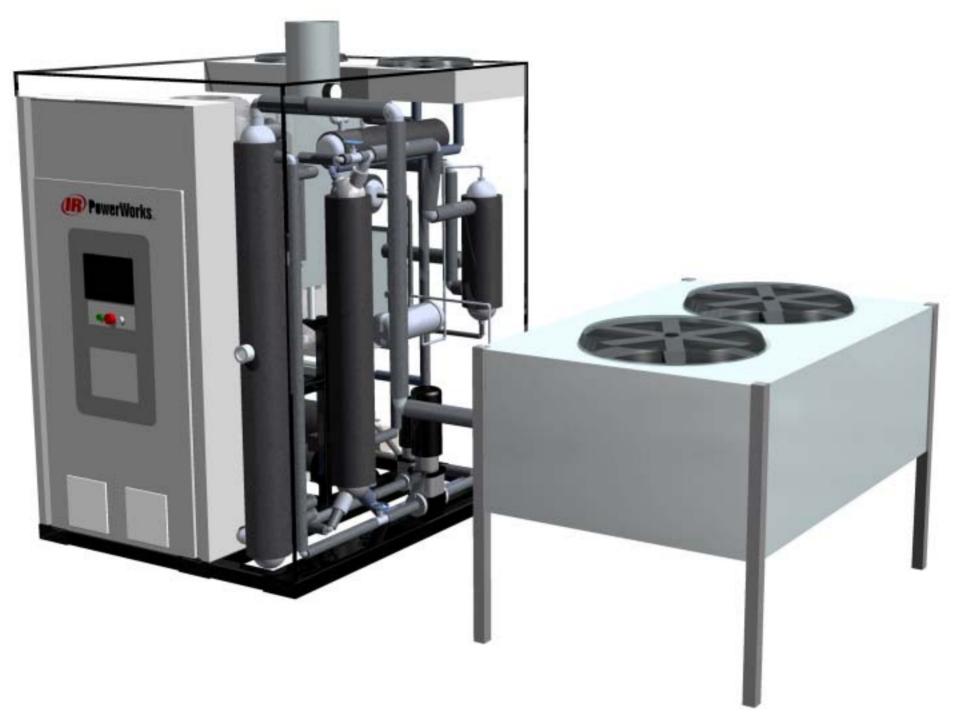
Heat Recovery Vapor Generator

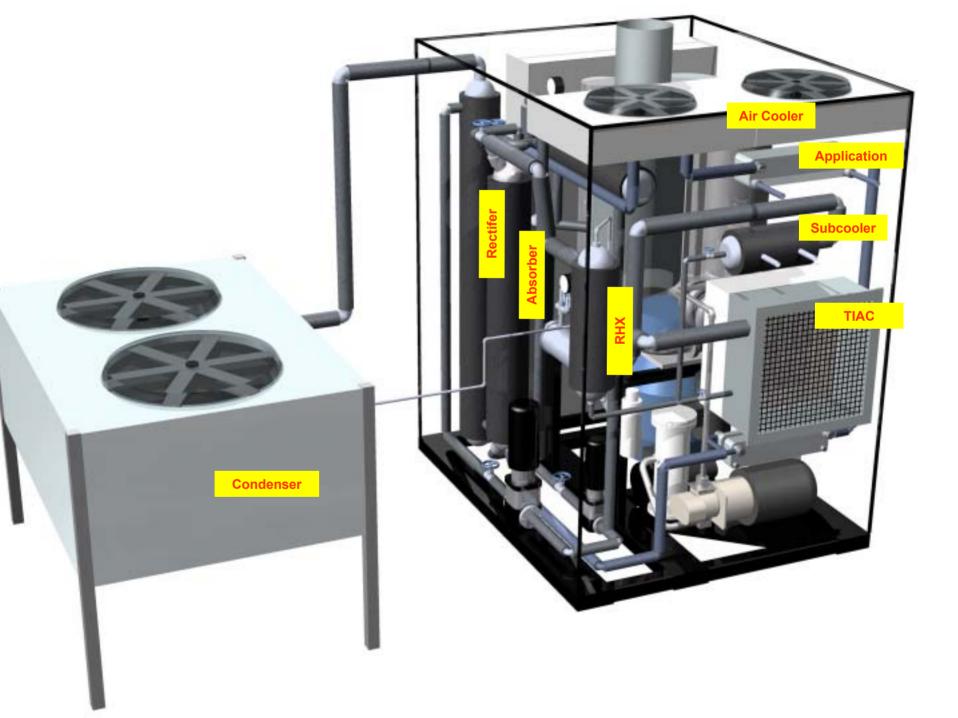

- Compact coil mounts to turbine exhaust flange
- Lightweight stainless tubing with aluminum fins
- Low flow resistance minimizes backpressure
- Can be dry-fired
- No need for bypass duct

