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In this paper we use an agent-based simulation model, EMCAS, to analyze market power in 

electricity markets. We focus on the effect of congestion management on the ability of generating 
companies (GenCos) to raise prices beyond competitive levels. An 11-node test power system is used 
to compare a market design based on locational marginal pricing with a market design that uses 
system marginal pricing and congestion management by counter trading. Bidding strategies based on 
both physical and economic withholding are compared to a base case with production cost bidding. 
The results show that unilateral market power is exercised under both pricing mechanisms. However, 
the largest changes in consumer costs and GenCo profits due to strategic bidding occur under the 
locational marginal pricing scheme. The analysis also illustrates that agent-based modeling can 
contribute important insights into the complex interactions between the participants in transmission-
constrained electricity markets. 

1. INTRODUCTION 
The ongoing restructuring of the electrical power industry and the introduction of competitive 

markets for electricity has resulted in a number of challenges for participants in the electricity market. 
New analytical approaches are needed in order to address some of the issues arising from the new, 
market-based organization of the power system, as discussed in Dyner and Larsen [1]. One of the 
major concerns in the emerging electricity markets is the potential exercise of market power by 
generating companies (GenCos). A number of approaches have been used to study market power. For 
instance, the Herfindahl-Hirschman Index (HHI) is a measure for market concentration. However, it is 
well accepted that concentration measures, such as the HHI, do not give a reliable diagnostic aid to the 
potential exercise of market power in the wholesale electricity sector (see Bunn and Martoccia [2]). 
Such measures do not take into account the effect of the transmission network and its influence on 
participants’ ability to exercise market power. Other indexes, such as the Lerner index and the pivotal 
supplier index, can be very useful for analyzing market power in retrospect, but they also suffer from 
the inability to directly take into account the transmission constraints in the power system. 

The traditional models of market power from game theory are usually based on equilibrium 
solutions, such as the Cournot, Bertrand, or supply function equilibriums. These modeling approaches 
are useful for determining theoretical equilibrium points, to which actual market performance can be 
compared. A number of market power models for electricity markets have been developed on the basis 
of these equilibrium concepts2. However, several simplifications must usually be made in order to find 
the equilibrium solutions, both in terms of the bidding behavior of the market participants and the 
technical and economic operation of the power system. As an alternative to the equilibrium 
approaches, agent-based modeling (ABM) is a field that is gaining increased interest for analyzing the 
complex interactions in restructured electricity markets. Agent-based models can simulate systems that 
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are outside of the traditional competitive or game-theoretic equilibrium solutions. In addition, the 
ABM paradigm allows for agents to learn and adapt their strategies during a simulation, thereby 
possibly converging toward equilibrium under certain assumptions. However, just as in real-world 
markets, convergence is not guaranteed. An important advantage of using ABM for simulating 
electricity markets is that this approach allows for including a number of details concerning the 
operation of the market and power system. This is important because electricity markets tend to have a 
highly complex set of rules and regulations, which affect the strategies of the participants. 

In this paper, we present an analysis of GenCo bidding strategies based on simulations with an 
agent-based model, EMCAS. In particular, we analyze the effect of congestion management and 
pricing rules on the GenCos’ ability to exercise market power. A number of systems are in use for 
congestion management in restructured power systems: solutions include nodal pricing, zonal pricing, 
explicit and implicit auctions, and counter trading. Clearly, the market design for congestion 
management will affect the GenCos’ ability to exercise market power, since the prices and profits in 
the system can be highly dependent on how congestion is handled. In this paper, we use agent-based 
simulations to compare a market design based on locational marginal prices (LMPs) with a market 
design in which generators receive the uncongested system marginal price (SMP) and congestion 
management is handled through counter trading. 

The paper has the following structure. In section 2, we present a brief overview of literature on 
some agent-based models of restructured and competitive electricity markets. In section 3, we briefly 
present the agent-based simulation model EMCAS, with emphasis on how GenCo bidding strategies 
can be represented. In section 4, the model is used to analyze an 11-node test power system under 
different assumptions about the GenCos’ bidding strategies. The simulations are performed for both 
the LMP and SMP market designs, and results are compared. Finally, in section 5, conclusions and 
directions for further work are given. 

