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INTRODUCTION 
 
1.1. Introduction 

Rich and complex behavior is observed in the magnetic and transport properties of 

the tetragonal RAgSb2  (R= Y, La-Nd, Sm, Gd-Tm) series of compounds.  The magnetization 

as functions of applied field and temperature is strongly anisotropic due to the crystalline 

electric field (CEF) splitting of the Hund’s rule ground state multiplet. For most of the 

members of the series (R = Ce-Nd, Sm, Tb-Ho), the CEF anisotropy constrains the local 

magnetic moments to the basal plane.  However, for R = Er, and Tm, the CEF splitting leads 

to moments aligned along the crystallographic c-axis. 

All of the compounds, except for those containing Y, La, Ce, and Pr, order 

antiferromagnetically at temperatures ranging from approximately 1.8 K in TmAgSb2 to 12.8 

K in GdAgSb2.  CeAgSb2, which manifests a temperature dependent resistivity typical of a 

Kondo lattice, is the only member of the series to exhibit ferromagnetic ordering with a Curie 

temperature of 9.6 K. 

A particularly dramatic example of sharp metamagnetic transitions is observed in 

DyAgSb2 at low temperatures.  In this compound, the nature of the magnetic order changes 

abruptly with both the magnitude and the orientation of the applied field.  The angular 

dependence of the transitions may be used to determine net distribution of the magnetic 

moments and to obtain an estimate of the coupling constants between the moments within the 

“4-position clock” model. 

Resistivity measurements as a function of temperature are typical of other rare earth 

intermetallic compounds and manifest a loss of spin-disorder scattering below the magnetic 



transitions.  However, the transverse magnetoresistance is abnormally large compared to 

other intermetallic compounds and possesses significant deviation from the predicted H2 

dependence on applied field.  Furthermore, anomalous features in the magnetoresistance 

correspond to the field-induced magnetic transitions observed in the M(H) isotherms of many 

members of the series.  

For R = Y, La, Pr, Nd, and Sm, de Haas-van Alphen and Shubnikov-de Haas 

oscillations are clearly observed at relatively low applied magnetic fields and exceptionally 

high temperatures.  For example, de Haas van Alphen oscillations are readily apparent in the 

magnetization of SmAgSb2 up to 25 K.  Analysis of the observed frequencies of the quantum 

oscillations and their dependence on the direction of applied field,  gives insight into the 

topology of the Fermi surface. 

The outline of this work is as follows: This chapter will motivate the study of RAgSb2 

compounds and provide an overview of the crystal structure.  Chapter 2 will discuss 

introduce crystal growth from high temperature solutions as it pertains to the synthesis of the 

rare earth silver antimonides and review measurement techniques.  Chapter 3 will provide the 

foundation of the physics studied in rare earth intermetallic compounds, including 

magnetization and magnetic ordering, resistivity and magnetoresistance, and quantum 

oscillations.  A thorough compound-by-compound analysis of the basic magnetization and 

transport properties of the RAgSb2 series is presented in Chapter 4, along with a discussion 

of trends across the series.  Details of the metamagnetic transitions and their angular 

dependence in DyAgSb2 is the subject of Chapter 5.  The electronic structure of the RAgSb2 

is revealed in Chapter 6, via the analysis of de Haas-van Alphen and Shubnikov-de Haas 



oscillations.  Finally, the results of this work and suggestions for future study will be the 

summarized in Chapter 7. 

1.2. R-T-Sb compounds 

1.2.1. Rare Earth Intermetallic Compounds 

Generally, the investigation of rare earth intermetallic compounds is essential to the 

study of local moment magnetism in solids.  Since the 4f-electrons are strongly localized, the 

rare earth elements, Y, La-Lu are chemically very similar.  Therefore, whole series of 

compounds may often be synthesized with the same crystal structure, differing only in rare 

earth atom.  This ability to vary the magnetic properties of the compound, through the choice 

of rare earth element, allows the systematic study of magnetic interactions between local 

moments and the effect of the surrounding crystalline environment on the magnetic 

properties.  Furthermore, differences in the electronic structure as the rare earth element is 

varied may be revealed through the comparison of the magnetic and transport properties 

across the isostructural series. 

Specifically, the study of the RAgSb2 series of compounds arose as part of a two-fold 

investigation of new low carrier density compounds containing antimony and compounds 

with the rare earth elements in positions with tetragonal point symmetry.  

1.2.2. R-T-Sb Compounds 

The study of new Sb-containing compounds is important for several reasons.  First, 

the R-T-Sb compounds are a new family, of which the physics has not been well explored.  

Previous measurements have primarily consisted only of crystallographic structural 

determinations (Ferguson, 1997).  Magnetic and transport measurements have only been 

performed on a few members of this family and have concentrated on polycrystalline 



samples with R = Ce (Lakshmi, 1996; Skolozdra, 1994, Pierre, 1994; Flandorfer, 1996; 

Muro, 1997; Houshiar, 1995).  However, measurements of the magnetic properties of 

compounds with rare earth elements other than Ce have been on polycrystalline samples for 

T = Mn, Co, Au, Zn and Cd (Wollesen, 1996), T=Pt, Au, and Pd (Kasaya, 1993), and T = Ni, 

Pd, Cu, and Au (Sologub, 1994). 

Previous reports on the physical properties of the RAgSb2 series of compounds have 

concentrated on measurements of polycrystalline samples.  Primarily, these samples were 

prepared by arc melting a nearly stoichiometric composition of starting materials   However, 

due to the polycrystalline nature of the samples, no investigation of the anisotropy in either 

the magnetic or transport properties was possible.  These previous reports verified the crystal 

structure and provided a brief overview of the magnetic properties (Sologub, 1995).  All of 

the compounds, except the non-magnetic rare earth elements La and Y, were shown to order 

antiferromagnetically at temperatures between 3.1 and 14 K.  In addition, a ferromagnetic 

component to the magnetization was observed in CeAgSb2.  To date, no measurements of 

either the transport properties such as the temperature or field dependence of the resistivity or 

investigations of the Fermi surface such as de Haas van Alphen measurements have been 

performed. 

In addition, the study of compounds with low carrier densities, such as many of the 

intermetallics containing Sb or Bi, is instrumental in understanding the electronic structure of 

materials.  Due to the small number of carriers, slight changes in the Fermi surface arising 

from magnetic ordering, spin or charge density waves, or variation of the rare earth atom, 

may become very apparent.  Furthermore, the Fermi surface of these materials is typically 

smaller than in other compounds, which allows probes of the electronic structure, such as 



magnetoresistance, and de Haas-van Alphen oscillations, to be used at relatively low applied 

magnetic fields. 