Turbine/Chiller Schematic

Standard Supermarket Refrigeration System - with **PowerWorks-Subcooler**

BCHP Package Layout/Specification


- Single Skid 6x6 ft 7 ft high with detached condenser
 - Factory assembled outdoor enclosure
 - Well packaged with minimum ammonia charge
 - Minimal installation cost
- Common cooling loop
 - Absorber cooling in series with PowerWorks lubrication system
 - Application heat exchanger and heat dump radiator


Year-round operation

- Base load operation
- Cooling capacity utilized for engine inlet air cooling and supermarket subcooling
- Heat available for space heating, desiccant regeneration, and hot water

Minimum maintenance

- No winterization
- No cooling tower
- Annual service visit: fans and pump

PowerWorks BCHP in Hussmann Enclosure

Test Results

- COP close to design
- Heat Recovery and cooling within 80% of design.
 - Low turbine exhaust temperature
 - Component heat losses
 - High parasitic power
 - Non-optimum flow rates
- First-generation test results indicate that there are no show stoppers.

Test Results

Parameter	Design	Actual	Design	Actual
Ambient Temperature – deg F	68	65	82	84
TIAC Outlet – deg F	40	43	48	46
Lift – deg F	69	57	66	74
СОР	0.659	0.667	.675	.654
Heat Recovery – kW	75.3	69.6	76.4	60.7
Cooling - Tons	14.1	13.2	14.7	11.3

BCHP Program Plan

- Project Plan
- <u>Commercialization</u> Study
- Package System Concept Definition
- Optimization and Final Design
 - Thermo-economic optimization
 - Preliminary hardware selection
 - Breadboard absorber unit build & test
- Prototype Fabrication
 - Microturbine & Enclosure,
 - Absorber Prototype Addition
 - Commissioning at IR
- Laboratory Testing
 - Testing
 - Reports

Completed: Nov. 2001 Completed: March 02 Completed, May 02

Completed, July 02 Completed Sep 02 July 02 - February 03

Completed Jan 03 Completed Jun 03 Completed Aug 03

Completed Oct 03 Ongoing

Future Development

Controls

- Improve stability
- Hands-off startup and operation
- Components
 - Upgrade to achieve design capacities
 - Reduce refrigerant and working fluid inventories

Reduce parasitics

- Component sizing and selection
- Balance flows

Packaging

Complete single-skid unitary outdoor package

Future Development - cont

- Develop and implement improved operational strategies
 - Energy pricing & demand scheduling
 - Allocation of cooling between TIAC and subcooling

Reduce System Costs

- Simplify system design
- Refine component design
- Sourcing of key components

Field Evaluation

- Reliability
- Performance
- Economics
- Additional Applications
 - Larger sizes
 - □ Other engines (e.g., IC)
 - Other markets

Market challenges: First Cost !

- Utilize IR-Retail Solutions/Hussmann sales, installation and service
 - The market leader in this business sector
- Ship turn-key standard product
 - Hold down capital cost
 - Hold down installation cost
- Advancements in integrated microturbine / absorption technology
 - Commonalty of subsystems (heat rejection, controls, packaging)
 - Innovative heat exchangers used in NH3 absorber
- Design for ultra-high reliability and long service interval
 - Proven and conservative gas turbine design

Summary of Results

TIAC

- Boosts microturbine power and efficiency
- Reduces \$/kW at high ambients
- Single-effect Aqua-Ammonia Absorber
 - Achieves high COP from low-temperature exhaust without cooling tower
 - Provides secondary heat recovery at useful (140°F) temperature
 - High-glide desorber increases recoverable heat at high average input temperature for good cycle efficiency
- Heat Recovery Vapor Generator
 - Lightweight low-pressure-drop coil mounts directly on turbine exhaust flange
 - Self-draining design permits dry-firing; avoids need for bypass duct
- Refrigerant Subcooling
 - Practical CHP interface for supermarket (and other) refrigeration with high displaced power impact
- Energy Savings
 - Over 40% generated-plus-displaced electrical efficiency
 - Over 80% thermal efficiency