2. AGENT-BASED MODELING OF ELECTRICITY MARKETS 
ABM has been used to study several questions regarding the electricity market design in 

England and Wales. Bower and Bunn [4] used ABM to analyze whether the uniform price or the 
discriminatory auction format is better for the electricity market auction mechanism. The background 
for their work was the introduction of new electricity trading arrangements (NETA) in England and 
Wales. Generating companies are modeled as autonomous adaptive agents that develop their own 
bidding strategies using a reinforcement learning algorithm. Bower and Bunn find that the 
discriminatory auction results in higher market prices than the uniform-price auction because of the 
informational advantage given to large GenCos under the discriminatory auction scheme. Bunn and 
Oliveira [5, 6] developed a detailed multi-agent simulation model of the NETA market. The bidding 
behavior of both GenCos and demand companies (DemCos) in the bilateral market and the real-time 
balancing markets are simulated. Again, the agents’ adaptive strategies are based on reinforcement 
learning. The market is simulated as a repeated game using a constant daily load pattern. Hence, the 
market dynamics emerge from the simulations as the agents learn and adjust their bidding strategies. 
The model is used to study market power and market design issues in the England/Wales market. 
However, the transmission network is not represented in any of these models, nor do the analyses 
address congestion management or transmission pricing. 

There are also several more theoretical applications of ABM, where the models are used to 
analyze bidding behavior in hypothetical electricity markets; the agents learn and adjust their strategies 
through a repeated set of market interactions. Nicolaisen et al. [7] studied experimental market power 
and efficiency outcomes for a wholesale electricity market based on discriminatory midpoint pricing 
under systematically varied concentration and capacity conditions. Buyers and sellers use a modified 
Roth-Erev reinforcement learning algorithm to determine their price and quantity offers in each 
auction round. It is shown that high market efficiency is attained and that market microstructure is 
strongly predictive for the relative market power of buyers and sellers in the system; however, 
transmission is not considered in the model. Krause et al. [8] studied the bidding behavior of 
generating companies in an electricity market based on LMPs. Results from an agent-based model 
with reinforcement learning are compared with those for a computed Nash equilibrium on a five-node 
test power system. Ernst et al. [9] also used ABM to analyze generators’ bidding strategies in an LMP 



market. In this approach, it is assumed that the generators choose their strategy by maximizing their 
expected profits, based on available information about current and future market conditions. In a 
simulation of a two-node system, the influence of line transfer capacity and number and size of 
generators and GenCos is analyzed. 

3. ELECTRICITY MARKET COMPLEX ADAPTIVE SYSTEMS (EMCAS) 
EMCAS uses an ABM approach to model the interactions among all major agents in a 

restructured electricity market, including GenCos, transmission companies, distribution companies, 
demand companies, consumers, system operator, and regulator. The model, developed over the last 
three years, includes a detailed representation of the bidding, dispatch, and settlement in the day-ahead 
and real-time (balancing) electricity markets. For a detailed description of the EMCAS model, see 
Conzelmann et al. [10, 11]. The most relevant features with regard to the case study presented here 
are: 

 
• Chronological simulation of market prices over short or long time periods 
• Hourly bid-based dispatch and market clearing based on Direct Current Optimal Power Flow 

(DC OPF) algorithm in day-ahead and real-time markets 
• Simulation of several GenCo bidding strategies (further discussed below) 
• Inclusion of stochastic forced outages in market simulations 
• Possibility of specifying different market rules (e.g., regarding congestion management and 

pricing mechanisms) 
• Calculation of prices and profits based on the “two-settlement system” (i.e., day-ahead price 

for day-ahead schedule, and real-time price for deviations between real-time dispatch and day-
ahead schedule) 

• Calculation of cost, revenues, and profits for all relevant agents in the system 
 
Several other aspects can also be included in an EMCAS simulation, such as planned outages, 

GenCo level unit commitment, etc. However, these features are not included in the case study 
presented in this paper. 