A final reason for choosing to study compounds containing Sb pertains to the 

feasibility of synthesizing the new compounds.  To successfully grow single-grain crystals of 

rare earth intermetallic compounds two criteria should be met.  First, it is advantageous to 

have as few compounds as possible containing the same elements as the desired compound.  

This reduces the possibility of growing unwanted phases and removes restrictions on the 

starting compositions of the growth.  Secondly, the melting points of the ternary melt should 

be low enough to be accessible to available furnace and crucible technology.  Both of these 

points will be discussed in detail in chapter 2.  The transition metal-antimony phase diagrams 

clearly meet both of these criteria and suggest that the growth of rare earth transition metal 

antimonides is practical. 

1.2.3. The Advantage of Tetragonal Point Symmetry 

The study of compounds with the rare earth in tetragonal symmetry is advantageous 

due to the complexity and richness of the magnetic structures and the simplified analysis 

compared to orthorhombic or monoclinic point symmetries.  In systems with tetragonal 

symmetry, strong anisotropy arising from a tetragonal crystal electric field (CEF) splitting of 

the Hund’s rule ground state multiplet may constrain the local moments to align either 

parallel or perpendicular to the c-axis.  For example, the well-studied compounds with the 

ThCr2Si2 structure (Pinto, 1982), such as TbNi2Ge2, typically order with the moments along 

the c-axis, leading to Ising-like behavior (Islam, 1998).  A spectacular example of the 

complexity arising from the long range interaction between local moments and CEF 

anisotropy is the series of at least nine field-induced transitions observed in TbNi2Si2 



(Shigeoka, 1992; Fuji, 1990).  It has been suggested that for a three dimensional Ising 

system, an infinity of stable magnetic phases may exist (Bak, 1982), the so called “devil’s 

staircase”.  Although the existence of such a complex system has not been confirmed 

TbNi2Si2  remains a potential candidate. 

On the other hand, the tetragonal CEF splitting of the Ho3+ ions in HoNi2BB2C 

constrains the magnetic moments to the one of four symmetric direction within the basal 

plane.  In this case, careful study of the magnetization as a function both the magnitude and 

direction of the applied field provides valuable information about the nature of the magnetic 

order.  In order to study this type of anisotropy, it is preferable that the easy orientation for 

the magnetic moments is within the basal plane for members of the series containing R = Tb, 

Dy, Ho, since these compounds typically have a higher magnetic ordering temperature than 

for R = Er, Tm, Yb due to their larger de Gennes factor.  Overall, materials meeting these 

criteria are rare, with only a few examples previously studied. 

1.2.4. Initial Investigation of Single Crystal R-T-Sb Compounds 

An initial foray into the growth and characterization of R-T-Sb compounds consisted 

of attempts at synthesizing compounds with T = Cr, Fe, Ni, Cu, Rh, Pd, Ag, and Au.  The 

results of these preliminary attempts were mixed.  Large crystals with morphologies 

suggesting tetragonal crystal structures were produced for T = Ni, Cu, and Ag.  Attempts to 

synthesize crystals with Au produced large, dendritic crystals which were revealed to be the 

cubic R3Sb4Au3 compounds using single crystal x-ray diffraction.  Attempts with the other 

transition metals produced a remarkable amount of crystals with a cubic morphology, 

consistent with the rock salt structure of RSb compounds, but no tetragonal compounds. 



Although the size and morphology of the R-Cu-Sb crystals were excellent, significant 

growth-to-growth variation in the magnetic and transport properties was observed.  Single 

crystal x-ray diffraction revealed the composition of the compounds to actually be RCuxSb2 

with x varying between 0.78 and 0.92 (Myers, unpublished).  This variation in composition 

and physical properties makes the compounds unsuitable for detailed analysis.  Other R-T-Sb 

compounds exhibiting similar variations in composition occur with R = Ni, Mn, and Fe 

(Wollesen, 1996); consequently no further studies were made of these compounds. 

Early attempts to synthesize R-Ag-Sb compounds were remarkably successful.  These 

first samples were plate-like crystals with well-formed facets which suggest a tetragonal 

crystal structure, sufficiently large, and of excellent quality with residual resistivity ratios 

near 100 for the light rare earths and near 30 for the heavy rare earths. Single crystal x-ray 

diffraction confirmed the composition of the samples to be tetragonal RAgSb2 and revealed 

no site deficiencies.  Furthermore, the crystal structure of RAgSb2 is very similar to the 

orthorhombic RSb2 series of compounds, which exhibits strong anisotropies, complex 

metamagnetism, and large near-linear magnetoresistance (Bud’ko, 1998).  With these 

promising initial results, the synthesis of single crystals was expanded to include most of the 

RAgSb2 series.  Although compounds could not be grown with R= Eu, Yb, or Lu, the growth 

of the rest of the RAgSb2 series with R=Y, La-Nd, Sm, Gd-Tm was successful.   

1.3. Crystal Structure of RAgSb2 

1.3.1. Crystal Structure 

The rare earth silver antimonides crystallize in a simple tetragonal structure (P4/nmm, 

#129) with two formula units per cell and the rare earth ions in a position with tetragonal 

point symmetry (4mm).  The atomic positions are given in Table 1.1.  As seen in Fig. 1.1, 



this structure consists of Sb – RSb – Ag – RSb – Sb layers.  The lattice constants, presented 

in Table 1.2, reflect the lanthanide contraction and range from  a = 4.253 Å  and c = 10.39 Å 

in TmAgSb2 to a= 4.390 Å  and c = 10.84 Å in LaAgSb2.  Throughout the series, the c/a ratio 

is nearly a constant 2.44. 

1.3.2. Comparison with RSb2 

The crystal structure of RAgSb2 is very similar to the RSb2 compounds, making it a 

logical candidate for further study.  In contrast to the weakly orthorhombic structure of the 

rare earth diantimonides (Wang, 1967; Hulliger, 1979) (a ≈ 6.17Å, b ≈ 6.05 Å, c ≈ 17.89 Å), 

the rare earth silver antimonides are tetragonal with the rare earth element in a site with 

 

 

 

 

Fig. 1.1 The crystal structure of RAgSb2.  Dark circles indicate R, medium circles are Sb and 
light circles are Ag. 



