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Abstract
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1. Introduction

The inflation-unemployment tradeoff is central to our understanding of the business cycle and,

especially, the effectiveness of monetary policy; yet macroeconomists have yet to come up

with a satisfactory explanation of it. Much of the recent literature in this area incorporates

time-contingent nominal contracts in a dynamic general equilibrium framework to generate the

“New Phillips Curve.”1 These models are widely used in the analysis of monetary policy.2

Nevertheless, it is widely recognized that the models’ predictions do not accord with some

important empirical regularities. In particular, the models have trouble accounting for inflation

persistence. They also have difficulty explaining why monetary shocks have such a delayed and

gradual effect on inflation. Another well-known criticism is that since the New Phillips curve

is forward-looking, credible disinflations announced beforehand give rise to booms rather than

recessions. The traditional Keynesian expectations-augmented Phillips curve does not of course

suffer from these deficiencies, but it has received no proper microfoundations. In recent years

various attempts have been made to bring the predictions of the New Phillips curve more closely

into line with the traditional one, but no consensus on the nature of the Phillips curve has yet

been reached.

What is generally ignored in the recent literature, however, is that both types of Phillips

curves share a major deficiency. It is that if the natural rate of unemployment - or its empirical

counterpart, the nonaccelerating inflation rate of unemployment (NAIRU) - is taken to be

reasonably stable through time, then inflation must fall (rise) without limit when unemployment

is high (low). This prediction is blatantly counterfactual.

This paper proposes a reappraisal of the inflation-unemployment tradeoff, one that avoids

the difficulties above. Our theory is based on a phenomenon we call “frictional growth,” growth

in the presence of frictions. We focus on nominal frictions arising from time-contingent staggered

nominal contracts,3 and on growth of the money supply. In this context, frictional growth

1It is also known as the “New Keynesian Phillips Curve” or the “New Neoclassical Synthesis.” For surveys
see, for example, Gali (2002), Goodfriend and King (1997), Mankiw (2001), and Roberts (1995).

2See, for example, Clarida, Gali, and Gertler (1999).
3State-contingent nominal contracts (menu costs) need not imply nominal inertia at the aggregate level, as



describes the movements of real and nominal variables as the outcome of the interactions

between the nominal frictions and money growth.

From the microfoundations of staggered nominal contracts under time discounting,4 it is

now well known that, when the temporal discount rate is positive, current nominal values are

influenced more strongly by the past than by the future nominal values. Specifically, current

wages are a weighted average of past and future prices, with future prices receiving less weight.

We will show that this asymmetry generates inflation inertia.

This source of nominal inertia cannot be dismissed as a fine point of high theory. The

usual argument - that the relevant time discount rate is close to zero and thus, as a first

approximation, the backward- and forward-looking determinants can be weighted equally -

turns out to be seriously misleading. On the contrary, as we will show below, the weights are

very sensitive to small variations in the time discount rate and, over the empirically reasonable

ranges of the relevant parameters, the resulting asymmetry can have dramatic implications for

the long-run relation between inflation and unemployment.

Our analysis indicates that when the money supply grows in the presence of inflation inertia,

the price level chases after a moving target. This “target price level” is what the price level

would be in the absence of nominal frictions (instantaneous price adjustment). Since the money

supply keeps rising from period to period, the price adjustments never work themselves out fully.

By the time the current price level has begun to respond to the current increase in the money

supply, the money supply rises again, prompting a new round of price adjustments.

In this setting, we will show that an increase in money growth causes the actual price level to

lag further behind the target price. Specifically, suppose that the economy is initially in a long-

run steady state, with the money supply growing at a constant rate and the price level rising

in proportion. Next, suppose that there is a permanent, positive shock to money growth. Since

the current price level depends more heavily on the past price than on the expected future

price, the price level now falls further behind its target. Whereas the target price increases

shown by Caplin and Spulber (1987).
4Regarding Taylor contracts, see for example Helpman and Leiderman (1990), Ascari (2000), and Graham

and Snower (2002); for Calvo contracts, see for example Bernanke, Gertler and Gilchrist (2000) and Gali (2002).
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proportionately to the money supply (in the absence of money illusion), the actual price level

- continually lagging behind - increases less than proportionately.5 Thus, in the long run, real

money balances rise and unemployment falls. In short, the long-run Phillips curve is downward-

sloping - even though there is no permanent nominal rigidity or any departure from rational

expectations.

By analogy, consider a running child, clutching a rubber band attached to a helium balloon.

The faster the child runs, the greater will be the distance between the balloon and the child.

Like the price level, the balloon is chasing a moving target, and the faster the target moves,

the further the balloon will fall behind it.

Our analysis generates plausible impulse responses to shocks in money growth. Unemploy-

ment responds quickly, but the unemployment effect dies down with the passage of time. The

inflation response is more delayed and gradual. The only non-standard feature is that, in the

long run, an increase in money growth leads to an equal increase in inflation and a fall in the

unemployment rate.

Thus far, downward-sloping long-run Phillips curves have been considered unacceptable

(even heretical) on theoretical grounds. In the absence of money illusion - so the conventional

argument goes - real economic activities do not depend on the unit of account and, by implica-

tion, monetary policy can have no long-term effect on unemployment. Our analysis calls this

argument into question. The absence of money illusion implies that real economic activities are

unaffected by a proportional change in all nominal variables (past, present, and future). But

under inflation and inertia and money growth, current nominal variables do not move propor-

tionately to the money supply. As noted, these variables lag behind their target values (which

are proportional to the money supply), and the faster the money supply grows (ceteris paribus),

the further behind they lag. Thus the absence of money illusion does not imply money super-

neutrality; and when money is not super-neutral an increase in money growth can of course

have a long-run effect on unemployment. In short, under the standard classical principles, in

5In both the initial and final steady states, the price level is chasing after its moving target and the distance
between the actual and target price levels remains constant. But in the final steady state this distance is larger
than in the initial steady state.
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which all demand and supply functions are homogeneous of degree zero in all nominal variables,

it is still possible for monetary shocks to generate a long-run tradeoff between inflation and

unemployment.

The paper is organized as follows. In Section 2 we relate our analysis to the existing litera-

ture. Section 3 describes our underlying model. Section 4 derives the associated forward-looking

short-run Phillips curve, which differs significantly from the standard specification of the New

Phillips curve. Given that we do not have much accurate data on inflation expectations, the

forward-looking Phillips curve has little observational content without a theory of expectations

formation. Under rational expectations, future expected inflation depends on agents’ informa-

tion about the current and past macroeconomic variables and about the underlying stochastic

processes. Having specified their information sets, we then derive a closed-form expression of

our short-run Phillips curve by expressing the expectation of future inflation in terms of current

and past macroeconomic variables. The resulting Phillips curve looks remarkably like the tra-

ditional backward-looking Keynesian Phillips curve. We will argue that the critical difference

between the forward-looking New Phillips curve and the traditional backward-looking one does

not hinge - as much of the existing literature suggests - on whether current inflation depends

on future inflation or on past inflation. Rather, the forward-looking Phillips curve satisfies

a set of parameter restrictions (determined by the microfoundations of the model) that the

backward-looking one is not subject to.

In Section 5 we derive the long-run Phillips curve. It turns out that, for reasonable parameter

values, this curve may be quite flat (although the short-run Phillips curve is of course flatter).

In Section 6 we link the short- and long-run Phillips curves by examining the impulse-response

functions of inflation and unemployment to monetary shocks. We find that the lower is the

discount rate, the steeper is the associated long-run Phillips curve (ceteris paribus), but the

longer it takes for unemployment, inflation, and the slope of the Phillips curve to converge to

their long-run values. Thus, observationally, it may make little difference whether the long-run

Phillips curve is flat (so that a money growth shock has a permanent effect on unemployment)

or near-vertical (so that the effect is not permanent, but very prolonged).
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Section 7 provides an illustrative empirical analysis of the U.S. inflation-unemployment

tradeoff, allowing for frictional growth. We show that the resulting impulse-response functions

are in broad accord with the stylized facts, but the long-run Phillips curve is not vertical.

Finally, Section 8 concludes with some thoughts on the role of monetary policy and productivity

growth in accounting for the U.S. trajectories of inflation and unemployment in the 1990s.

2. Relation to the Literature

The traditional Keynesian expectations-augmented Phillips curve - in its simplest form, πt =

πt−1 − b (ut − un) + εt, where π is the inflation rate, u is the unemployment rate, un is the

natural rate of unemployment or NAIRU, b is a positive constant, and εt is white noise - has

been called “a fact in search of a theory,” since it has proved difficult to rationalize it through

microfoundations. The New Phillips curve - in its simplest form, πt = Etπt+1− b (ut − un)+ εt,

where Et denotes expectations set at time t - has been derived from microfoundations, but

it is less successful in accounting for the stylized facts. (With a bit of exaggeration, it could

be called “a theory in search of a fact.”) In particular, the New Phillips curve runs into the

following well-documented problems:

(i) It has difficulty accounting for inflation persistence, with autocorrelations close to unity.6

(ii) It cannot explain why monetary shocks have a delayed, gradual effect on inflation.7

(iii) Nor can it explain why monetary shocks give rise to hump-shaped unemployment re-

sponses.

(iv) It has the counterfactual implication that announced, credible monetary contractions

lead to “disinflationary booms” rather than recessions.8

6Fuhrer and Moore (1995) have shown that although the Taylor model can account for slow adjustment of
wages and prices, inflation is a jump variable that can adjust instantly (much like the capital stock adjusts
slowly even though investment can adjust instantly).

7See, for example, Mankiw (2001).
8See Ball (1994). When monetary policy is credible, the announcement of a monetary contraction leads

firms to expect disinflation, and thus they moderate their price rises even before the money supply slows down.
Consequently, real money balances rise, stimulating aggregate demand and reducing unemployment. Conversely,
expansionary monetary policy has a contractionary effect on unemployment. In practice the opposite happens;
for a recent appraisal, see for example Ball (1997, 1999).
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In recent years various attempts have been made to rectify these problems. For example,

Mankiw and Reis (2001) address them in a model where price information disseminates grad-

ually among economic agents. Roberts (1997) constructs a model in which price expectations

are not fully rational. Ball (1995) investigates the effects of monetary policy that is not fully

credible. Fuhrer and Moore (1995) generate inflation persistence through staggered real (rather

than nominal) wages. Gali (2002) and Gali, Gertler, and Lopez-Salido (2001) examine inflation

persistence in terms of price staggering and the cyclical behavior of marginal costs. Lindbeck

and Snower (1999) examine the real effects of monetary shocks in the presence of price pre-

commitment and production lags. Huang and Liu (2002) show that wage staggering is more

effective than price staggering in amplifying real persistence of monetary shocks. Helpman and

Leiderman (1990) and Erceg, Henderson and Levin (2000) examine the interaction between

price- and wage-staggering. Some authors, e.g. Estrella and Fuhrer (1998) focus on rigidities

such as habit formation in consumption. Other contributors derive real and nominal persis-

tence from complementarities between wage-price staggering and various real rigidities. For

instance, Christiano, Eichenbaum, and Evans (2001) and Dotsey, King, and Wolman (1997)

examine the interaction between nominal staggering and variable capital utilization. Jeanne

(1998) examines the complementarity between price staggering and real wage rigidity. Bergen

and Feenstra (2000) investigate the real effects of monetary shocks under staggered price setting

in the context of a translog demand structure and roundabout input-output technologies. Kiley

(1997) examines the interaction between price staggering and increasing returns in production.