3.1 GenCo bidding strategies 

The bidding strategies of GenCos usually receive most of the attention in discussions related 
to market power exercise in electricity markets. A number of different bidding strategies can be 
simulated in EMCAS by specifying parameters for the capacities and prices to be bid into the market 
for the different generation plants in the system. The strategies can be either static or dynamic 
(i.e., changing during the course of the simulation), and they will typically vary by generation 
technology and GenCo. In the case study presented in this paper, we only include thermal plants in the 
power system, and GenCos submit bids once a day (i.e., we assume that there is no re-bidding in the 
real-time market). The bidding strategies that are used in the analysis are further described below. 

 
Production cost bidding (Base)  

Under the production cost strategy, the GenCo acts as a pure price-taker in the market, bidding 
according to the marginal production cost of its plants as specified by the heat rate curve. Note that if a 
generating unit is being bid into the market according to its marginal production cost, and if its bid 
clears the market, it might not cover the total production cost, because the marginal production cost 
(and heat rate) is usually lower than the average production cost (and heat rate) for thermal plants.  

 
Physical withholding based on system reserve (PWSR) 

In this strategy, the GenCo tries to increase the market price by withholding units during hours 
when the expected system reserve is low. The GenCo forecasts the system reserve for the next day, 
based on projections of load (we use a perfect load forecast) and available system capacity (which 
might be in error because of unforeseen forced outages). If the expected system reserve is below a 



certain trigger point, the GenCo tries to reduce the system reserve further with a specified target 
amount. However, a limit is set for how much of its own capacity the GenCo is willing to withhold. 

 
Economic withholding – fixed increment price probing (FIPP) 

Under this strategy, the GenCo tries to probe its influence on market prices by changing its 
bidding strategy with a simple algorithm, which takes into account the outcome of last day’s dispatch. 
If the bid for a unit in a certain hour was accepted, the GenCo will increase the bid price with a 
specific percentage for the same unit in the same hour for the following day. By doing this, the GenCo 
hopes to be able to raise the market price for that hour. In contrast, if the unit was not dispatched, the 
GenCo will reduce its bid with the same percentage, hoping that it will be dispatched the following 
day. A lower limit can be specified for the bid price to avoid bidding at unrealistically low levels. 

4. CASE STUDIES 

4.1 Assumptions for 11-node test power system 

In our simulations, we use an 11-node transmission network configuration based on Christie 
et al. [12]. The technical specifications and the topology for the transmission lines are shown in Figure 
1. We assume that there is only one transmission company (TransCo) in the system, which owns the 
entire transmission network. The operation of the transmission network is done by an independent 
system operator (ISO).  
 
Representation of the supply side 

There are eight GenCos in the system, located at various nodes in the grid (Figure 1). All the 
GenCos have the same set of generating units:  one base load coal plant (CO), one combined cycle 
plant (CC) to cover intermediary load, and one gas turbine (GT) peaking unit. For each GenCo, all 
three generating units (CO, CC, and GT) are connected to the same node. The parameters for the 
plants are shown in Table 1 and Table 2. Note that the bidding blocks for each generating unit are 
based on the blocking of the heat rate curves described in Table 2. In the base scenario, the GenCos 
bid according to their incremental production cost, as shown in the table. 

Forced outages are included in the simulations. These are distributed randomly among the 
generators, based on expected forced outage rates and durations. This makes it difficult to directly 
compare the profits for each of the GenCos, because one GenCo might have more outages than 
another. However, the same forced outages are used in all the simulations. Hence, the differences in 
GenCo results between scenarios can still be analyzed and compared, without correcting for the 
differences in forced outages. 

 
Representation of the demand side 

We use an aggregate representation of the demand side of the market. Five aggregate 
consumers are included, representing total demand in the node where they are connected. The loads 
are connected to nodes 1, 3, 4, 10, and 11. We are simulating the month of July, which is assumed to 
be the peak load month of the year. The five hourly load series are shown in Figure 2. The highest load 
is clearly in node 11.  

All the consumers buy their electricity from a Demand Company (DemCo). The transmission 
network is split into four zones: A (nodes 1–3), B (nodes 4–7), C (nodes 8–10), and D (node 11). We 
have assumed that there is one DemCo in each of the zones. Note that in EMCAS, the consumers pay 
all charges to the DemCo, including both energy and transmission and distribution (T&D) charges. 
The DemCo, in turn, passes the respective charges on to the GenCos and T&D companies. A mark-up 
can be added to the price paid by the consumers in order to represent DemCo profits. However, in this 
study we focus on the GenCos and consumers and set the DemCo mark-up to zero. Furthermore, we 
do not include any T&D charges, except for the congestion charges, which depend on the congestion 
mechanism (explained below). 