 

 
 
 

Table 1.1 Atomic positions of RAgSb2 (Sologub, 1995) 

 
 

Atom P4/nmm x y z 
R 2c ¼ ¼ 0.2382 
Ag 2b ¾ ¼ ½ 
Sb1 2a ¾ ¼ 0 
Sb2 2c ¼ ¼ 0.6737 

 
 
 
 
 
 

Table 1.2 Lattice parameters and cell volumes of the RAgSb2 series of 
compounds.  Note the contraction in parameters as the rare earth atoms 
become heavier and smaller. (Sologub, 1995) 

 
 
 

Compound a (Å) c (Å) c/a V (Å3) 
YAgSb2 4.276 10.48 2.452 191.8 
LaAgSb2 4.390 10.84 2.469 208.9 
CeAgSb2 4.364 10.69 2.452 203.7 
PrAgSb2 4.349 10.67 2.453 201.9 
NdAgSb2 4.335 10.63 2.452 199.8 
SmAgSb2 4.312 10.55 2.448 196.2 
GdAgSb2 4.295 10.50 2.446 193.8 
TbAgSb2 4.283 10.47 2.446 192.2 
DyAgSb2 4.274 10.44 2.443 190.8 
HoAgSb2 4.266 10.42 2.443 189.7 
ErAgSb2 4.257 10.39 2.441 188.3 
TmAgSb2 4.253 10.39 2.443 188.0 
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Fig 1.2 Lattice parameter ( , left axis) and cell volume ( , right axis) of RAgSb2 as a 
function of rare earth element.  

 

tetragonal point symmetry (Brylak, 1995; Flandorfer, 1996; Muro, 1997), simplifying a 

characterization of the magnetic and transport properties.  Figure 1.3 shows that the RAgSb2 

structure may be obtained from the RSb2 structure by equalizing the a and b axes, inserting 

two planes of Ag atoms, and horizontally shifting the central Sb plane of the RSb2 structure. 

In addition to the microscopic difference in the crystal structure, there is a related 

macroscopic difference between the RAgSb2 and RSb2 crystals.  Whereas the RSb2 crystals 

are malleable and composed of metallic sheets that can be peeled apart in a micatious 

fashion, the RAgSb2 crystals are more three-dimensional in their mechanical properties, less 

malleable, and can be ground into a powder.  Most likely, these mechanical differences are 

the result of the additional silver atoms increasing the bonding along the c-axis. 



(a)      (b) 

 

Fig. 1.3 Crystal Structure of (a) RAgSb2 and (b) RSb2.  Note that the lines are guides to the 
eye and do not represent actual chemical bonds. 
 
 



 



2. CRYSTAL GROWTH OF RARE-EARTH INTERMETALLIC 
COMPOUNDS AND EXPERIMENTAL METHODS 

2.1. Introduction 

Although polycrystalline samples may be used for preliminary measurements of the 

magnetic and transport properties of new materials, high-purity single crystals are essential 

for any detailed analysis.  For example, compounds with rare earths in non-cubic point 

symmetry, such as the layered ThCr2Si2 structure, frequently possess strong anisotropies in 

the magnetic properties and electronic structure.  In a polycrystalline material, the random 

orientation of the microscopic grains can average out any anisotropies in these properties.  In 

addition, many measurements require large samples with long-range order, such as neutron 

or X-ray diffraction. 

The quality of single crystals is generally superior to polycrystalline samples, since 

single crystals do not possess grain boundaries.  Impurities, which are often present between 

the grains of polycrystalline materials, are substantially reduced, due the much smaller 

surface area to volume ratio of single grain crystals.  Considerable stress and strain may also 

be present in polycrystalline samples, due to rapid cooling and crystallites growing against 

each other.  Generally, lower impurity and defect concentrations lead to higher quality 

samples as manifest, for example, in higher residual resistivity ratios.  The significantly 

lower impurity concentrations are essential to the observation of many phenomena, such a 

quantum oscillations, that depend strongly on the mean free path of the conduction electrons.   

There are many techniques for the growth of single crystals.  One of the most 

versatile methods is growth from high-temperature solutions, also know as flux growth.  This 



introduction of crystal growth from high-temperature solutions will begin with the analysis of 

a binary phase diagram, which will be used to synthesize crystals from a binary melt.  The 

discussion will proceed to the growth of binary compounds from third element fluxes and 

then to the synthesis of ternary compounds from a ternary melt.  Finally, specific 

experimental techniques used in crystal growth from high-temperature solutions will 

discussed. 

The final part of this chapter will focus on the experimental techniques and apparatus 

used for the measurement of the thermodynamic and transport properties of rare earth 

intermetallic compounds.  This section will include details of the preparation of samples for 

measurements of the magnetization, specific heat, resistivity, and magnetoresistance. 

2.2. Crystal Growth From High Temperature Solutions 

2.2.1. Binary Phase Diagrams 

The natural starting point for any discussion of crystal growth is to analyze a binary 

phase diagram.  Figure 2.1 shows such a phase diagram for Nd and Sb. The left and right 

sides of the phase diagram correspond to pure Nd and Sb, respectively.  The curved line 

separating the all-liquid region (L) from the regions containing liquid and solid (L+S) is the 

liquidus line.  At low temperatures, there are four thermodynamically stable binary 

compounds, represented as vertical lines: Nd5Sb3, Nd4Sb3, NdSb, and NdSb2.  Except for 

NdSb, all of these compounds decompose before they melt.  For example, NdSb2 is stable up 

to 1650 ºC.  At this temperature, called the peritectic, NdSb2 decomposes into NdSb and 

liquid, as shown by the horizontal line.  Compounds that decompose before they melt (the 

line denoting the compound does not meet the liquidus) are known as incongruently  

 



Nd0.05Sb0.95

  

Fig 2.1 Binary phase diagram for Nd and Sb (after Massalski, 1992). 

 

melting compounds.  On the other hand, NdSb, which persists up to the liquidus, is an 

example of a congruently melting compound.   

There is a vast assortment of techniques to synthesize single crystals and the utility of 

each varies widely.  Thorough reviews of many of these methods may be found in Pamplin 

(1975) and the references therein.  Examples of crystal growth methods include the 

Czochralski and zone refining methods which are essential to the semiconductor industry, 

since these methods can produce large, very high purity silicon, germanium and gallium 

arsenide single crystals. 



Unfortunately, most of these methods require the composition of the melt to be equal 

to the desired product, constraining these methods to the synthesis of only congruently 

melting compounds.  Furthermore, the starting components must be heated above the melting 

temperature of the target compound, which may easily be above the working range of 

available furnaces and crucibles.  For example, consider the Nd-Sb phase diagram (Fig. 2.1).  

NdSb is the only compound which is congruent and may be grown using these methods.  

Since the melting temperature of NdSb is over 2000ºC, quartz and standard furnaces using 

SiC elements, may not be used.  Finally, the vapor pressures of the constituent elements may 

become appreciable at these very high temperatures.  For instance, the vapor pressures of 

some of the rare earth elements, such as samarium, europium and ytterbium, become large at 

temperatures above 900ºC, leading to chemical reactions with the crucibles as well as a loss 

of stoichometry. 