Huang and Liu (2001) analyze price staggering in a vertical input-output structure.

As noted, however, both the New and traditional (expectations-augmented) Phillips curves

suffer from what may be called the “knife-edge problem”: If the natural rate is assumed to

be reasonably constant - and most estimates of the NAIRU are indeed quite stable through

time - then inflation changes without limit for as long as the unemployment rate remains above

or below this NAIRU.9 Empirical support for such behavior is thin to non-existent; there is

9Specifically, the traditional Phillips curve implies that ∆πt = −b (ut − un)+εt, so that inflation falls (rises)
without limit when unemployment is high (low), relative to the NAIRU. By contrast, the New Phillips curve
implies that ∆πt+1 = b (ut − un)+εt+1 (where εt+1 = πt+1−Etπt+1 is an expectational error), so that inflation
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certainly no evidence of limitlessly large deflation when unemployment is high (ut > un in the

traditional Phillips curve) or low (ut < un in the New Phillips curve). In Europe the rise in

unemployment over much of the 80’s and early 90’s despite stable inflation is not in accord with

this interpretation.10 In the US, the fall in both inflation and unemployment during much of

the 90’s does not fit it either.

There are two ways of avoiding the knife-edge problem. One is to assume that the NAIRU

varies through time in agreement with the NAIRU hypothesis.11 Then the NAIRU hypothesis

becomes tautologous and thus lacks explanatory power. The charge of tautology can only be

avoided if we provide convincing ex ante explanatory evidence for the predicted movements of

the NAIRU. But such evidence is often hard to come by. For example, if the movements of

the NAIRU relative to the actual unemployment rate are to be inversely related to movements

in inflation (according to the traditional Phillips curve), then the NAIRU must have been

rising during the European stagflation of the mid-70’s and early 80’s and during the climb

of unemployment in the mid-80’s and early 90’s. But it is far from clear where these NAIRU

movements could have come from. The large increases in union density, unemployment benefits

and benefit durations, and other welfare state entitlements, as well as the increased stringency

of job security legislation, occurred primarily in the 60’s and early 70’s in Europe. By the 80’s

and 90’s these trends had largely ceased and there were even important moves in the opposite

direction.12 The alleged fall in the U.S. NAIRU in the second half of the 90’s is also not easy

to explain.13 With 20-20 hindsight, it is of course possible always to identify new constellations

of economic variables that could plausibly have pushed the NAIRU in any direction required

rises (falls) without limit when past unemployment is high (low).
10The rise of European inflation and unemployment in the mid-70s and early 80s is not in agreement with

the traditional Phillips curve, with a stable NAIRU.

11In other words, the variations in the NAIRU are such that the resulting difference between the NAIRU and
the actual unemployment rate is always inversely proportional to variations in the inflation rate, according to
the traditional Phillips curve, or directly proportional to the inflation variations, according to the New Phillips
curve.
12Rising interest rates and tax rates may well have played a role in driving the NAIRU upwards over the

80’s, but the timing of these factors does not always mesh well with the timing of the unemployment increases
in various European countries. The relevant literature is voluminous and well-known; an impressive example is
Phelps (1994, ch. 17).
13This literature is also well-known. See, for example, Phelps (1999) and Phelps and Zoega(2001).
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by the underlying theory. But the selective nature of this exercise has made a growing number

of economists uncomfortable.

The other way to avoid the knife-edge problem is to dispense with the NAIRU. Clearly,

as the NAIRU hypothesis implies that inflation keeps falling or rising when unemployment

deviates from the the NAIRU, the way to avoid this knife-edge property is to drop the NAIRU

hypothesis, which implies that the long-run Phillips curve is not vertical.

The existing empirical evidence on the NAIRU hypothesis and the slope of the long-run

Phillips curve is distinctly mixed, and has led major contributors such as Mankiw (2001) to be

“agnostic” on the issue. Given economists’ predilection for the classical dichotomy, it is striking

that a number of well-known recent studies reject it. King and Watson (1994) and Fair (2000)

find a long-run inflation-unemployment tradeoff. Ball (1997) shows that countries experiencing

comparatively large and long declines in inflation tend also to encounter comparatively large

increases in their NAIRU’s. Ball (1999) suggests that such a relationship may be due to

monetary policy: countries with relatively contractionary monetary policy in the 1980s tended

to have relatively large increases in their NAIRU’s. In Bernanke andMihov (1998) the estimated

impulse-response functions of unemployment to monetary shocks do not go to zero (although

the estimated influence is statistically insignificant). Akerlof, Dickens and Perry (1996, 2000)

find evidence of a long-term tradeoff between inflation and unemployment at low inflation

rates. Dolado, Lopez-Salido and Vega (2000) find some evidence of such a tradeoff over the

entire range of observations for Spain during 1964-1995.

Most of the recent literature on the Phillips curve ignores the knife-edge problem and is

compatible with the NAIRU hypothesis. Notable exceptions are Akerlof, Dickens and Perry

(1996, 2000), who show that the Phillips curve becomes downward-sloping at low inflation rates

when there are permanent downward wage rigidities or departures from rational expectations.

Our theory also dispenses with the NAIRU hypothesis, but in contrast with other contributions,

we show that the long-run Phillips curve is downward-sloping even in the absence of money

illusion, permanent nominal rigidities or departures from rational expectations, and that this

feature need not necessarily apply exclusively to low inflation rates. The analysis presented
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here provides a theoretical foundation and empirical support for this view. We now present a

theoretical model which formalizes our central ideas.

3. The Model

We construct a particularly simple macroeconomic model with the following salient features:

money illusion is absent, agents have rational expectations, the money supply grows, and there

is nominal inertia in the form of staggered wage contracts and time discounting. The dynamic

general equilibrium model underlying our macro model is presented in Graham and Snower

(2002). For brevity, we skip the standard microfoundations of our macro relations, but we will

interpret our results in the light of these microfoundations.

All variables in our model - except the unemployment rate - are in logs . All uninteresting

constants are ignored.

Aggregate product demand depends on real money balances:14

QD
t =Mt − Pt, (3.1)

where Mt is the money supply and Pt is the price level. The aggregate production function

exhibits constant returns to labor:15

QS
t = Nt, (3.2)

where Nt is aggregate employment. The product market clears, so that

QD
t = QS

t . (3.3)

The labor supply is constant:

Lt = L, (3.4)

14In the standard derivation of this demand function, households maximize a CES utility function, containing
consumption and real money balances as arguments, and additively separable labor.
15Since we seek to derive the long-run inflation-unemployment tradeoff, this labor demand function is inter-

pretted as a long-run relation.
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so that the unemployment rate (not in logs) can be approximated as

ut = L−Nt. (3.5)

Substituting equations (3.1)-(3.4) into (3.5), we obtain a simple unemployment equation:

ut = L− (Mt − Pt) (3.6)

Since we are interested in the long-run inflation-unemployment tradeoff, we need to consider

permanent shocks to money growth, which move the economy along this tradeoff. Thus let the

growth rate of the money supply be a random walk:

∆Mt ≡ µt = µt−1 + εt, (3.7)

where Mt is the log of the money supply and εt is a white-noise error term. We assume that

rational agents at time t know the stochastic process generating money growth, and have

information up to the shock εt, but do not know future realizations of the money growth

shock.16

To close the model, we need to specify the relation between the price level and the money

supply. We do this through wage and price setting equations, which depict sluggish nominal

adjustment due to staggered wage contracts à la Taylor (1979, 1980a).17 We make the standard

16Although the random walk assumption receives some moderate support from the data (see Appendix 1a),
our qualitative conclusions do not hinge on it. Appendix 1b shows how our central results can be derived from
other money growth processes as well.
17The main alternative models of time-contingent contracts are (i) the Rotemberg (1982) model (in which

each firm is assumed to face quadratic costs of price adjustment, which it minimizes) and (ii) the particularly
popular Calvo (1983) model (in which each firm has to keep its price fixed until it receives a random “permission-
to-adjust-price” signal, and the probability of receiving this signal remains constant through time). These
alternatives however are problematic. In Rotemberg’s approach, it is unclear why the cost of price change
should be positively related to the magnitude of price change. In fact, the menu cost literature has been built
up on the explicit assumption that no such relation exists. Regarding Calvo’s approach, it is obviously far-
fetched to assume that a firm’s probability of price adjustment is independent of how long it has been since its
last price adjustment. Nevertheless the Calvo model is commonly used as a convenient algebraic shorthand for
the Taylor model. However, our analysis, like that of Kiley (2002), calls this presumption into question.
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assumption that there are two nominal wage contracts, each lasting for two periods18 and evenly

staggered. Let Wt be the log of the contract wage, set at the beginning of period t for periods

t and t+ 1. The Taylor contract equation is19

Wt = αWt−1 + (1− α)EtWt+1 + γ [c+ αΓt + (1− α)EtΓt+1] + ωt, (3.8)

where α and γ are positive constants, 0 < α < 1, Et denotes expectations formed in period

t, ωt is a white noise process, and Γt is what Taylor calls “excess demand,” i.e. the difference

between actual output (Qt) and full-employment output (Qt = L, by the production function

(3.2)):20

Γt = Qt − L. (3.9)

A well-known result from the microfoundations21 of this contract equation is that α is a dis-

counting parameter: α = 1
1+δ
, where δ is the time discount factor.22 The “demand sensitivity

parameter” γ describes how strongly wages are influenced by demand, and the “cost-push pa-

rameter” c gives the upward pressure on wages in the absence of excess demand. We assume

that the wage setters have knowledge of nominal wages and excess demands up to period t, and

of the contract shock up to period t− 1, so that Etωt = 0.