 



Line 
no. 
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node 

 

To 
node 

 

Circuit 
reactance 
(per unit) 

Line 
capacity

(MW) 
1 1 2 0.02 2000 
2 1 3 0.025 1600 
3 2 3 0.08 250 
4 2 4 0.01 3000 
5 2 5 0.02 1000 
6 3 8 0.04 1000 
7 3 9 0.05 400 
8 4 5 0.01 2000 
9 4 6 0.02 2000 

10 4 7 0.01 3000 
11 5 7 0.015 2000 
12 6 7 0.01 2000 
13 8 10 0.025 1600 
14 8 9 0.03 1000 
15 9 10 0.04 500 
16 6 11 0.02 1500 
17 7 11 0.025 1200 
18 10 11 0.04 500 

H

G

A

B&C D&E

F

H

G

A

B&C D&E

F

 
 

Figure 1. Transmission network in 11-node case study. The letters in the map refer to GenCos. 

 
Table 1. Description of generating units in 11-node case study. 

Parameter/Plant Unit Base Coal (CO) Comb. Cycle 
(CC) 

Gas Turbine (GT) 

Capacity  MW 500 250 125 
Fuel  Coal (BIT) Natural Gas Natural Gas 
Fuel price $/MMBtu 1.5 5 5 
Variable O&M $/MWh 1.75 2.8 8 
Fixed O&M $/kWmonth 2.1 0.6 0.7 
Start-up time min 720 180 0 
Minimum down time  min 480 120 0 
Warm start-up cost $ 7000 2000 50 
Cold start-up cost $ 20000 5000 150 

 
Table 2. Heat rates for generating units (Capacity and Bid block in MW, Heat Rates in 
MMBtu/MWh, Costs in $/MWh). 

Base Coal (CO) 
Cap-
acity 

Bid 
block 

Heat 
rate 

Incr. heat 
rate 

Cost 
 

Incr. 
Cost 

250 N/A 12000 N/A 19.8 N/A 
350 350 10500 6750 17.5 11.9 
400 50 10080 7140 16.9 12.5 
450 50 9770 7290 16.4 12.7 
500 50 9550 7570 16.1 13.1 

 

Combined Cycle (CC) 
Cap-
acity 

Bid 
block 

Heat 
rate 

Incr. heat 
rate 

Cost 
 

Incr. 
Cost 

100 N/A 9000 N/A 47.8 N/A 
150 150 7800 5400 41.8 29.8 
200 50 7200 5400 38.8 29.8 
225 25 7010 5490 37.9 30.3 
250 25 6880 5710 37.2 31.4 

 
 
 
 
 
 
 
 

 
Gas Turbine (GT) 

Cap-
acity 

Bid 
block 

Heat 
rate 

Incr. heat 
rate 

Cost 
 

Incr. 
Cost 

50 N/A 14,000 N/A 78.0 N/A 
100 100 10,600 7200 61.0 44.0 
110 10 10,330 7630 59.7 46.2 
120 10 10,150 8170 58.8 48.9 
125 5 10,100 8900 58.5 52.5 
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Figure 2 Hourly consumer loads in 11-node case study. Period: July 1-31. 

 
The prices in the day-ahead and real-time energy markets depend on the congestion 

mechanism. In the LMP case, the consumers pay the load-weighted average of the LMPs in their zone, 
including both the energy and congestion costs. When the SMP approach is used, the consumers pay 
the uncongested system marginal price for their energy consumption. The congestion charge, which 
arises from the redispatch of generating units, is distributed evenly among the consumers in proportion 
to their loads. The consumer costs shown in the tables in the next section contain both the energy price 
and the congestion charges. 

In the case studies, we assume that there is no price elasticity of demand (i.e., there is no 
demand-side bidding in the market). If supply cannot meet demand, the ISO will curtail load and set 
the price to the value of lost load (VOLL), which is assumed to be $999/MWh. This effectively caps 
the price in both the day-ahead and real-time markets. In the simulations, there is no difference 
between the day-ahead and real-time loads. Hence, the only effects that can cause a difference between 
the day-ahead and real-time prices are the forced generator outages. 