2.2.2. Growth of Binary Compounds from a Self Flux 

Many of the above problems may be avoided by growing the crystals out of a high 

temperature solution.  An extensive overview of many of the methods of crystal growth from 

high-temperature solutions may be found in Elwell and Scheel (1975).  The solvent in this 

high-temperature solution is frequently called a flux, since it produces lower melting 

temperatures than those of the starting components, much like the materials used for 

soldering and welding.  At high temperatures, all of the constituent elements are dissolved in 

the flux.  As the temperature of the melt decreases, the solubility of the target compound 

decreases, forcing the desired compound to precipitate out of the solution. 



For a detailed example of the crystal growth of a specific rare earth intermetallic 

compound, it is useful to consider the growth of NdSb2.  From the aforementioned Nd-Sb 

binary phase diagram (Fig. 2.1), several relevant facts are apparent: 

• NdSb2 is in equilibrium with the melt for Sb-rich initial concentrations and 

temperatures below 1650ºC, above which the compound decomposes into NdSb 

and liquid.  

• Up to 10 atomic percent Nd can be completely dissolved in Sb at 1200ºC, which 

is the maximum temperature quartz may be used to provide an inert atmosphere.  

• The cooling of an Sb rich melt will result in the formation of either NdSb or 

NdSb2, depending on the initial concentrations. 

• The growth should end above 600ºC to prevent the solidification of the eutectic 

concentration of Sb0.97Ag0.3. 

These points suggest that the ideal flux for the growth of NdSb2 is excess Sb.  In this 

case, the Sb (known as a “self flux”) depresses the required temperature range of the growth.  

Although NdSb2 may be grown from a starting concentration of Nd0.1Sb0.9, an even more 

dilute initial concentration is sometimes more desirable to control nucleation and allow 

enough physical space for free growth of individual crystals.  Frequently a concentration that 

is too rich will yield small, poorly formed, intergrown crystals.  Empirically, an initial 

concentration of Nd0.05Sb0.95 (represented by the arrow in Fig 2.1) was found to be ideal.  The 

starting elements are heated to 1100ºC to allow the elements to melt and mix together.  As 

this melt is slowly cooled, it will meet the liquidus-solidus line at about 840ºC.  Further 

cooling decreases the solubility of NdSb2 which will cause crystals of NdSb2 to form.  Since 

the Sb-rich eutectec temperature is 600ºC, it is desirable to end the growth process well 



above this temperature at 675ºC.  At this temperature, the excess flux is decanted, revealing 

plate-like crystals of NdSb2 (Canfield, 1992) (Bud’ko, 1998). 

2.2.3. Third Element Fluxes 

In principle, the above method may also be used to synthesize single crystals of 

NdSb.  However, inspection of the Nd-Sb phase diagram (Fig. 2.1) reveals that if the melt is 

allowed to cool below 1650ºC, crystals of NdSb2 will form instead of NdSb.  Similarly, on 

the Nd-rich side of the phase diagram, Nd4Sb3 will be grown below 1800ºC.  Since these 

temperatures are above the useful range of quartz and SiC furnaces, it is necessary to grow 

NdSb crystals using an alternate method.  The temperatures required for the growth may be 

dramatically decreased by using a third element as a flux. 

At this point, it is instructive to refer to two simple and more familiar examples of 

flux growth: rock salt and epsom salt crystals grown in water.  Although the melting 

temperature of NaCl is 800ºC, well faceted cubic crystals can easily be grown in a household 

kitchen.  NaCl is dissolved in hot water to the point of saturation.  The water is then slowly 

allowed to evaporate from the container, which decreases the total amount of NaCl dissolved.  

This forces the NaCl out of solution through the formation of crystals.  Another example of 

flux growth that may be performed near room temperature is the growth of Epsom salts 

(MgSO4) from water (Fisher, 1998).  Like the aforementioned example with NaCl, the 

Epsom salts are dissolved in hot water to form a saturated solution.  In this case however, the 

solubility of MgSO4 is very sensitive to the temperature of the water.  Since MgSO4 is less 

soluble at lower temperatures, crystals may be formed by allowing the solution to gradually 

cool.  This is the technique used most often to grow crystals from third element fluxes. 



Due to their relatively low melting points, some of the most common metallic flux 

elements are Al, Bi, Ga, In, Pb, Sb, and Sn, with the merits of each described in detail in 

Canfield and Fisk (1992).  The choice of the appropriate third-element flux is critical to the 

successful growth of crystals, and several criteria must be addressed: 

• The melting temperature of the flux must be low enough to allow a sufficient temperature 

range for the formation of the desired crystals. 

• All of the solute materials must be soluble in the flux for the given temperature and 

concentrations. 

• Ideally, there should be no nearby compounds containing the flux elements and any of 

the solute elements, which would introduce second phases and impurities. 

• The flux elements should not substitute into any of the atomic sites of the target material. 

• The flux should not be reactive with either the crucible or the quartz tubing. 

• Finally, certain elements are undesirable due to their high toxicity, such as mercury or 

cadmium. 

In the example case of NdSb, crystals were successfully grown using a Sn flux.  

Specifically, the compound can be formed from an initial concentration of 5 at. % NdSb in 

95 at. %  Sn which is cooled from 1150ºC to 750ºC.  

2.2.4. Ternary Compounds From A Self Flux 

The growth of ternary compounds is similar to the growth of binary compounds.  As 

before, an adequate flux must be found and the initial melt composition must be chosen to 

avoid the formation of other phases.  For the growth of the RAgSb2 series of compounds, Sb 

is also the ideal flux, since this “self flux” melts at a relatively low temperature (630ºC), does 

not add any additional elements into the melt, and does not react with alumina or quartz.  



However, the greatest problem with growing rare earth intermetallic crystals out of antimony 

is the stability of many of the R-Sb binary compounds, particularly RSb and RSb2. 

For ternary or quaternary compounds, it is difficult to predict beforehand the 

optimum concentrations and temperature profiles for a proposed growth.  Although these 

factors may be determined from the appropriate ternary phase diagram, these diagrams exist 

only for very few systems.  Therefore, the first growth attempt is typically based on an 

analysis of the binary phase diagrams of the constituent elements, with the concentrations 

and temperatures chosen to avoid unwanted phases.  These initial attempts may also consist 

of three or more slightly different starting concentrations.  From qualitative (crystal size, 

morphology, amount of flux on surface, facets) and quantitative (resistivity, magnetization, 

powder X-ray diffraction) analysis of the sample, the temperature profiles and initial 

concentrations may be optimized. 