Since there are constant returns to labor in the production function (3.2), the price level is

18For algebraic simplicity, we assume that the length of the wage contracts is constant through time. Romer
(1990) and others provide models of endogenous frequency of nominal adjustment. Our model can be extended
in this way, assuming that firms face a tradeoff between the costs of price adjustment and the loss from allowing
prices to stray from their frictionless, profit-maximizing levels. However, it is easy to see why this extension
makes no substantive difference to our qualitative conclusions: Since greater frequency of adjustment involves
higher costs, an increase in money growth does not lead to a completely counterveiling change in contract
length, and thus money is not superneutral.
19For brevity, once again, we skip the standard derivation of the microfoundations of this contract equation.

See Ascari (2000); alternatively, see Huang and Liu (2002) and allow the discount factor to be less than unity.
20Since employment cannot exceed the labor force, excess demand is always negative in our model.
21Helpman and Leiderman (1990), Ascari (2000), and Graham and Snower (2002).
22This interpretation of α holds exactly when the steady state money supply is constant. Thus our theoretical

analysis applies to sufficiently small variations in money growth around this steady state. However, our empirical
analysis below, as we will see, applies to larger variations, since the estimated behavioral equations are associated
with the actual variations in money growth.
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a constant mark-up over the average wage:

Pt =
1

2
(Wt +Wt−1) . (3.10)

In sum, our model contains four basic building blocks: (i) the unemployment equation (3.6),

(ii) the wage contract equation (3.8), (iii) the price equation (3.10), and (iv) the money supply

equation (3.7). The supply and demand sides of the economy are equilibrated through the wage

contract equation (3.8): if product supply rises relative to product demand (in period t), then

excess demand Γt falls, putting downward pressure on the nominal wage Wt. The fall in the

nominal wage, in turn, puts downward pressure on the price level (by eq. (3.10)). Thus, given

the money supply (3.7), real money balances rise and aggregate demand is stimulated.

In the context of this model, we now proceed to derive the Phillips curve, first in the

short-run and then in the long-run.

4. The Short-Run Phillips Curve

To derive the short-run Phillips curve, we substitute the wage contract equation (3.8) into the

price mark-up equation (3.10) to obtain the following price equation:23

Pt = αPt−1 + (1− α) (EtPt+1 + νt) + γc+
1

2
(ωt + ωt−1)

+
γ

2
(αΓt−1 + αΓt + (1− α)Et−1Γt + (1− α)EtΓt+1) . (4.1)

where νt = Et−1Pt − Pt is an expectational error term. Just as the current nominal wage

depends on past and future wages (by (3.8)), so the current price level depends on past and

future prices. This equation implies the following forward-looking short-run Phillips curve:24

23To see this, substitute (3.8) into (3.10) and note that 1
2 (EtWt+1 +Et−1Wt) =

1
2 (EtWt+1 +Wt) +

1
2 (Et−1Wt +Wt−1)− 1

2 (Wt +Wt−1) = EtPt+1 + νt.
24Add the term− (1− α)Pt to both sides of the previous equation and note that Γt = Qt−Lt = Nt−Lt = −ut.
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πt =

µ
1− α

α

¶
Etπt+1 +

γc

α
(4.2)

− γ

2α
[αut−1 + αut + (1− α)Et−1ut + (1− α)Etut+1] + ηt

where ηt =
1−α
α
νt +

1
2α
(ωt + ωt−1).

This equation differs from the standard New Phillips curve (πt = Etπt+1 − b (ut − un) + εt)

in two important respects:

• Inflation depends not just on current unemployment, but also on past and future un-
employment. It has been argued that since unemployment has a high degree of serial

correlation, the weighted average of past, current, and future unemployment may be ap-

proximated by the current unemployment rate.25 But this argument runs afoul of the

Lucas critique: the degree to which current unemployment depends on past and future

unemployment is affected by macro policy (the monetary policy equation (3.7)) and thus

cannot be specified a priori.

• The coefficient on future inflation ((1− α) /α) is not unity unless α = 1/2 which is the

case only when the future is not discounted (α = 1
1+δ

and δ = 1). Under discounting,

α > 1/2 and thus the coefficient on future inflation is less than unity. This implies that

the NAIRU does not exist, i.e. there does not exist a unique unemployment rate (at any

time t) that is consistent with constant inflation.26

Of course the forward-looking Phillips curve (4.2) is not the full solution of our macroeco-

nomic model, since this Phillips curve involves expectations of future inflation. To solve the

model, these expectations must be derived from the model’s underlying stochastic processes

and expressed in terms of current and past macroeconomic variables.

25See, for example, Roberts (1995).
26Staggered pricing à la Calvo can also yield a coefficient on future inflation that is not unity, as shown in

Bernanke, Gertler and Gilchrist (1998), Gali (2002), and others.
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We proceed to do so and thereby find a closed-form expression of our short-run Phillips

curve. The first step is to find the equilibrium wage and price level in terms of current and

past variables. It can be shown27 that the equilibrium nominal wage is

Wt = (1− λ) c+ λWt−1 + (1− λ)Mt + κ (1− λ)µt − (1− λ)L+ ωt, (4.3)

where λ =
φ2
φ3
−
r³

φ2
φ3

´2−4³ φ1
φ3

´
2

, φ1 = α
¡
1− γ

2

¢
, φ2 =

¡
1 + γ

2

¢
, φ3 = (1− α)

¡
1− γ

2

¢
, κ = α(1+λ)

α
1−α−λ

>

0, and 0 < λ < 1. The equilibrium price level is28

Pt = (1− λ) c+ λPt−1 + (1− λ)Mt + (1− λ)

µ
κ− 1

2

¶
µt (4.4)

−1
2
κ (1− λ) εt − (1− λ)L+

1

2
(ωt + ωt−1) .

Thus the inflation rate is29

πt = λπt−1 + (1− λ)µt +
1

2
(1− λ) (κ− 1) εt

+
1

2
κ (1− λ) εt−1 +

1

2
(ωt + ωt−2) . (4.5)

The price equation (4.4) also implies that equilibrium real money balances are30

Mt − Pt = − (1− λ) c+ λ (Mt−1 − Pt−1) + (1− λ)

µ
2α− 1

γ

¶
µt

+
1

2
κ (1− λ) εt + (1− λ)L− 1

2
(ωt + ωt−1) . (4.6)

27See Appendix 2.1.
28See Appendix 2.2.
29See Appendix 2.3.
30See Appendix 2.4.
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Thus the equilibrium unemployment rate is31

ut = (1− λ) c+ λut−1 − (1− λ)

µ
2α− 1

γ

¶
µt (4.7)

−1
2
κ (1− λ) εt +

1

2
(ωt + ωt−1) .

By the inflation equation (4.5), the unemployment equation (4.7), and the money supply

equation (3.7), we obtain our closed-form short-run Phillips curve (Appendix 2.6):

πt = d0 + d1πt−1 − d2ut − d3ut−1 + d4ut−2 + eωt, (4.8)

where

d0 = ψc, d1 =
ψκ

2
, d2 =

ψ (1 + κ)

2
, d3 =

ψ

2
, d4 =

ψκ

2
, ψ =

1
2α−1
γ
+ κ

2

(4.9)

eωt =

h³
1 + ψ(1+κ)

2

´
ωt +

3ψ
2
ωt−1 +

³
1 + ψ(1−κ)

2

´
ωt−2 − ψκωt−3

i
2 (1− λB)

. (4.10)

The above error term is an infinite moving average (IMA) process in terms of ωt, with para-

meters which are non-linear functions of the theoretical parameters ψ, κ, and λ.32 Inspection

of equations (4.9) shows the following relationships among the slope coefficients of (4.8):

d4 = d1, and d3 = d2 − d1. (4.11)

Note that the closed-form Phillips curve (4.8) looks like the traditional backward-looking

Keynesian Phillips curve. Nevertheless, given our macroeconomic model, our closed-form

Phillips curve (4.8) is of course equivalent to our forward-looking Phillips curve (4.2). This is

noteworthy because the standard way of distinguishing the backward-looking from the forward-

looking Phillips curves is in terms of lags and leads: in the backward-looking curve, current in-

flation depends on past inflation, whereas in the forward-looking curve it depends on expected

31See Appendix 2.5.
32ψ, κ, and λ are of course functions of the more basic time-discount parameter α and the demand-sensitivity

parameter γ.
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future inflation. Our analysis suggests that this distinction is bogus. Since expectations of

future inflation can be restated in terms of the current and past values of the variables, any

Phillips curve with forward-looking inflation expectations can be turned into a Phillips curve

in which current inflation depends on past inflation.

What, then, is the relation between the traditional backward-looking, expectations aug-

mented Keynesian Phillips curve and our forward-looking one? In the traditional Phillips

curve, the coefficients on past inflation and on unemployment are unrestricted, with one ex-

ception: since the traditional expectations-augmented Phillips curves is compatible with the

NAIRU, the coefficient on past inflation was restricted to d1 = 1. In our forward-looking

Phillips curve, as we have seen, this restriction does not apply.33 Instead, the coefficients of

this forward-looking Phillips curve must satisfy the restrictions (4.11) and its error term (eωt)

follows the IMA process given by (4.10).34

5. The Long-Run Phillips Curve

In the long-run steady state, πt = πt−1, ut = ut−1, and the white noises error terms εt, and ωt

are zero. Thus, by (4.5), the long-run inflation rate is35

πLRt = µLRt . (5.1)

The long-run unemployment rate is (by (4.7))

uLRt = −
µ
2α− 1

γ

¶
µLRt + c. (5.2)

33In this respect, our forward-looking Phillips curve resembles the old-style Phillips curves prior to the “dis-
covery” of the NAIRU. Our long-run Phillips curve is vertical only when the rate of time discount is zero.
34These conditions, however, should not be viewed as restrictions imposed on an estimated Phillips curve

equation, for two related reasons. First, the IMA error term is not estimable. Second, as we argue in Section
7, the phenomenon of frictional growth cannot be captured through single-equation estimation of the inflation-
unemployment tradeoff, but requires multi-equation estimation, describing how wages and price depend on
the money supply and how unemployment depends on the relation between money and prices (or some other
relation between real and nominal variables).
35Since money growth follows a random walk, the long run money growth rate varies through time (µLRt has

a time subscript) and the long-run inflation rate is time-varying as well.
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Substituting equation (5.1) into (5.2), we obtain the long-run Phillips curve:

πLRt = −
µ

γ

2α− 1
¶
uLRt +

µ
γ

2α− 1
¶
c. (5.3)

Note that the sign of the slope depends critically on the value of the discounting parameter

α = 1
1+δ
, where δ is the discount factor.