4.2 Scenarios 

A number of scenarios were run in order to analyze the impact of GenCo bidding strategies on 
the performance of the GenCos and consumers in the system. The scenarios can be grouped into base 
case, physical withholding, and economic withholding. We present main results from seven scenarios 
for each of the two congestion management mechanisms (LMP and SMP). In the results, we focus on 
the differences between the LMP and SMP results.  

The base scenario assumes bidding strategies based on the incremental production cost of all 
the generating units in the system, as shown in Table 2. In the PWSR scenarios, we assume that one 
GenCo withholds parts of its generation capacity based on the system reserve, as explained in 
section 3.1. The parameters in the strategy are set to 30% for the system reserve trigger point, 6% for 
the target reduction in system reserve, and 40% for the maximum capacity to be withheld from the 
market. The last parameter implies that the GenCos are willing to withhold the CC and GT plants from 
the market and that the base plant will never be withheld. The strategy is simulated for GenCos A, G, 
and H, respectively, always assuming that the remaining GenCos bid according to their production 
cost. In the FIPP strategy, we used a 10% price adjustment, with a lower limit equal to the incremental 
production cost. The FIPP strategy was also simulated for GenCos A, G, and H, with production cost 
bidding assumed for the other GenCos. The scenarios presented in the paper are summarized in Table 
3. 

 
 



Table 3. Overview of simulated scenarios. 
Scenario name LMP SMP 
Base Prod. cost for all GenCos Prod. cost for all GenCos 
PWSR_A PWSR for GenCo A PWSR for GenCo A 
PWSR_G PWSR for GenCo G PWSR for GenCo G 
PWSR_H PWSR for GenCo H PWSR for GenCo H 
FIPP_A FIPP for GenCo A FIPP for GenCo A 
FIPP_G FIPP for GenCo G FIPP for GenCo G 
FIPP_H FIPP for GenCo H FIPP for GenCo H 

4.3 Results 

The first thing to note is that the dispatch of the system does not depend on the pricing 
mechanism used in the market clearing process (LMP or SMP). In the base case, GenCos bid marginal 
production cost in both LMP and SMP market designs, resulting in identical bids and dispatch. In 
PWSR, the bidding behavior depends on the load and available system generation capacity, which are 
identical under LMP and SMP, again resulting in identical bids and dispatch. In FIPP, on the first 
simulation day, the bids are identical and the same bids will be either rejected or accepted under LMP 
and SMP.  As the bidding behavior depends on the previous day’s dispatch, the subsequent days’ 
dispatches are also identical under LMP and SMP. However, GenCo profits and consumer costs 
change due to the different settlement prices used under the two pricing mechanisms. Below, we focus 
on the financial results from the simulations. 

Table 4 shows the average day-ahead (DA) and real-time (RT) prices for all the nodes with 
generation and/or load in the base case. The SMP is the same in all the nodes, since this is the 
unconstrained market clearing price. However, we can clearly see that there is congestion in the 
network, since the LMPs differ between the nodes. The highest LMP is at node 11; the lowest LMP is 
at node 10. The reason for this is that line 18, which connects nodes 10 and 11, is frequently congested 
because of the high net load at node 11, which can only be met by importing electricity from other 
nodes. In fact, line 18 is operating at full capacity (i.e., 500 MW) as much as 50.8% of the time in the 
base case, and it is the only congested line in the network in the base case.  

 
Table 4. Average monthly prices (SMP and LMP) in DA and RT markets in base case.  