An initial estimate of the required concentrations of the three elements in the melt and 

temperature profile may be determined from the three binary phase diagrams (Figs 2.1 and 

2.2):  

• Ag-Sb:  As long as the melt is Sb rich, no Ag-Sb binaries will be produced.  If the rare 

earth concentration is small enough, its effects may be ignored, and the minimum ending 

temperature of the growth will range from 485 ºC to 630ºC, depending on Sb content.   

• Ag-Nd:  Since the flux is Sb, this phase diagram will have little impact in deciding the 

initial concentrations if any ternary compounds exist.  However, it should be noted that if 

a Nd-rich, Ag bearing compound were desired, then the Nd.8Ag.2 eutectic with  

 



 

 

 

Fig. 2.2 Binary phase diagrams for (a) Nd-Ag, and (b) Ag-Sb.  Note the low melting points 
and lack of binary compounds on the Sb-rich side of the the Ag-Sb diagram (after Massalski, 
1992). 



TEu ≈640ºC would be promising. 

• Nd-Sb:  There are four compounds in the Nd-Sb binary system.  Of these, only two 

compounds are accessible for Sb rich starting concentrations, NdSb and NdSb2.  The 

former affects the starting concentrations little, since the liquidus-solidus surface is only 

exposed above 1650ºC.  The latter, however is more troublesome.  In order to preclude 

formation of NdSb2 below 1200ºC, the concentration of Nd cannot exceed 10% relative 

to Sb.  To allow sufficient temperature range for the growth of NdAgSb2, a starting Nd 

concentration 5% relative to Sb will allow cooling down to about 900ºC (Fig. 2.3 (a), 

avoiding the formation of NdSb2. 

A ternary phase diagram (Fig. 2.3) shows a summary of the binary and ternary phases.  

RAgSb is the only ternary phase present besides the target compound.  The relative 

emptiness of this phase diagram is clearly beneficial to the growth of the RAgSb2 

compounds, since there are fewer second phases to avoid.  As mentioned previously, this 

dearth of R-T-Sb compounds was part of the motivation of this study.  

2.2.5. Experimental Technique for Flux Growth 

For standard growths, the starting materials were placed inside a 2 ml or 5 ml alumina 

crucible, called the “growth crucible” [Fig. 2.3 (b)].  Typically, the element with the lowest 

melting point (in this case Sb) is placed on the top of the other elements to help dissolve the 

other materials.  Another crucible, called the “catch crucible,” is filled two-thirds full of 

quartz wool and placed inverted on top of the growth crucible.  To protect the growth from 
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Fig. 2.3 Ternary phase diagram of the Nd-Ag-Sb system.  The + indicates the initial melt 
composition for the growth of most of the RAgSb2 compounds from a self flux. 

 

oxidization, a protective atmosphere must be provided.  For crystal growths in box furnaces, 

the simplest means of doing this is to seal the growth in quartz tubing under a partial pressure 

of argon.  However, this limits the maximum temperature of the growth to around 1200ºC, 

the softening point of quartz. 

Once the sample has slowly cooled to the desired temperature [Fig 2.3 (a)], the 

remaining flux must be decanted from the crucible.  This is done effectively by removing the 

ampoule from the furnace and inserting it inverted into a centrifuge.  During the spin, the 

quartz wool in the catch crucible acts as a strainer which allows the excess flux to flow to the 

bottom of the catch crucible and holds any crystals that may have detached from the growth 

crucible.  



Overall, the sample yield using this growth technique is impressive.  Large single 

grain crystals of RAgSb2 were grown for almost the whole series of rare earth elements.  The 

largest samples produced were of LaAgSb2, with dimensions near 1 × 1 × 0.5 cm.  In the 

RAgSb2 series, the sample yield diminishes as the rare earth elements become heavier and 

smaller.  To account for this, the initial concentration was adjusted to R0.05(Ag0.3Sb0.7)0.95 for 

R = Er and Tm.  Even with this change, the best samples of TmAgSb2 were thin square plates 

approximately 1mm wide. 

The quality of the samples also decreases along with the size, as evidenced by a 

decrease in residual resistivity ratio.  This is discussed in detail in Chapter 4.  Despite 
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Fig 2.3 (a) Temperature profile for the growth of single crystals of RAgSb2 from an Sb-
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multiple attempts with varying temperatures and concentrations, no members of the RAgSb2 

series of compounds were grown with R = Eu, Yb, and Lu.  For the R = Lu, this could be the 

result of the rare earth atoms becoming too small for optimal bonding (Brylak, 1995), 

whereas for R= Eu and Yb, valency may play a role.  Finally, the vapor pressures of Eu and 

Yb become appreciable within the temperature range used for growth leading to a loss of 

stochiometry as the Eu or Yb evaporates from the melt. 

 

 

 

Fig. 2.3 Single crystal  of LaAgSb2 shown over a 1 mm scale.  The c-axis is perpendicular to 
the plane of the paper. 



2.3. X-ray Diffraction 

2.3.1. Powder X-ray Diffraction 

X-ray diffraction patterns were taken at room temperature on pulverized single 

crystals to detect the presence of any impurity phases in the samples and confirm the unit cell 

dimensions. A conventional tube source was used to obtain the patterns in flat plate geometry 

using CuKα (1.5406 Å) radiation.  These patterns are consistent with the simple tetragonal 

ZrCuSi2 structure (P4/nmm, #129) and previous measurements of polycrystalline samples 

(Brylak, 1995)(Flandorfer, 1996)(Muro, 1997).  A typical pattern is shown in Fig. 2.4 of 

LaAgSb2.  All of the peaks may be indexed to a tetragonal lattice with a = 4.39Å and c = 

10.82 Å, except for weak peaks at 40.1º and 86.6º, which correspond to a small amount of 

residual Sb (Swanson, 1954) flux on the surface.  

2.3.2. Single Crystal X-ray Diffraction 

In order to check for any partial occupancies in the RAgSb2 series, which occur in the 

related RTSb2 phases with T = Mn, Fe, Co, Ni, Cu, Zn, and Cd (Sologub, 1994; Wollesen, 

1996; Leithe-Jasper, 1994; Albering, 1996; Cordier, 1985), a single crystal structure 

determination was performed on GdAgSb2 using a Rigaku AFC6R diffractometer with 

graphite monochromated Mo Kα (λ = 0.71069 Å) radiation and a 12 kW rotating anode 

generator.  The data were collected at room temperature using the ω-2θ scan technique to a 

maximum 2θ value of 60.2º.  The lattice parameters of GdAgSb2 were determined to be a = 

4.292(2) Å and c = 10.494(4) Å, V = 193.3(2) Å3, space group P4/nmm (No. 129).  Table 1 

lists the atomic positions and occupancy factors for GdAgSb2.  In contrast to the other 

previously mentioned RTSb2 series, no partial occupancies were observed in the structure of 
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Fig. 2.4 Powder X-ray diffraction pattern for LaAgSb2.  Peaks are indexed to a tetragonal structure with a=4.39 Å and c=10.82 Å.  
Note: peaks near 40.1 º and 86.6º correspond to residual Sb. 