Table 1:Slope of the long-run Phillips curve
slope

r (%) δ α γ = 0.05 γ = 0.07 γ = 0.10
1.0 0.990 0.502 −10.1 −14.1 −20.1
2.0 0.980 0.505 −5.05 −7.07 −10.1
3.0 0.971 0.507 −3.38 −4.74 −6.77
4.0 0.962 0.510 −2.55 −3.57 −5.10
5.0 0.953 0.512 −2.05 −2.87 −4.10

In much of the literature on the New Phillips curve,36 this parameter is set equal to a half,

thereby making the New Phillips curve consistent with the NAIRU hypothesis. However the

underlying reasoning - that the discount factor is close to unity - turns out to be misleading

because (a) the discounting parameter α depends nonlinearly on the discount rate and (b) the

slope of the long-run Phillips curve depends nonlinearly on the discounting parameter. Thus

small variations in the discounting parameter may have large effects on the slope of the long-run

Phillips curve, depending on the magnitude of the demand sensitivity parameter γ. There is

little agreement in the literature about the appropriate value of γ. Taylor (1980b) estimates it

to be between 0.05 and 0.1; Sachs finds it in the range 0.07 and 0.1; calibration of microfounded

models (e.g. Huang and Liu (2002)) assigns higher values. Table 1 presents the slope of the

long-run Phillips curve associated with various values of the discount rate r (where δ = 1
1+r
)

and the γ parameter.

Observe that for discount rates above 2 percent and the above range of γ values, the slope

of the long-run Phillips curve is quite flat. These results, however, are merely suggestive, since

36See, for example, Blanchard and Fisher (1989, p. 395). The authors however express discomfort with this:
“Even under lognormality of money and the price level (actually, even under certainty) the optimal rule is not
one in which the parameter is equal to a half” (p. 420).
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the theoretical model above is obviously far too simple to provide a reliable account of the

long-run inflation-unemployment tradeoff under frictional growth. For that purpose it would

be necessary to examine the role of other growing variables (such as capital and productivity)

in conjunction with other frictions (such as unemployment inertia). The illustrative empirical

model in Section 7 is a small step in this direction.

It can be shown that, for plausible parameter values, our short-run Phillips curve has a flatter

slope and lower intercept than its long-run counterpart.37 Figures 1 provide two examples of

associated short- and long-run Phillips curves. Observe that although the long-run Phillips

curve is nearly vertical when the discount rate is very low (at 0.1%) and much flatter when the

discount rate is high (5%), the short-run Phillips curve remains quite flat in both cases.
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Figure 1a: r=0.1%
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Figure 1b: r=5%
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Figures 1: The Short- and Long-Run Phillips Curves

γ = 0.05, c = 0.06

37In particular, the slope of the short-run Phillips curve (4.8) is ∂πt
∂ut

= d2 = − γ+γκ
2(2α−1)+γκ whereas the slope

of the long-run Phillips curve (5.3) is ∂πLRt
∂uLRt

= − γ
2α−1 . It can be shown that if, as is plausible, the long-run

slope is less than −1, the long-run Phillips curve is steeper than the short-run one. (This is a sufficient but not
necessary condition, as shown in Appendix 2.8). The intercept of the short-run Phillips curve (4.8) is given by

d0 =
³

2γ
2(2α−1)+γκ

´
c, which is smaller than the long-run Phillips curve (5.3) intercept:

³
γ

2α−1
´
c. (See Appendix

2.8).
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6. Theoretical Impulse Response Functions

We now examine the connection between the short- and long-run Phillips curves by deriving the

impulse response functions of inflation and unemployment to a monetary shock. Specifically,

consider a one-off unit shock to money growth (3.7), occurring at time t = 0: ε0 = 1 and εt = 0

for t > 0. This represents a permanent change in money growth. At time t = 0, economic

agents know the process (3.7) generating money growth, but not the realizations of the error

term εt+i, i ≥ 1.
Thus the monetary shock ε0 is known to the wage setters at time t = 0, but not at time

t = −1 (so that the expectations of wage setters at time t = −1 are E−1ε0 = 0). Since the

current wage W0 depends on the past wage W−1, the current wage W0 does not adjust fully to

the shock ε0. On this account, the shock has real effects.

Let R (πt) and R (ut) be the period-t responses of inflation and unemployment (respectively)

to the above money growth shock, ceteris paribus. By the inflation equation (4.5), we find that

the inflation responses through time are:

R (π0) = 1 +
1

2
[(1− λ)κ− (1 + λ)] ,

R (πt)
t≥1

= 1 + λt−1
µ
1 + λ

2

¶
[(1− λ)κ− λ] ,

R (πLR) ≡ lim
t→∞

R (πt) = 1 (long-run response). (6.1)

By the unemployment equation (4.7), the unemployment responses through time are:

R (ut)
t≥0

= −
µ
2α− 1

γ

¶
− λt (1 + λ)

2 (1− λ)
[(1− λ)κ− λ] ,

R (uLR) ≡ lim
t→∞

R (ut) = −
µ
2α− 1

γ

¶
, (long-run response). (6.2)

The impulse-response function for inflation always lies above the initial (t = 0) inflation

rate, and the impulse-response function for unemployment always lies below the inital (t = 0)
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unemployment rate. It can be shown,38 that the inflation and unemployment responses fall into

two broad classes:

1. Inflation and unemployment under-shooting: If κ < λ
1−λ , inflation gradually rises toward

its new long-run equilibrium (πt < πLR, and πt+1 > πt for t ≥ 0); unemployment gradually
falls towards its new long-run equilibrium (|ut| < |uLR| for t ≥ 0).

2. Inflation over-shooting slowly and unemployment over-shooting quickly: If λ
1−λ < κ <

1+λ
1−λ ,

39 then inflation rises, over-shooting its new long-run equilibrium after one period, and

then gradually falls toward this equilibrium (π0 < πLR, πt > πLR, and πt+1 < πt for t ≥ 1).
Unemployment falls, over-shooting its new long-run equilibrium, and then gradually rises

toward this equilibrium (|ut| > |uLR| , and |ut+1| < |ut| for t ≥ 0). The maximum impact
of the monetary shock on unemployment is achieved before the maximum impact on

inflation.

For most of the empirically reasonable parameter values given in Table 1, the impulse-

response functions can be shown to fall into Class 2, the class that accords with the stylized facts

(viz., the inflation responses to monetary shocks are delayed and gradual, the unemployment

responses occur more quickly). Figures 2 depict the impulse response functions for inflation,

unemployment, and the slope of the Phillips curve for the same parameter values as in Figures

1.40 The horizontal axis measures time; the left-hand vertical axis measures the slope of the

Phillips curve; and the right-hand vertical axis measures the inflation and unemployment rates.

Observe when the discount rate is very low (r = 0.1%), in Fig. 2a, the long-run Phillips

curve is virtually vertical, but the short-run Phillips curve at time t = 0 is very flat, and it

takes a very long time for unemployment, inflation, and the Phillips curve slope to reach their

long-run values.

By contrast, when the discount rate is higher (r = 5%), the long-run Phillips curve is quite

flat, and it takes a short time for unemployment, inflation, and the slope to reach their long-run
38See Appendix 2.9.
39It can be shown that κ cannot exceed 1+λ

1−λ . (See Appendix 2.9.)
40The value of c has no effect on the slope of the Phillips curve.
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values.
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Figures 2: Impulse Response Functions

γ = 0.05

It is easy to show that this pattern holds for the full range of discount rates: The lower the

discount rate (for a given value of the demand-sensitivity parameter γ):

• the steeper is the long-run Phillips curve and

• the longer it takes for the slope of the Phillips curve to converge to its long-run value.

Thus, observationally, it may make little difference whether the long-run Phillips curve is

flat - so that an increase in money growth permanently reduces unemployment - or near-vertical

- so that the effect is not permanent, but very prolonged. In other words, it may be difficult, if

not impossible, to distinguish in practice between a world in which there is quick convergence

to a flat long-run Phillips curve and one in which there is slow convergence to a steep one. In

both cases, monetary shocks have long-lasting effects on unemployment.

The underlying theme of our analysis has been that (a) in the presence of staggered wage

contracts and time discounting, current prices depend more heavily on past prices than on

future prices, (b) this asymmetry gives rise to inflation inertia, and (c) this inflation inertia,
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interacting with money growth, leads to downward-sloping inflation-unemployment tradeoff.

Given the impulse response functions above, we are now able to give a formal characterization

of inflation inertia and provide a rigorous foundation for this argument.

Inflation inertia arises in our model when the inflation response to a permanent money

growth shock is delayed, i.e. inflation responds only partially in the short run, taking time

to reach its long-run equilibrium value. In particular, we measure inflation inertia as the sum

of the differences through time between (i) the actual change in inflation in response to the

permanent money growth shock (R (πt)) and (ii) the inflation change that would have occurred

if inflation had responded instantaneously (R (πLR)): ρ =
P∞

t=0 (R (πt)−R (πLR)). By the

impulse response functions (6.1), it is easy to show that

ρ =
∞X
t=0

(R (πt)−R (πLR)) = −2α− 1
γ

(6.3)

Observe that inflation inertia turns out to be the inverse of the slope of the long-run Phillips

curve! The greater is the rate of time discount (the greater is the discounting parameter α), the

more heavily do current prices depend on past prices rather than future prices. As result, by

(6.3), there is more inflation inertia. On this account, the actual price level lags further behind

the growing money supply, so that real money balances increase, leading to a fall in long-run

unemployment along the long-run Phillips curve.

In this context it is also easy to show that we can avoid the counterfactual implication

of disinflationary booms, analogously to Mankiw and Reis (2001).41 In the context of the

Calvo model of random nominal adjustment, Mankiw and Reis avoid disinflationary booms

by assuming that only a fraction of agents receives updated information in each period. The

analogue in the Taylor model of fixed, staggered adjustment is to assume that all agents receive

information about monetary shocks with a one-period lag. It is trivial to see that if monetary

shocks are announced one period in advance and if agents’ information about these shocks is

41To see the problem of disinflationary boom in our analysis, suppose that monetary shocks are announced
one period in advance. Thus the money supply process is given by (3.7) and agents at time t have information
on the money supply up to time t+ 1. Then a disinflationary boom occurs if a drop in money growth between
period t and t+ 1 leads to a fall in unemployment.
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received one period in arrears, then the resulting model generates precisely the same results as

the model above. More generally, our model avoids the implication of disinflationary booms

whenever the lead time for monetary announcements is not greater than the lag time in agents’

information updates.