  Node 1 Node 2 Node 3 Node 4 Node 6 Node 10 Node 11 
SMP (DA) 29.9 29.9 29.9 29.9 29.9 29.9 29.9 
SMP (RT) 31.3 31.3 31.3 31.3 31.3 31.3 31.3 
LMP (DA) 30.5 31.0 29.8 31.4 31.7 28.1 32.2 
LMP (RT) 31.9 32.6 30.9 33.1 33.5 28.5 34.2 

 
Table 4 shows that the LMPs are higher than the SMPs in all nodes except node 10 (DA and 

RT) and node 3 (DA). This is because the LMPs include the cost of congestion, which can be either 
positive or negative depending on whether additional load at the node would contribute to increasing 
or decreasing congestion in the network. For instance, at node 10 a higher load would actually 
alleviate congestion in the network, since more power could be transmitted to node 11 from nodes 6 
and 7. This explains why the LMP is lower than the SMP in node 10. The SMP does not account for 
congestion. With SMP market clearing, therefore, there is an additional cost for the redispatch of 
generating units in order to resolve congestion. However, since this cost is distributed equally to all the 
consumers it does not depend on the location of the load. Hence, all the consumers are facing the same 
hourly price under the SMP scheme, whereas they are paying locational prices when LMPs are used. 
The GenCos, on the other hand, also have a locational difference under the SMP scheme, because the 
generators being dispatched out of merit order to resolve congestion are paid their bid price, which 
will be higher than the SMP. However, the locational differences in GenCo profits are likely to be 
lower under SMP than LMP, since all generating capacity is paid a locational price in the LMP 
scheme. 



Table 5 summarizes the total GenCo profits and consumer energy costs for all the scenarios, 
and it shows the percentage change between the SMP and LMP cases. We see that the total GenCo 
profit is higher in all the LMP cases, including both the physical and economic withholding scenarios. 
The consumer energy costs are always higher under the LMP scheme. The difference between the 
SMP and LMP results is particularly high for the PWSR A and PWSR H scenarios. In these cases, 
there is curtailment in the system for some hours due to transmission constraints (a total of 480 MWh 
and 2770 MWh in PWSR A and H, respectively). Therefore, the curtailment price will appear under 
the LMP settlement in hours with congestion, whereas the price remains at the point where the 
unconstrained supply meets demand with SMP. The resulting difference in prices during the hours of 
congestion explains the large difference in results for these two cases. From Table 5, we can also see 
that the total GenCo profits and consumer costs are increasing compared with the base case in all the 
strategic scenarios under both settlement mechanisms. The relative changes in profits and costs are 
further discussed below. 

 
Table 5. Total GenCo profits (left) and total consumer energy costs (right) in $106. 

Scenario SMP LMP % Change 

Base 19.6 22.6 15.0 
PWSR A 23.2 53.4 130.2 
PWSR G 23.5 23.7 0.9 
PWSR H 22.3 86.1 285.3 
FIPP A 23.6 25.9 10.2 
FIPP G 21.7 23.5 8.5 
FIPP H 25.1 28.1 11.7 

Scenario SMP LMP % Change 

Base 110.2 115.7 5.0 
PWSR A 114.4 154.1 34.8 
PWSR G 114.3 116.7 2.1 
PWSR H 114.5 224.6 96.2 
FIPP A 114.3 119.7 4.7 
FIPP G 112.2 116.2 3.6 
FIPP H 116.4 126.4 8.6 

 
In Table 6, we present in more detail how the individual GenCo profits change under the SMP 

settlement rules when strategic bidding is applied by GenCos A, G, and H. We see that the total profits 
increase considerably in both the physical and economic withholding scenarios. However, the increase 
in GenCo profits differs between the individual companies, because the dispatch changes with respect 
to the base case. Furthermore, payment from congestion management depends on the location in the 
network, as discussed above. We can see from the table that differences between the GenCos’ 
individual profit increases are highest in the economic withholding (FIPP) and PWSR H scenarios. 

The ideal strategy for a single GenCo would be to bid in a manner that increases its own profit 
more than the profits of other companies. This is referred to as unilateral market power [2]. In 
contrast, if other GenCos increase profits more than the one who bids strategically, this would serve as 
a disincentive to exercise market power, since the result would be that other companies benefit more. 
We see from Table 6 that GenCo H can exercise unilateral market power with both the physical and 
economic withholding strategies, since the other GenCos increase their profits less than GenCo H in 
scenarios PWSR H and FIPP H. GenCos A and G have unilateral market power only by applying the 
economic withholding FIPP strategy. 

 
Table 6 Percentage change in individual GenCo profits compared to base case (SMP). 