Table 2.1.  Positional parameters and occupancy of GdAgSb2 

 
Atom x y z occupancy 
Sb(1) ¼ ¼ 0.6811(1) 1.00 
Sb(2) ¾ ¼ 0 1.00 
Gd ¾ ¾ 0.7641(1) 1.00 
Ag ¾ ¼ ½ 1.00 

 

 

GdAgSb2.  It is concluded, that no site deficiencies are present in the RAgSb2 series.  As 

shown below, this is consistent with low residual resistivity values found for the RAgSb2 

compounds. 

2.4. Measurement methods 

2.4.1. Magnetization Measurements 

The magnetic measurements of the materials were acquired in a Quantum Design 

Magnetic Property Measurement System (MPMS) Superconducting Quantum Interference 

Device (SQUID) magnetometer for temperatures between 1.8 and 350 K and applied fields 

up to 55 kOe.  Samples were chosen based on their size and lack of residual flux.  A typical 

sample mass was 10 mg for the magnetic compounds and up to 100 mg for the nonmagnetic 

compounds.  These samples were generally mounted in clear plastic drinking straws with a 

plastic disk for support. These plastic disks were measured separately to allow a subtraction 

of their contribution to the total magnetization.  However, the larger, non-magnetic samples 

were frequently mounted between two straws to minimize the background signal.  Typically, 

the samples were aligned in the straw by hand, although for the detailed measurements of the 

angular dependence a specially modified Quantum Design sample rotor with an angular 

resolution of 0.1 º was used. 



Magnetic measurements were also performed in a Quantum Design Physical Property 

Measurement System (PPMS) with the torque magnetometer option in applied fields up to 90 

kOe and temperatures between 1.8 and 300 K.  The samples were mounted on specially 

constructed microfabricated silicon torque lever chips.  Embedded on each chip are two 

piezoresistor grids.  These grids change their resistance in response to mechanical stress.  A 

resistance bridge senses the resistance change of the grids, and hence the torque on the 

sample chip. 

2.4.2. Resistivity Measurements 

Resistivity measurements were performed with the standard four-probe technique 

within the temperature and magnetic field environment of the Quantum Design MPMS.  The 

samples were formed into a matchstick geometry with a wire saw using a 0.005 inch 

diameter wire with 600 grit silicon carbide powder suspended in a glycerol and water 

solution.  In some cases, the samples were also polished using a Buehler Minimet polisher 

with a fine polishing pad and powdered alumina in water.  Platinum wires with a 0.025 mm 

diameter were contacted to the sample with Epotek H20E silver epoxy.  After curing the 

contacts for 30 minutes at 200 ºC, typical contact resistances were between 1 and 2 Ω. A 

typical resistivity bar with dimensions of 0.6 mm×0.4 mm×4 mm is shown in Figure 2.5. The 

distance between the voltage contacts is approximately 3.1 mm.  Uncertainty in the 

measurement of the cross sectional area and distance between voltage contacts is the 

dominant source of uncertainty in the resistivity measurements, limiting the precision of the 

resistivity to about 10%. The resistance of the samples was measured with a Linear Research 

Inc. LR-400 AC bridge operating at a frequency of 15.9 Hz.  The excitation current was 

either 3 mA or 0.3 mA, depending on the resistance of the sample.  Typical current densities 



 

 

Fig. 2.5  Crystal of LaAgSb2 prepared for resistivity measurements with 
platinum wires secured with silver epoxy, shown on a mm scale.  The c-
axis is out of the page. 
 

ranged from 0.05 Acm-2 to 1 Acm-2. The data were then acquired and saved via External 

Device Control (EDC), an extension to the MPMS operating system.  

 
2.4.3. Specific Heat 

Specific heat measurements were made using the heat capacity option of the Quantum 

Design PPMS.  This instrument uses a relaxation technique, in which the sample is briefly 

heated and then allowed to cool.  The thermal response of the sample is then fit over the 

entire temperature response using a model that accounts for the thermal relaxation of both the 

sample and the sample platform.  The samples were attached to the heat capacity platform 

with either Apezion H or N grease.  The thermal response of the platform and grease was 



measured separately to allow for the subtraction of this component from the final 

measurement. To achieve maximum accuracy within reasonable time constraints, the system 

was typically allowed to cool for two time constants.  Thermal contact with the environment 

was minimized by evacuating the sample chamber to approximately 0.01 mTorr.  For these 

measurements, samples were chosen on the merits of size, thinness, and flatness of one face.  

The flatness is important to insure good thermal contact between the sample holder and the 

sample.   
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THE PHYSICS OF RARE EARTH INTERMETALLIC 
COMPOUNDS 

2.5. Introduction 

Measurements of thermodynamic and transport properties are essential to understand 

the diverse physical properties of the rare earth intermetallic compounds.  Detailed studies of 

the magnetization, as functions of applied magnetic field and temperature, elucidate the 

nature of the interactions between the magnetic moments as well as between the local 

moments and surrounding atoms.  Resistivity measurements may be used to determine 

sample quality, analyze scattering mechanisms, and study the Kondo effect.  

Magnetoresistance and quantum oscillations, such as the de Haas-van Alphen effect, reveal 

details of electronic structure and the topology of the Fermi surface.  Specific heat 

measurements, and subsequent determinations of the change in entropy, give insight into 

phase transitions, the crystalline electric field, and details of the electrons and phonons.  For 

any new material, these are the baseline measurements needed to evaluate the physics of the 

low-temperature ground state. 

This chapter will serve as an introduction to some of the physics of rare earth 

intermetallic compounds.  First, an overview of the magnetic properties of rare earth 

intermetallic compounds will be presented.  This discussion will start with the properties of 

non-interacting local moments and proceed to interactions between the moments.  A 

discussion on the anisotropy of the magnetic properties arising from crystal electric fields 

will follow.  After an overview of the zero-field resistivity, magnetoresistance will be 

introduced.  Finally, the origin of quantum oscillations, such as the de Haas-van Alphen and 
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Shubnikov-de Haas effects and their usefulness in determining the topology of the Fermi 

surface, will be presented.     