7. Empirical Analysis

To evaluate the inflation-unemployment tradeoff analyzed above, we estimate a dynamic struc-

tural model with the following building blocks, matching those of our theoretical model: (i)

an unemployment equation (the counterpart of the unemployment equation (3.6)), (ii) a wage

setting equation (the counterpart of the wage equation (4.3)), and (iii) a price setting equation

(the counterpart of the price equation (4.4)).42

We solve these three equations as a system and derive the implied inflation-unemployment

tradeoff. This empirical exercise merely aims to illustrate how an estimated Phillips curve

can be derived from equations describing the interplay between money growth and nominal

frictions. The exercise is no more than a preliminary first step towards a full-blown empirical

investigation,43 which lies well beyond the scope of this paper.

Our empirical analysis is based on multi-equation estimation, since the phenomenon of fric-

tional growth cannot be captured through the usual procedure of estimating a single-equation

Phillips curve. When we estimate a traditional or New Phillips curve as a single equation,

we are unable to assess how the effects of money growth work their way through the wage-

price adjustment process and thereby affect unemployment. Money growth does not enter a

single-equation Phillips curve at all; it is substituted out when the impulse-response function

42It is important to note that although our wage and price equations are specified solely in terms of current
and past variables, they can nevertheless be interpreted as the outcome of decisions by forward-looking agents.
As we have seen, forward-looking wage and price equations can be restated in terms of current and past variables,
since agents’ expectations of the future depend on their information about current and past variables and the
underlying stochastic processes.
43Such an analysis would, for example, contain a wider range of explanatory variables (e.g. dividing the labor

force into skilled and unskilled workers, distinguishing between productivity in different sectors of the economy,
etc.), a larger number of equations (e.g. the unemployment rate could be derived from labor demand and labor
supply equations, the capital stock could be endogenized, etc.), and so on.
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of inflation is substituted into the impulse-response function for unemployment to derive the

Phillips curve. On this account, we estimate a system in which the wage and price equations

portray nominal sluggishness (so that changes in money growth lead to changes in real money

balances), and the unemployment equation indicates how the changes in real money balances

affect the unemployment rate.

7.1. Data and Estimation

We use US annual time series data, obtained from the OECD and Datastream, covering the

period 1966-2000. The definitions of the variables are given in Table 2.

Table 2: Definitions of variables

Mt : money supply (M3) ft : financial wealth
³

SP500
labor productivity

´
Pt : price level ot : real oil price
Wt : nominal wages zt : working age population
ut : unemployment rate τ t : indirect taxes as a % of GDP
θt : real labor productivity bt : real social security benefits
mt : real money balances(Mt − Pt) ct : real social security contributions
kt : real capital stock ηt : real foreign demand (exports-imports)
All variables are in logs except for ut, foreign demand, ηt, and the tax rate, τ t.
The variables mt, ct, bt, and ηt have been normalized by working age population.
The financial wealth variable ft is defined as in Phelps and Zoega (2001).

The price setting, wage setting, and unemployment rate equations of our model were initially

estimated individually using the autoregressive distributed lag (ARDL) approach to cointegra-

tion analysis developed by Pesaran and Shin (1995), Pesaran (1997), and Pesaran et al. (1996).

These papers argue that the traditional ARDL approach justified when regressors are I(0), can

also be valid with I(1) regressors. An important implication of this methodology is that, since

an ARDL equation can always be reparameterized in an error correction format, the long-run

solution of the ARDL can be interpreted as the cointegrating vector of the variables involved.

The dynamic specification of each equation was determined by the optimal lag-length al-

gorithm of the Akaike and Schwarz information criteria. The selected estimated equations

are dynamically stable (i.e., the roots of their autoregressive polynomia lie outside the unit

circle), and pass the standard diagnostic tests (for no serial correlation, linearity, normality,
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homoskedasticity, and constancy of the parameters of interest) at conventional significance lev-

els.44 In order to take into account potential endogeneity and cross equation correlation, we

then estimated the equations as a system using three stages least squares (3SLS). These results

are presented in Table 3.45 The model tracks the data very well.46

Table 3: US model, 3SLS, 1966-2000.
Dependend variable: ut Dependend variable: Pt Dependend variable: Wt

coef. std. e. coef. std. e. coef. std. e.
ut−1 0.43 (0.12) Pt−1 1.19 (0.13) Wt−1 0.24 (0.10)
ut−2 −0.30 (0.11) Pt−2 −0.54 (0.08) ∆Wt−2 0.48 (0.10)
mt −0.12 (0.03) Wt−1 0.34 (0.10) Pt 0.68 (0.09)
ηt −0.16 (0.05) Mt 0.01 (∗) Mt 0.09 (∗)
∆kt −0.01 (0.002) ut −0.72 (0.16) ut −0.41 (0.17)
ot−1 0.01 (0.003) θt −0.30 (0.06) θt 0.32 (0.09)
ft −0.01 (0.005) ot 0.02 (0.004) bt 0.05 (0.02)
ct 0.04 (0.02) ot−1 0.01 (0.004)

ot−2 −0.01 (0.003)
τ t 0.02 (0.006)

(∗) coefficient is restricted so that there is no money illusion.
∆ denotes the difference operator.

In the unemployment equation, product demand-side influences are captured through real

money balances and financial wealth47 (affecting domestic demand), as well as net foreign de-

mand. Product supply-side influences are captured through the oil price, capital accumulation,

and social security contributions. Observe that the sum of the lagged dependent variable coef-

ficients is small and positive, implying a low degree of unemployment persistence. Since the US

unemployment rate is trendless, the explanatory variables in the unemployment equation need

to be specified as non-trended series as well. On this account, real money balances, social secu-

rity contributions and benefits, and foreign demand are normalized by working age population,

whereas financial wealth is deflated by productivity.

The price and wage equations are quite standard.48 Prices depend on wages and the money

44See Tables A2-A4 in Appendix 3.
45Constants and trends are omitted for brevity.
46The actual and fitted values of the estimated system are pictured in Appendix 4.
47See Phelps (1999), Fitoussi et al. (2000), and Phelps and Zoega (2001).
48In order for all variables in our price and wage equations to be integrated of the same order, the equa-

tions need to be reparameterized before estimation. For instance, consider the price equation in Table 2:
Pt = a0 + a1Pt−1 + a2Pt−2 + a3Wt−1 + (1− a1 − a2 − a3)Mt + β0xt,where β0 is a row vector of parame-
ters, and xt is a column vector of the real variables. The above can be reparameterized as (Pt −Mt) =
a0 + a1 (Pt−1 −Mt−1) + a2 (Pt−2 −Mt−2) + a3 (Wt−1 −Mt−1)− (a1 + a2 + a3)∆Mt − a2∆Mt−1 + β0xt. These
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supply, and wages depend on prices and the money supply. Productivity has a positive effect

on nominal wages and a negative effect on prices. The unemployment moderates the mark-up

of prices on wages, and of wages on prices. The lag structure of our price and wage equations

is consistent with our theoretical model. The restriction of no money illusion is imposed on the

price and wage equations, so that each equation is homogeneous of degree zero in all nominal

variables. Specifically, we restrict the coefficient of money in each of our nominal equations to

be equal to one minus the coefficients of all nominal variables on the right-hand side of that

equation.49 These restrictions could not be rejected at conventional significance levels.

7.2. Empirical Impulse-Response Functions

In this empirical context, we examine the influence of a money growth shock on inflation and

unemployment through time. Specifically, suppose that the economy is initially in a steady

state, with the money supply growing at the constant rate µ. Then, at time t = 0, the

money growth rate increases by a fixed amount to µ0. This shock is unanticipated and may be

interpretted as a single realization of the stochastic process generating the money supply.50 We

derive the inflation and unemployment responses to this shock for time t ≥ 0.51

Figure 3 presents the impulse response functions (IRFs) that correspond to a 10% permanent

increase in the growth rate of money supply. The inflation IRF has all the desirable properties,52

namely, the influence of the monetary shock on inflation is delayed and gradual, and in the

long run inflation is equal to money growth. The unemployment IRF also exhibits plausible

behavior: the unemployment effect of the monetary shock is also delayed and gradual, but this

effect occurs sooner than the inflation effect (e.g. the maximum unemployment effect occurs

two equations are statistically equivalent. We estimate our price equation using the latter equation, and present
the Table 2 results in the format of the former equation. The analogous procedure is applied to the wage
equation.
49For example, the price equation in Table 2 (first equation in the previous footnote) is clearly homogeneous

of degree zero in Mt, Pt, Pt−1, Pt−2, and Wt−1. The analogous restriction is imposed on the wage equation.
50See Appendix 1a. Since the shock is a realization of the actual money growth process, this exercise does

not run afoul of the Lucas critique.
51We assume that the future values of the exogenous variables are unaffected by the monetary shock (which

is obvious, for otherwise these variables would not be exogenous). Thus, given the linearity of our model, the
simulation is unaffected by these future variables.
52See Mankiw (2001), for instance.
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well before that on inflation.) Also observe that the inflation and unemployment responses take

a long time to converge to their long-run values.

The only strikingly unconventional property of the unemployment IRF is that the unem-

ployment effect does not die down to zero; rather, a 10 percent increase in money growth leads

to a 2.73 percent fall in long-run unemployment.53 Thus, the slope of the long-run Phillips

curve is -3.66
¡
= 10

−2.73
¢
.

-0.04

0.00

0.04

0.08

0.12
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Figure 3: Impulse-response functions to
a 10% permanent increase in money growth

Inflation

Unemployment rate

10.0%

-2.73%

7.3. Montecarlo Simulations

To have confidence that our long-run Phillips curve is indeed not vertical, we need to examine

whether our point estimate of the slope (-3.66) is significantly different from infinity. For this

purpose, we perform the following Monte Carlo experiment, consisting of 1000 replications.

In each replication (i), a vector of error terms ε(i)t =
³
ε
(i)
u,t, ε

(i)
P,t, ε

(i)
W,t

´0
, t = 1, 2, ..., T (of the

unemployment rate, price, and nominal wage equations, respectively) is drawn from the normal

distribution,54 N(0,
P
). The vector ε(i)t is then added to the vector of estimated equations to

generate a new vector of endogenous variables y(i)t =
³
u
(i)
t , P

(i)
t , W

(i)
t

´
. Next, the equations

53Also observe that the unemployment IRF overshoots substantially: the maximum effect on unemployment
is nearly 4 percent.
54We used the normal distribution because the assumption of normality is valid in the estimated system of

equations. (εt ∼ N (0,
P
), where

P
is the variance-covariance matrix of the estimated model.)
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of the model are estimated using the new vector of endogenous variables y(i)t , and the set of

exogenous variables. Finally, the simulation exercise of the previous section is conducted on

the newly estimated system to derive a new estimate of the slope of the long-run Phillips curve.