Scenario A B C D E F G H Total 
PWSR A 19.6 17.5 20.1 18.2 17.1 20.2 14.2 19.7 18.2 
PWSR G 19.9 19.2 22.4 19.6 18.3 24.6 13.8 22.1 19.7 
PWSR H 14.9 12 14.4 17 15.6 13.1 -1.3 25.8 13.9 
FIPP A 32.2 17.9 20.3 18 16.7 26.2 13.5 20.4 20.1 
FIPP G 9.8 8.1 9.7 8.5 7.9 14.5 15.9 11 10.5 
FIPP H 27.8 20.6 24.8 26.6 24.3 28.4 20.2 54.1 28 

 
Table 7 shows the same results as Table 6, but for the LMP settlement rule. We can clearly see 

that, compared to the base case, the percentage change varies much more between the individual 
GenCos than under the SMP scheme because of the locational prices. For instance, we see that 
GenCos G and E in some scenarios reduce their profit compared to the base case, probably due to 
lower locational prices. The differences between the GenCos are particularly high in the two scenarios 



with curtailment in node 11 (PWSR A and H). Also, unilateral market power appears to be easier to 
obtain with the economic withholding strategy under the LMP scheme; all three GenCos are able to 
increase their profits more than the rest when applying the FIPP strategy. For the physical withholding 
strategy, only GenCo G is able to exercise unilateral market power.  

 
Table 7 Percentage change in individual GenCo profits compared to base case (LMP). 

Scenario A B C D E F G H Total 
PWSR A 51.1 162.1 180.7 126.0 124.3 179.4 12.4 181.3 136.6 
PWSR G 3.3 3.9 4.5 8.8 6.8 2.1 15.0 1.0 5.1 
PWSR H 315.8 340.8 361.3 235.3 229.7 301.6 -53.8 361.0 281.4 
FIPP A 22.1 13.8 15.2 13.5 12.0 19.8 6.8 15.5 15.0 
FIPP G 3.0 1.3 1.7 6.2 5.4 0.7 25.8 -0.7 4.3 
FIPP H 22.2 30.9 35.6 0.5 -1.4 69.1 -54.3 55.2 24.4 

 
Table 8 and Table 9 show the relative change in individual consumer costs for the strategic 

scenarios compared to the base case under SMP and LMP settlements. The cost increase is relatively 
modest in the SMP scenarios, and the cost increases are almost the same for all consumers. In fact, the 
only reason for the small differences between the individual consumers is that they have different 
hourly load profiles; the hourly energy and congestion costs are the same. In the LMP case, we again 
see more distinct differences between the consumers because of the locational prices. For instance, 
Load 10 reduces its cost by more than 10% when GenCo H applies either physical or economic 
withholding. Load 11, on the other hand, has a cost increase of more than 100% when GenCo H 
withholds capacity and causes curtailment to occur. 

 
Table 8 Percentage change in individual Consumer costs compared to base case (SMP). 

Scenario Load 1 Load 3 Load 4 Load 10 Load 11 Total 
PWSR A 4.0 4.1 3.9 3.7 3.7 3.8 
PWSR G 3.9 4.0 3.8 3.6 3.7 3.7 
PWSR H 4.3 4.3 4.1 3.9 3.8 3.9 
FIPP A 3.9 4.0 3.8 3.6 3.7 3.7 
FIPP G 1.9 1.9 1.8 1.7 1.8 1.8 
FIPP H 6.0 6.1 5.8 5.4 5.6 5.7 

 
Table 9 Percentage change in individual Consumer costs compared to base case (LMP). 

Scenario Load 1 Load 3 Load 4 Load 10 Load 11 Total 
PWSR A 26.7 27.8 36.2 2.8 39.8 33.2 
PWSR G 1.5 1.5 0.8 2.7 0.4 0.9 
PWSR H 49.1 50.8 75.1 -10.9 125.3 94.1 
FIPP A 3.1 3.2 3.6 1.8 3.8 3.4 
FIPP G 1.1 1.2 0.3 2.5 -0.1 0.4 
FIPP H 3.2 3.3 10.5 -11.4 14.4 9.3 