2.6. Magnetism 

2.6.1. 4f Electrons and Local Moment Magnetism 

The natural place to begin any discussion of the magnetic or transport properties of 

rare earth intermetallic compounds is the electronic configuration of the rare earth ions.  

Almost all of the rare earth ions are trivalent and of comparable size, causing their chemical 

properties to be closely similar.  Therefore, a series of compounds can often be synthesized 

which differ only in the choice of lanthanide element.  This valuable ability allows a 

systematic study of the physics of rare earth intermetallic compounds.  By studying a whole 

series of compounds, the effects of the crystal electric field, interactions between ions, and 

other physical characteristics may be separated from each other.  Finally, the analysis of 

trends across the series aids in the understanding of the physics of the individual members.   

Figure 3.1 shows the radial densities of the electrons of Gd3+.  As seen in the figure, 

the 4f electrons are much more strongly localized than the 5s, 5p, and 6s electrons.  

Furthermore, these 4f electrons are shielded by the completely filled 5s2 and 5p6 shells.  

Therefore, the 4f electrons may be considered part of the electronic core, not directly 

interacting with the rest of the electronic system.  Since a partially filled 4f shell will have a 

large magnetic moment, it is imperative to determine the electronic configuration of the 4f 

electrons.   
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Fig. 3.1  Radial densities of the electrons of Gd3+ from Hartree-Fock calculations 

(after Taylor and Darby, 1972). 
 

2.6.2. Hund’s Rules 

The magnetic properties of the rare earth elements are determined by the ground state 

configuration of the 4f electrons.  The ground state is multiply degenerate with 2l+1 possible 

values of lz and 2 possible values of Sz for a total of 2(2l+1) possible states.  Fortunately, this 

degeneracy is removed by considering the Coulomb repulsion between the electrons and 

spin-orbit coupling (Mattis, 1981).  The ground state configuration of a partially filled shell 

will then be governed by Hund’s rules (Ashcroft and Mermin, 1976):  

1.  The ground state has the largest value of total spin S that is consistent with the 

exclusion principle. 

2.  The ground state has the largest value of total orbital angular momentum L that is 

consistent with the first rule and the exclusion principle. 
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3.  For shells that are less than half-filled, the total angular momentum is given by J = 

|L-S|.  For shells that are more than half-filled, J = |L+S|   

These rules are useful in the study of rare earth magnetism, since knowledge of the 

number of f-electrons implies a knowledge of the quantum numbers of an atom, and hence, 

the magnetic properties.  Table 3.1 shows the values of L, S, and J for the lanthanide ions.  

Now that the components of angular momenta are known for the local moments, it is possible 

to formulate many aspects of the theory of magnetism in rare earth intermetallic compounds.  

2.6.3. The Curie-Weiss Law 

In general, the contribution of a magnetic moment in an applied field to the total 

energy is simply the Zeeman term, E = -μB (L+g0S)•H, where μB=eh/2mc ≈ 5.79×10-8 eV/G 

is the Bohr magneton and g0 = 2[1+α/2π+O(α2) + ...] ≈ 2 is the electronic g-factor.  Since 

this energy is small, compared to the other energies of the system, the effect of the applied 

field may be taken as a perturbation.  In second-order perturbation theory, the change in 

energy of state n is given by:  

( )
∑

≠ −

+⋅
++=Δ

mn mn

B
Bn EE

mSLHn
nSLnHHE

2
2

2)(

rr
rr μ

μ .    (3.1) 

The second term in the energy correction is the Van Vleck paramagnetic term (Ashcroft and 

Mermin, 1976).  Typically, this contribution is small in rare earth elements with partially 

filled f-shells.  If J is non-zero, the first term dominates the energy correction.  This 

expression is simplified with the use of the Wigner-Eckart theorem:  

ZZJZZ JLSJJJLSJgJLSJSLJLSJ ''2
rrr

=+ ,    (3.2) 

where gJ is the Lande’ factor defined as: 
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This allows the saturation magnetization of the local moment in the absence of other 

contributions such as the crystal electric field, to be expressed simply as: 

JgM BJSat μ= .        (3.4) 

This result, summarized in Table 3.1, is useful in the analysis of new rare-earth intermetallic 

compounds, since it allows the theoretical saturated moment to be compared to the measured 

value.  Under certain circumstances, this comparison may then be used to determine the 

amount of rare earth element present in an unknown compound.  In addition, knowledge of 

the theoretical saturated moment may also be used to identify easy and hard magnetic axes 

arising from the crystalline electric field, discussed below.  Finally, this theoretical result 

may allow an estimate of the net distribution of moments in materials exhibiting 

metamagnetic transitions, which will be discussed in detail in Chapter 5. 

To determine the temperature dependence of the magnetization it is instructive to 

analyze a system of N states, with energies En.  The Helmholtz free energy of this system is 

given by: 

∑ −−=
n

HEneNF )(ln β

β
       (3.5) 

where β = 1/kBT. The magnetization is the derivative of the free energy with respect to 

applied field given by: 

B

H
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M

∂
∂
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1 .         (3.6) 

The temperature dependence of the leading term in the energy correction, and hence the 

magnetization, is given by: 
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where γ = gJμB and BJ is the Brillouin function defined as: 
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At high temperatures (kBT >> gJμBH), the argument to the Brillouin function (βgJμBJH) is 

small, and the Brillouin function may be approximated as: 
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3
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≈ .        (3.9) 

Therefore, the molar susceptibility as a function of temperature at high temperatures is given 

by Curie’s Law: 
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Table 3.1.  Components of angular momentum L,S, J and calculated values of the Lande’ g 
factor (gJ), saturated moment (MSat), effective moment (peff = gJ [J(J+1)] 1/2), and deGennes 
factor (dG) for the trivalent magnetic rare earth ions. 
 
 
R L S J gJ MSat peff dG 
Ce 3 0.5 2.5 0.857 2.14 2.54 0.19 
Pr 5 1 4 0.800 3.20 3.58 0.80 
Nd 6 1.5 4.5 0.727 3.27 3.62 1.84 
Pm 6 2 4 0.600 2.40 2.68 3.20 
Sm 5 2.5 2.5 0.286 0.71 0.84 4.46 
Eu 3 3 0 -- -- -- -- 
Gd 0 3.5 3.5 2.000 7.00 7.94 15.75 
Tb 3 3 6 1.500 9.00 9.72 10.5 
Dy 5 2.5 7.5 1.333 10.00 10.64 7.08 
Ho 6 2 8 1.250 10.00 10.61 4.50 
Er 6 1.5 7.5 1.200 9.00 9.58 2.55 
Tm 5 1 6 1.167 7.00 7.56 1.17 
Yb 3 0.5 3.5 1.142 4.00 4.54 0.32 
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where C is the Curie constant given by: 
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Like the saturated moment, this result is extremely useful in the characterization of new rare 

earth intermetallic compounds, since at high temperatures, the slope of a plot of the inverse 

susceptibility (1/χ) versus temperature is the Curie constant, C.  From the determination of 

the Curie constant, the molar mass of the measured compound may be calculated if gJ and J 

are known from the choice of the rare earth element in the compound. 