In this way, each replication (i) yields a new value for the slope: S(i), i = 1, 2, ..., 1000.

Figure 4 presents the histogram of the 1000 simulated values of the long-run Phillips curve

slope. This shows clearly that the estimated slope of the long-run Phillips curve is indeed

significantly downward-sloping and reasonably flat, rather than vertical.55
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Figure 4:
Slope of the long-run Phillips curve
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8. Conclusions

This paper has proposed an alternative to the currently dominant New Phillips curve. Our

analysis focuses on the interaction between nominal frictions and money growth. While the

choice between our analysis and the New Phillips curve is an empirical issue, three of our results

suggest that our analysis is more closely in accord with the established empirical regularities.

First, our analysis can explain how money growth shocks have a delayed and gradual effect on

55Appendix 5 provides further evidence in support of this result.

28



inflation, so that there is inflation persistence. Second, it shows that monetary shocks usually

have a quicker effect on unemployment and the time path of this effect tends to be hump-

shaped. Third, movements in inflation and unemployment in our analysis do not have the

knife-edge property.

Inevitably, our analysis suggests a reevaluation of the role monetary policy in the macroeco-

nomic system. It shows that since the effects of monetary policy on inflation and unemployment

generally take a long time to work themselves out, we cannot expect close correlations between

current money growth (on the one hand) and current inflation and unemployment (on the

other), even though monetary policy may have a major influence on these variables over time.

Significantly, our analysis indicates that monetary policy can have long-term effects on unem-

ployment. Whether these effects are permanent (along a downward-sloping long-run Phillips

curve) or very prolonged (slow adjustment to a near-vertical long-run Phillips curve), may

make little observational difference. Indeed, our theoretical model indicates that, in response

to variations in the real interest rate, steeper long-run Phillips curves are associated with slower

adjustment.

These considerations can have far-reaching implications for our understanding of monetary

policy effectiveness. To illustrate briefly, consider the puzzling U.S. macroeconomic develop-

ments of the 1990s, when the unemployment rate declined (after 1992) and inflation remained

subdued even though the rate of money growth surged. Although our empirical model is merely

illustrative of our approach and should not be viewed as a serious tool for evaluating monetary

policy, it nevertheless points to a simple story consistent with the facts. Figure 5a depicts the

time path of the actual unemployment rate against the one the unemployment rate would have

followed, in our model, had money growth remained constant at its 1993 rate. The difference

between these two time paths represents the unemployment effect that is attributable to money

growth, as an accounting exercise.56 Figure 5b illustrates the actual inflation rate against the

simulated inflation rate under money growth fixed at its 1993 rate, so that the difference rep-

56The money growth rate was less than 2 percent per annum in 1993, rose steadily to over 8 percent in
1998, before declining beneath 6 percent in 2000. Increased productivity growth is also associated with reduced
unemployment in our model, but the influence is much weaker than that of money growth in our model.

29



resents the inflation effect attributable to money growth. Finally, Figure 5c depicts the actual

inflation rate against the simulated inflation rate under productivity growth fixed at its 1993

rate, so that the difference represents the inflation effect attributable to productivity growth.
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Figures 8: Accounting for Inflation and Unemployment

Although these figures are merely suggestive - even in our illustrative model, inflation and

unemployment are explained by a lot more than just money growth and productivity growth

- they make three simple points: First, the surge of money growth over the second half of the

1990s can account for about two thirds of the decline in unemployment over this period (Fig.

5a). Second, the money growth surge was of course associated with a rise in inflation (Fig.

5b). But, third, this inflationary influence was substantially undone by the fall in inflation

associated with the increase in productivity growth over the period (Fig. 5c). This is of

course a highly selective, impressionistic account of what happened, but it highlights some

significant features of our analysis. In particular, since it can take a long time for the long-run

inflation effect of a monetary growth shock to manifest itself, a surge in money growth need

not be accompanied promptly by a surge in inflation. There is no evidence that inflation rises

indefinitely when unemployment is low. Finally, monetary policy can have a long-term influence

on unemployment and, over a period of half a decade or more, it is hard to tell whether this

influence is permanent or prolonged, since the unemployment trajectory reflects the cumulative

influence of lengthy impulse-response functions from an ongoing stream of monetary shocks. In

30



any case, monetary policy may play a more important and durable role in the real economy,

and with respect to unemployment in particular, than the mainstream theories allow for.

Our analysis is of course just a first step towards a thorough reevaluation of the inflation-

unemployment tradeoff in terms of frictional growth. Much remains to be done, both in explor-

ing the microfoundations of time-contingent price adjustment and in building reliable empirical

models of how monetary shocks affect real economic activity.
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APPENDICES
Appendix 1a: Time-Series Properties of the Money

Supply

The following table presents the results of unit root tests on the US
money supply. Observe that we cannot reject the hypothesis that the growth
rate of money supply follows an I(1) process at the 5% size of the test.

Table A1: Unit root tests, US money supply, 1966-2000
Dickey-Fuller Phillips-Perron 5% critical value

Mt ADF(c,t) = −0.77 PP(c,t) = −0.35 −3.54
∆Mt ADF(c) = −2.80 PP(c) = −2.72 −2.95
∆2Mt ADF= −7.40 PP= −7.55 −1.95
ADF(c,t), and PP(c,t) denote the unit root tests w ith constant and trend.

The lag truncation for Bartlett kernel in the PP tests is three.

The order of augm entation in the ADF tests is one.

Appendix 1b: Alternative Specification of the
Money Supply Process

Suppose that money growth µt follows a stationary autoregressive process
and the monetary authority pursues the following mixed strategy: with
probability ρ it follows

µt = g + ψ1µt−1 + εt, (1)

and with probability (1− ρ) it follows

µt = g + ψ2µt−1 + εt, (2)

where εt is white noise, 0 < ψ1, ψ2 < 1, and ψ1 < ψ2.
Thus the money supply rule is

µt = g + βµt−1 + εt, (3)

where β = ρψ1 + (1− ρ)ψ2.
Consequently the equilibrium nominal wage is given by1

Wt = (1− λ1) c+ λ1Wt−1 + (1− λ1)Mt − (1− λ1)L (4)

+ σ (1− λ1)µt +

µ
1− λ1
1− β

¶
(κ− σ) g + ωt,

1The algebraic steps in the derivation of Wt are given in Appendix 2.
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where2

σ =
β

1− β
− αβ (λ2 − 1)

(λ2 − β)
− β2 (λ2 − 1)
(1− β) (λ2 − β)

> 0. (5)

The price equation is

Pt = (1− λ1) c+ λ1Pt−1 + (1− λ1)Mt − (1− λ1)L (6)

+

µ
σ − 1

2

¶
(1− λ1)µt +

µ
1− λ1
1− β

¶
(κ− σ) g

− 1
2
σ (1− λ1) εt +

1

2
(ωt + ωt−1)

The long-run solution of the first difference of above equation gives the long-
run inflation rate:

πLRt = µLRt =
g

1− β
. (7)

The real money balances equation is given by

Mt − Pt = − (1− λ1) c+ λ1 (Mt−1 − Pt−1) + (1− λ1)L (8)

+

·
1

2
(1 + λ1)− σ (1− λ1)

¸
µt +

µ
1− λ1
1− β

¶
(σ − κ) g

+
1

2
σ (1− λ1) εt − 1

2
(ωt + ωt−1) .

The unemployment rate equation is

ut = (1− λ1) c+ λ1ut−1 −
·
1

2
(1 + λ1)− σ (1− λ1)

¸
µt (9)

−
µ
1− λ1
1− δ

¶
(σ − κ) g − 1

2
σ (1− λ1) εt +

1

2
(ωt + ωt−1) .

The long-run unemployment rate is

uLRt = c−
·
1

2

µ
1 + λ1
1− λ1

¶
− σ

¸
µt −

µ
σ − κ

1− β

¶
g

= c− πLRt

µ
2α− 1

γ

¶
. (10)

where the long-run inflation rate is πLRt = g/ (1− β). Changes in the policy
parameters ρ, ψ1, and ψ2 move the economy along this long-run Phillips
curve by changing the parameter β.

Appendix 2: Theoretical Model and Results

2κ, λ1, λ2 are given in Appendix 2.
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Our model may be summarized as follows:

Nt = QS
t , (11)

Lt = L, (12)

ut = L−Nt, (13)

QD
t =Mt − Pt, (14)

∆Mt ≡ µt = µt−1 + εt, (15)

QS
t = QD

t = Qt, (16)

Pt =
1

2
(Wt +Wt−1) , (17)

Γt = Qt − L, (18)

Wt = αWt−1 + (1− α)EtWt+1 + γ [c+ αΓt + (1− α)EtΓt+1] + ωt, (19)

2.1: Wage Equation

Substitute (18) into (19) and use (14), (16), and (17) to get:

Wt = αWt−1 + (1− α)EtWt+1 + γα

·
Mt − 1

2
(Wt +Wt−1)

¸
+ γ (1− α)

·
EtMt+1 − 1

2
(EtWt+1 +Wt)

¸
+ γc− γL+ ωt.

(20)

Apply the expectations operator Et on the above equation, recall that
Et (ωt) = 0, collect terms together, so that

φ1EtWt−1 − φ2EtWt + φ3EtWt+1 = −γ [αEtMt + (1− α)EtMt+1]

− γc+ γL, (21)

where

φ1 = α
³
1− γ

2

´
, φ2 =

³
1 +

γ

2

´
, φ3 = (1− α)

³
1− γ

2

´
. (22)

To obtain the rational expectations solution of the above eq. (21), we
proceed as follows. Use the backward shift operator B3 to rewrite (21); then

3Note that B1 shifts the variable backward, where B−1 shifts the variable forward, i.e.

B [EtWt] = EtWt−1, and B−1 [EtWt] = EtWt+1,

where Et is in all cases the conditional expectation as of period t.
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multiply both sides of the resulting equation by B, divide both sides by φ3,
and use EtWt as a common factor on the L.H.S.:µ

1− φ2
φ3

B +
φ1
φ3

B2
¶
EtWt =

−B (EtAt) + γL− γc

φ3
, (23)

where
EtAt = γ [αEtMt + (1− α)EtMt+1] . (24)

The B polynomial in (23) can de expressed asµ
1− φ2

φ3
B +

φ1
φ3

B2
¶
= (1− λ1B) (1− λ2B) , (25)

where λ1,2 are the roots of the equation

λ2 − φ2
φ3

λ+
φ1
φ3
= 0,

i.e.