4.4 Discussion 

In general, we can see from Table 6 and Table 7 that, on average, GenCo H tends to benefit 
the most from the simulated strategic behavior under both the SMP and LMP schemes. GenCo G, on 
the other hand, appears to benefit the least. This is because of the location of these two GenCos, on 
each side of a congested line. However, the relative differences between the GenCos are much more 
amplified by the LMP market settlement as compared to SMP. The same is observed on the demand 
side of the system (Table 8 and Table 9), where the increase in consumer energy cost due to strategic 
behavior is almost the same for all consumers in the SMP case but varies greatly under the LMP 
design. The load in node 11 tends to see a high increase in costs, whereas the consumer in load 10 sees 
only a small increase or even a reduction in costs compared to the base case. An advantage of the LMP 



mechanism is that it gives efficient locational price signals to the agents in the system in a competitive 
setting, as indicated by the LMPs in Table 4. However, these signals might easily be distorted if 
market power is exercised in the system. The SMP approach, on the other hand, does not give the 
correct locational price signals; most of the generation receives the unconstrained market clearing 
price, and all consumers pay the same energy and congestion cost. However, the SMP approach 
appears less vulnerable than the LMP scheme to locational distortions from market power exercise. 

The results from the case study show that it is possible to exercise market power in the 
11-node system. Unilateral market power, which was also identified, appeared to be easiest to obtain 
using an economic withholding strategy. It is interesting to compare the results to the traditional HHI 
index for market concentration. The HHI index for the supply side of the system based on installed 
capacity is 1250, which is likely to be regarded as relatively low3. The case study clearly illustrates the 
importance of taking the transmission constraints into account when assessing market power in 
electricity markets. A clear advantage of using an agent-based model to simulate market power is that 
the transmission network can easily be represented in the model. In addition, it is possible to include 
more realistic assumptions (stochastic outages, supply function bidding, two settlement system, etc.) 
than are usually possible in a traditional market power model based on game-theoretical equilibrium 
approaches. A challenge when using agent-based simulations is, however, to assign reasonable 
strategies to the agents in the system. A high number of simulations can be necessary before realistic 
results emerge from the analysis, unless the agents have very intelligent and adaptive strategies that 
quickly approach realistic market behavior.  

5. CONCLUSIONS 
The results from our case study show that most GenCos are able to manipulate the prices and 

increase their profits under both the LMP and SMP designs, despite a fairly low market concentration 
in the 11-node test power system. However, because of the transmission constraints, the ability to raise 
prices is very dependent on the GenCos’ location in the grid. The largest changes in GenCo profits and 
consumer costs due to strategic behavior occur under the LMP scheme. However, unilateral market 
power, found under both pricing mechanisms, occurs more frequently for economic than physical 
withholding strategies.  

Of course, one should be careful in generalizing the results from a simple 11-node case study, 
where only a limited number of strategies are simulated. However, the analysis underlines the 
importance of taking the transmission network into account when assessing market power in electricity 
markets. Simple market concentration measures, such as the HHI Index, are not adequate in 
transmission-constrained electricity markets. Furthermore, the analysis shows that agent-based 
simulation models, which can facilitate a detailed representation of the rules in the electricity market 
in addition to the transmission constraints, can bring insights beyond the results from the traditional 
equilibrium models typically used to analyze market power issues. 

We see a number of potential extensions of the work presented in this paper. For instance, it 
would be interesting to simulate alternative bidding strategies, where the GenCos have a better 
capability for learning and adapting their strategies during the simulation. Another important aspect is 
to represent demand-side response to prices, together with the possibility of simulating demand-side 
bidding as a counterweight to the potential market power exercise by GenCos. Bilateral contracts can 
also reduce the participants’ ability to exercise market power; this is an important aspect to include in 
future simulations. Furthermore, it would be interesting to analyse the effect of using alternative 
congestion management mechanisms to nodal pricing and counter trading (e.g., zonal pricing, explicit 
and implicit auctions). In the end, instead of simulating a chronological time series of load, we could 
simulate the power market as a repeated game (i.e., using the same daily loads for all time steps), 
analyzing market stability and whether or not the market solution converges towards an equilibrium 
point.  

 
 

                                                      
3 A HHI of 1800 is commonly used as a lower limit for concerns about market power abuse in the US 

(Stoft [13]). 
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