λ1,2 =

φ2
φ3
∓
r³

φ2
φ3

´2 − 4³φ1φ3´
2

, so (26)

λ1 + λ2 =
φ2
φ3

, and λ1λ2 =
φ1
φ3
⇒ λ2 =

α

λ1 (1− α)
.

It can be shown that one root lies inside the unit circle and the other outside
the unit circle. In particular, we can show that when 0 < γ < 2 then
0 < λ1 < 1 and λ2 > 1.

We can rewrite (23) using (25) as

(1− λ1B)EtWt =
γ (c− L)

φ3 (λ2 − 1)
− B (EtAt)

φ3 (1− λ2B)
. (27)

Since |λ2| > 1, a useful way to express the geometric polynomial 1/ (1− λ2B)
is as follows:4

1

1− λ2B
=
− (λ2B)−1
1− (λ2B)−1

.

Substitute the above into (27) to get:

(1− λ1B)EtWt =
γ (c− L)

φ3 (λ2 − 1)
+

EtAt

λ2φ3
¡
1− λ−12 B−1

¢ (28)

= (1− λ1B)EtWt =
γ (c− L)

φ3 (λ2 − 1)
+

1

λ2φ3

∞X
j=0

µ
1

λ2

¶j

EtAt+j ,

4See Sargent (1987).

4



or, using (24) and (15),

(1− λ1B)EtWt =
γ (c− L)

φ3 (λ2 − 1)
+

γ

λ2φ3

∞X
j=0

µ
1

λ2

¶j ¡
EtMt+1+j − αEtµt+1+j

¢
.

(29)
Further algebraic manipulation leads to

(1− λ1B)EtWt =
γ (c− L)

φ3 (λ2 − 1)
+

γ

λ2φ3

·
λ2Mt

λ2 − 1 −
αλ2µt
λ2 − 1 +

λ22µt

(λ2 − 1)2
¸

= (1− λ1) [c+Mt + κµt − L] ,

where5

κ =
λ2

λ2 − 1 − α =
α (1 + λ1) (1− α)

α− λ1 (1− α)
. (30)

(It can be shown that κ > 0.) So we have

(1− λ1B)EtWt = (1− λ1) c+ (1− λ1)Mt + κ (1− λ1)µt − (1− λ1)L.

A comparison of the above eq. with (19) indicates that the rational
expectations reduced-form stochastic difference equation for the wage is6

Wt = (1− λ1) c+λ1Wt−1+(1− λ1)Mt+κ (1− λ1)µt−(1− λ1)L+ωt. (31)

Note that the above is the wage equation given in the text. (In the text the
stable root λ1 is denoted by λ for simplicity.)

2.2: Price Equation

To derive the equation for the price dynamics rewrite the price equation
(17) as follows:

(1− λ1B)Pt =
1

2
(1− λ1B)Wt +

1

2
(1− λ1B)Wt−1,

and substitute into it the wage equation (31). In the resulting equation,
substitute the following expressions (implied by the money supply process
(15)):

Mt−1 =Mt − µt, and µt−1 = µt − εt.

5Note that
(λ2 − 1) (1− λ1) =

γ

φ3
,

so
γ

φ3 (λ2 − 1)
= (1− λ1) .

6For the solution of linear difference equations under rational expectations see also
Blanchard and Kahn (1980), and Sargent (1987).
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Next, collect terms together to get the price equation given in the text:7

(1− λ1B)Pt = (1− λ1) c+ (1− λ1)Mt + (1− λ1)

µ
κ− 1

2

¶
µt −

1

2
κ (1− λ1) εt

− (1− λ1)L+
1

2
(ωt + ωt−1) . (32)

2.3: Inflation Rate Equation

Let the inflation rate be πt ≡ ∆Pt, and take the first difference of the
price dynamics eq. (32) to obtain the inflation dynamics equation:

(1− λ1B)πt = (1− λ1)µt +
1

2
(1− λ1) (κ− 1) εt

+
1

2
κ (1− λ1) εt−1 +

1

2
(ωt + ωt−2) . (33)

2.4: Real Money Balances

To obtain the real money balances equation we do the following. Add
and subtract on the R.H.S. of the price equation (32) the term λ1Mt−1, and
then rearrange terms so that

(1− λ1B) (Mt − Pt) =

·
1

2
(1 + λ1)− κ (1− λ1)

¸
µt +

1

2
κ (1− λ1) εt

+ (1− λ1)L− 1
2
(ωt + ωt−1)− (1− λ1) c. (34)

Note that ·
1

2
(1 + λ1)− κ (1− λ1)

¸
= (1− λ1)

µ
2α− 1

γ

¶
. (35)

Thus we obtain the real money balances equation given in the text:

(1− λ1B) (Mt − Pt) = − (1− λ1) c+ (1− λ1)

µ
2α− 1

γ

¶
µt (36)

+
1

2
κ (1− λ1) εt + (1− λ1)L− 1

2
(ωt + ωt−1) .

7Note that κ > 1
2
if 2α+1

2α−1 > λ2.
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2.5: Output, Employment, and Unemployment

Rewrite the aggregate demand equation (14) as

(1− λ1B)Qt = (1− λ1B) (Mt − Pt) .

To obtain the dynamics for aggregate demand, substitute into the above
equation the real money balances equation (36):

(1− λ1B)Qt = (1− λ1)

µ
2α− 1

γ

¶
µt − (1− λ1) c

+
1

2
κ (1− λ1) εt + (1− λ1)L− eωt. (37)

Multiplying both sides of the production function (11) by (1− λ1B), we
obtain

(1− λ1B)Nt = (1− λ1B)Qt.

Substituting (37) into the above, we derive the employment dynamics equa-
tion:

(1− λ1B)Nt = (1− λ1)

µ
2α− 1

γ

¶
µt − (1− λ1) c

+
1

2
κ (1− λ1) εt + (1− λ1)L− eωt. (38)

The labour supply (12) equation may be expressed as

(1− λ1B)L = (1− λ1)L. (39)

By the unemployment rate (13), the dynamic process for unemployment
is the difference between the labor force (39) and employment (38). Thus
we obtain the unemployment rate equation given in the text:

(1− λ1B)ut = (1− λ1) c− (1− λ1)

µ
2α− 1

γ

¶
µt (40)

− 1
2
κ (1− λ1) εt +

1

2
(ωt + ωt−1) .

2.6: Short-Run Phillips Curve

Rewrite the unemployment eq. (40) and inflation eq. (33) as

(1− λ1B)ut = (1− λ1) c− β1µt − β2εt +
1

2
(ωt + ωt−1) , (41)

(1− λ1B)πt = δ1µt + δ2εt + β2εt−1 +
1

2
(ωt + ωt−2) , (42)
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where

β1 = (1− λ1)

µ
2α− 1

γ

¶
, β2 =

1

2
κ (1− λ1) ,

δ1 = 1− λ1, δ2 =
1

2
(1− λ1) (κ− 1) .

Now substitute the money supply eq. (15): (1−B)µt = εt into (41) and
(42) to get

(1− λ1B)ut = (1− λ1) c− β1µt − β2 (1−B)µt +
1

2
(ωt + ωt−1) , (43)

(1− λ1B)πt = δ1µt + δ2 (1−B)µt + β2
¡
B −B2

¢
µt +

1

2
(ωt + ωt−2) .

(44)

Express the (43) in terms of µt:

µt =
(1− λ1B)ut − (1− λ1) c− 1

2 (ωt + ωt−1)
β (B)

, (45)

where β (B) = [− (β1 + β2) + β2B] .
Substitution of (45) into (44) leads to the short-run Phillips curve

(1− λ1B)β (B)πt = (1− λ1B) δ (B)ut − δ (B) (1− λ1) c

+
β (B) (ωt + ωt−2)− δ (B) (ωt + ωt−1)

2
, or

β (B)πt = δ (B)ut − δ1c+
β (B) (ωt + ωt−2)− δ (B) (ωt + ωt−1)

2 (1− λ1B)
,

where δ (B) =
£
(δ1 + δ2) + (β2 − δ2)B − β2B

2
¤
.

After some algebraic manipulation, the above short-run Phillips curve
can be written as

πt =
1

β1 + β2
[(1− λ1) c+ β2πt−1 − (δ1 + δ2)ut − (β2 − δ2)ut−1 + β2ut−2]+eωt,

where eωt = δ (B) (ωt + ωt−1)− β (B) (ωt + ωt−2)
2 (β1 + β2) (1− λ1B)

.

Through some algebraic manipulation we get:

πt =
1

β1 + β2
[(1− λ1) c+ β2πt−1 − (δ1 + δ2)ut − (β2 − δ2)ut−1 + β2ut−2] + eωt

=

µ
1− λ1
β1 + β2

¶·
c+

1

2
κπt−1 − 1

2
(1 + κ)ut − 1

2
ut−1 +

1

2
κut−2

¸
+ eωt

= ψ

·
c+

1

2
κπt−1 − 1

2
(1 + κ)ut − 1

2
ut−1 +

1

2
κut−2

¸
+ eωt, (46)
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where8 ψ = 1−λ1
β1+β2

. In addition, the error term can be written as

eωt =
h³
1 + ψ(1+κ)

2

´
ωt +

3ψ
2 ωt−1 +

³
1 + ψ(1−κ)

2

´
ωt−2 − ψκωt−3

i
2 (1− λ1B)

. (47)

Note that the above error term is an infinite moving average (IMA) process in
terms of ωt, with parameters which are non-linear functions of the theoretical
parameters ψ, κ, and λ1.9

Express equation (46) as

πt = d0 + d1πt−1 − d2ut − d3ut−1 + d4ut−2 + eωt, (48)

where

d0 = ψc, d1 =
ψκ

2
, d2 =

ψ (1 + κ)

2
, d3 =

ψ

2
, d4 =

ψκ

2
.

Thus we have the following relationships among the d’s:

d4 = d1, and d3 = d2 − d1. (49)

2.7: Long-Run Unemployment, Inflation, and the Phillips
Curve

To get the long-run solution of the unemployment equation (40) we set
the backshift operator equal to unity (B = 1) , and set equal to zero all the
error terms (ε’s, ω’s). This gives us the following long-run:

uLRt = −
µ
2α− 1

γ

¶
µLRt + c. (50)

Similarly, the long-run solution of the inflation equation (33) is given by

πLRt = µLRt . (51)

To get the long-run Phillips curve we need to substitute (51) into (50):

πLRt = −
µ

γ

2α− 1
¶
uLRt +

µ
γ

2α− 1
¶
c. (52)

8Note that β1+β2
1−λ1 = 2α−1

γ
+ κ

2
.

9Recall that ψ, κ, and λ1 are non-linear functions of the theoretical parameters α and
γ of the wage contract equation.
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2.8: Short-Run vs Long-Run Phillips Curve

The slope of the short-run Phillips curve (46) is

∂πt
∂ut

= − δ1 + δ2
β1 + β2

= − γ + γκ

2 (2α− 1) + γκ
, (53)

whereas the slope of the long-run Phillips curve (??) is

∂πLRt
∂uLRt

= − γ

2α− 1 . (54)

It can be shown that if the (absolute value of the) long-run slope is
greater than unity then ¯̄̄̄

∂πLRt
∂uLRt

¯̄̄̄
>

¯̄̄̄
∂πt
∂ut

¯̄̄̄
,

i.e. the long-run PC is steeper than the short run PC.10

The intercept of the short-run Phillips curve (46) isµ
1− λ1
β1 + β2

¶
c =

µ
2γ

2 (2α− 1) + γκ

¶
c > 0, (55)

and the intercept of the long-run Phillips curve (52) isµ
γ

2α− 1
¶
c > 0. (56)

Since both γ and κ are positive, it is not difficult to see that the intercept
of the long-run PC is greater than the intercept of the short-run PC:µ

γ

2α− 1
¶
c >

µ
2γ

2 (2α− 1) + γκ

¶
c.

10This can be shown as follows: ¯̄̄̄
∂πLRt
∂uLRt

¯̄̄̄
>

¯̄̄̄
∂πt
∂ut

¯̄̄̄
⇒

γ

2α− 1 >
γ + γκ

2 (2α− 1) + γκ
⇒

γ (2 (2α− 1) + γκ) > (2α− 1) (γ + γκ)⇒
γ ((2α− 1) + γκ) > (2α− 1) γκ⇒

γ

2α− 1 >
γκ

(2α− 1) + γκ
.

Since the smallest value that α is assumed to take is one half, it follows that the maximum
value of right-hand side of the above inequality is unity. Therefore, we can say that a

sufficient (but not necessary) condition for
¯̄̄
∂πLRt
∂uLRt

¯̄̄
>
¯̄̄
∂πt
∂ut

¯̄̄
is that

¯̄̄
∂πLRt
∂uLRt

¯̄̄
> 1.
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2.9: Impulse Response Functions

We assume a one-off unit shock in the money growth process (15) which
occurs at time t = 0 : ε0 = 1, εt = 0 for t 6= 0.

2.9a: Inflation Rate

The impulse response function of the inflation eq. (33) is given by

R (π0) = 1 +
1

2
[(1− λ1)κ− (1 + λ1)] < 1 if κ <

1 + λ1
1− λ1| {z }

critical value b2

,

R (πt)
t≥1

= 1 + λt−11

µ
1 + λ1
2

¶
[(1− λ1)κ− λ1] < 1 if κ <

λ1
1− λ1| {z }

critical value b1

,

R (πLR) ≡ lim
t→∞R (πt) = 1, (long-run response). (57)

Observe that, since λ1 < 1, we have that¯̄
R (π)t+1 − 1

¯̄
< |R (π)t − 1| , t ≥ 1,

i.e., period 1 onwards, inflation gradually approaches its new long-run value.11

We should note that, since 1
2 < α < 1, we cannot have that κ is greater

than b2. That is, inflation cannot overshoot at the period that the shock is
initiated (t = 0).12

2.9b: Unemployment Rate

11The effect of time on the inflation responses is given by

∂R (π)t
∂t

= λt−11

µ
1 + λ1
2

¶
[(1− λ1)κ− λ1] lnλ1, t ≥ 1.

So when κ < λ1
1−λ1 ⇔ [(1− λ1)κ− λ1] < 0, then the above derivative is positive, since

lnλ1 < 0.
12Below we show that κ is always less than b2 :

κ <
1 + λ1
1− λ1

⇒ α (1 + λ1) (1− α)

α− λ1 (1− α)
<
1 + λ1
1− λ1

⇒ α (1− α)

α− λ1 (1− α)
<

1

1− λ1
⇒

α (1− α)− λ1α (1− α) < α− λ1 (1− α) ⇒ λ1 (1− α)− λ1α (1− α) < α− α (1− α)

⇒ λ1 (1− α)2 < α2 ⇒ λ1 <

µ
α

1− α

¶2
.

The latter inequality is valid since 1
2
< α < 1. Thus κ is always smaller than b2.
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The impulse response function of the unemployment eq. (40) is given
by13

R (ut)
t≥0

= −
µ
2α− 1

γ

¶
− λt1 (1 + λ1)

2 (1− λ1)
[(1− λ1)κ− λ1] ,

R (uLR) ≡ lim
t→∞R (ut) = −

µ
2α− 1

γ

¶
, (long-run response). (58)

Closer inspection of the above equations reveals the following pattern for
unemployment responses:

if κ >
λ1

1− λ1| {z }
critical value b1

then R (ut) < −
µ
2α− 1

γ

¶
| {z }

overshooting

, for t ≥ 0.

The following table summarizes how inflation and unemployment re-
spond to the above unit shock initiated at period t = 0 :

Inflation - Unemployment Responses
Class I κ < b1 : πt < πLR| {z }

undershooting

, for t ≥ 0

|ut| < |uLR|| {z }
undershooting

, for t ≥ 0

Class II b1 < κ < b2 : π0 < πLR, πt > πLR| {z }
overshooting

, for t ≥ 1

|ut| < |uLR|| {z }
overshooting

, for t ≥ 0

13Also, note that the effect of time on the unemployment responses is given by

∂R (ut)

∂t
= −λt1 (1 + λ1)

2 (1− λ1)
[(1− λ1)κ− λ1] lnλ1, t ≥ 1.
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Appendix 3: OLS Estimates of the
Unemployment, Price, and Wage Equations

Table A2: Unemployment equation, OLS, 1966-2000.

Dependent variable: ut
coefficient s.e. Misspecification tests∗

ut−1 0.45 (0.14) SC
£
χ2 (1)

¤
1.51 [0.22]

ut−2 −0.31 (0.13) LIN
£
χ2 (1)

¤
1.77 [0.18]

mt −0.12 (0.04) NOR
£
χ2 (1)

¤
0.84 [0.66]

ηt −0.14 (0.06) ARCH
£
χ2 (1)

¤
0.11 [0.74]

∆kt −0.01 (0.002) HET
£
χ2 (16)

¤
13.9 [0.61]

ot−1 0.01 (0.003) CUSUM X
ft −0.01 (0.005) CUSUMSQ X
ct 0.04 (0.02)

+ LL=137.77, AIC=-7.36, SC=-6.96

* Probabilities in square brackets
X Structural stability cannot be rejected at the 5% size of the test
+ Log likelihood (LL), Akaike (AIC) and Schwarz (SC) criteria

Table A3: Price equation, OLS, 1966-2000.

Dependent variable: Pt
coefficient s.e. Misspecification tests∗

Pt−1 0.91 (0.20) SC[F (1, 23)] 7.76 [0.01]
Pt−2 −0.37 (0.13) LIN

£
χ2 (1)

¤
2.78 [0.10]

Wt−1 0.32 (0.11) NOR
£
χ2 (2)

¤
0.01 [0.99]

Mt 0.05 (0.03) ARCH
£
χ2 (1)

¤
0.00 [0.99]

ut −0.65 (0.18) HET
£
χ2 (22)

¤
30.0 [0.12]

θt −0.53 (0.14) CUSUM X
ot 0.017 (0.005) CUSUMSQ X

ot−1 0.015 (0.006)
ot−2 −0.006 (0.004)
τ t 0.001 (0.007)

+ LL=141.63, AIC=-7.41, SC=-6.87
++ [F (1, 23)] = 4.21 [0.05]

* Probabilities in square brackets
X Structural stability cannot be rejected at the 5% size of the test
+ Log likelihood (LL), Akaike (AIC) and Schwarz (SC) criteria
++ Wald test for long-run no money illusion
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Table A4: Wage equation, OLS, 1966-2000.

Dependent variable: Wt

coefficient s. e. Misspecification tests∗

Wt−1 0.19 (0.11) SC
£
χ2 (1)

¤
3.04 [0.08]

∆Wt−2 0.47 (0.12) LIN
£
χ2 (1)

¤
1.10 [0.29]

Pt 0.73 (0.12) NOR
£
χ2 (2)

¤
1.76 [0.42]

Mt 0.08 (0.03) ARCH
£
χ2 (1)

¤
0.06 [0.80]

ut −0.41 (0.21) HET
£
χ2 (14)

¤
15.1 [0.37]

θt 0.35 (0.10) CUSUM X
bt 0.05 (0.02) CUSUMSQ X

+ LL=127.54, AIC=-6.83, SC=-6.48
++ [F (1, 27)] = 0.07 [0.80]

* Probabilities in square brackets
X Structural stability cannot be rejected at the 5% size of the test
+ Log likelihood (LL), Akaike (AIC) and Schwarz (SC) criteria
++ Wald test for long-run no money illusion
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Appendix 4: Actual and Fitted Values of the
Estimated System
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Appendix 5: Further Evidence on Whether the
Long-Run Phillips Curve is Vertical

In the following table we present the percentage count of slopes within
specific class intervals. For example, the probability that the long-run
Phillips curve slope lies in the interval (−6,−1.5) is 89%.

Table A5: probability that the PC slope
is within a specific interval

Slope interval (−∞,−6) (−6,−1.5) (−1.5,∞)
Probability 10.4 % 89.0 % 0.6 %

We also grouped the values of the generated series S(i), i = 1, 2, ..., 1000,
into class intervals of 0.5 units. Using as a cut-off point a 10% count, there
is no class interval below [-4.5,-4.0) or above [-2.5,-2.0) that contains at least
10% of the values of slope series S. These class intervals and their respective
probabilities are given in the table below.

Table A6: Monte Carlo simulations, 1000 replications
class intervals with a count above 10%

Slope interval [−4.5,−4.0) [−4.0,−3.5) [−3.5,−3.0) [−3.0,−2.5) [−2.5,−2.0)
Probability 11.1 % 14.3 % 18.0 % 12.8 % 11.9 %
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