2.6.4. The RKKY Interaction 

For systems with interacting local magnetic moments, the susceptibility may deviate 

from the Curie law due to exchange interactions between the local moments.  As seen in Fig. 

3.1, the overlap between f-electrons in neighboring rare earth ions will be extremely small 

which reduces the possibility of a direct exchange between the rare earth ions.  Therefore, the 

primary interaction of the magnetic moments is indirect, via the polarization of the 

conduction electrons. Specifically, the localized spin of the 4f electrons interacts with the 

spin of the conduction electron, resulting in a polarization of the conduction electrons.  This 

polarization then interacts with the spin of 4f electron localized on another rare earth ion. 

This is known as the RKKY interaction.  Typically, this interaction is long-range and 

oscillatory, leading to a diverse assortment of magnetic structures.  This section will be an 

overview of the details of the RKKY interaction, primarily following the derivation of 

Coqblin (1977). 

The Hamiltonian of the interaction between localized 4f electrons and the conduction 

electrons may be expressed as: 
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where s is the spin of the conduction electrons, Sn is the spin of the 4f electrons, Γ is the 

interaction constant, r is the position of the conduction electron, and Ri is the position of the 

magnetic moment.  This Hamiltonian may be expressed in second quantization as: 
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Within this representation, the electronic states are taken to be Bloch waves with k and k’ 

denoting the wavevectors of filled and unfilled states, respectively.  Γ(k’,k) is the interaction 

constant expanded in the basis of electronic wave functions. nS
r

is the spin of the nth local 

moment. The components of conduction electron spin kks '
r are given as:  
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with the operators c+
kσ

 and ckσ, respectively, creating or annihilating an electron with 

wavevector k and spin σ equal to + or -.  The Hamiltonian depends on both the filled (k) and 

unfilled (k’) electronic states.  This is expected, since the electrons are fermions and the 

occupation of states is described by the Fermi-Dirac distribution.  Therefore, any electronic 

excitation must be from an occupied to an unoccupied state. 

Since the Hamiltonian is spin-dependent, the electrons with spin up will interact 

differently than those with spin down.  This induces a polarization of the electron gas.  This 

polarization is simply the difference in the spatial distribution of the perturbed wave 

functions for the spin up and spin down electrons.  The perturbed wavefunction, φkσ, is 

calculated using second order perturbation theory (Coqblin, 1977): 
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Performing the summation over the appropriate k-states and taking the difference between 

the spin up and spin down densities yields the polarization, P(r), of the conduction electrons.  
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where Ω is the atomic volume, Z is the number of conduction electrons per atom, EF is the 

Fermi energy and F(x), shown in Fig. 3.1, is given by:  
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The exchange interaction between two rare earth atoms is indirect, via the  

0 5 10 15

0

F(X) = (x cos x - sin x )/ x4

F 
(X

)

X (rad)

 
Figure 3.1  The polarization of the conduction electrons via the RKKY interaction. 

polarization of the electron gas.  The energy of this interaction may also be calculated within 

the framework of second-order perturbation theory: 

 



 43

( )
∑ −

−
=

',,', '

'
0'0''00 1'

σσ

σσσσ

kk kk

kkIntInt

EE
ffkHkkHk

E .   (3.18) 

In this expression, Hint is given by Eq. 3.13, fk denotes the Fermi-Dirac distribution, and the 

summation is over the filled k states with spin σ and energy Ek, and unfilled k’ states with 

spin σ’ and energy Ek’.  The summations in this expression may be simplified by only 

considering zero temperature.  Therefore all states below EF will be filled and all states above 

EF will be empty.  Substituting the Hamiltonian  (Eq. 3.13) into (3.18) and performing the 

creation and annihilation operations yields: 
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Finally, assuming Γ is not dependent on wavevector and performing the integration over the 

k-states yields the interaction energy: 
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At low temperatures, kBT is less than E, and the exchange interaction between the 

local moments will dominate, causing the magnetic sublattice to be ordered.  Although the 

nature of this magnetic order depends upon on the electronic structure of the material through 

Γ and EF, the strongest dependence arises through the oscillatory F(2kF|rn-rm|) term.  

Depending on the values of kF and (rn-rm), the exchange between neighboring moments may 

be positive or negative, which will result in ferromagnetic or antiferromagnetic ordering, 

respectively.  If interactions between more distant neighbors are considered, complicated 

magnetic structures may also arise, such as the helical, conical, or longitudinal wave 

structures present in pure rare earth metals (Jensen, 1991) or the various metamagnetic 
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structures observed in applied fields in HoNi2BB2C (Canfield, 1997), TbNi2Ge2 (Islam, 1998), 

or DyAgSb2 (Myers, 1999)  

Within mean field theory, the magnetic field acting on each local moment (Ha) is the 

sum of the external applied field (H0) and an effective field arising from the thermal average 

of the surrounding moments (Heff), which will be proportional to the magnetization (M) of 

the local moments. Therefore, since the magnetization as a function of temperature follows 

Curie’s law, the magnetization will be given by:  
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where α is the proportionality constant in Heff = αM and C is the Curie constant discussed 

previously.  Therefore, the susceptibility (χ), which is M/H, yields the Curie-Weiss law: 
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with Cα equal to the Weiss paramagnetic temperature, θP.  Since α is proportional to the 

exchange interaction, the paramagnetic temperature is: 

( ) (∑
≠

−+
Γ

−=Θ
0

22

2*
2 21

4
3

n
mnF

F
pB rrkFSS

k
mzk
h

π ) .    (3.22) 

2.6.5. deGennes Scaling 

It is frequently more convenient to express the Hamiltonian of the interaction between 

the local moments and the conduction electrons (Eq. 3.12) in terms of the total angular 

moment of the 4f electrons, J.  Given that L + 2S =gJJ and L + S = J, the projection of S on 

J is (gJ-1)J, where gJ was previously defined.  With Γ taken as a constant, the Hamiltonian 

(Eq. 3.12) then becomes: 
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The Weiss temperature will then be given by: 
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Within mean field theory, the ordering temperature would be expressed as: 
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Although the coupling between local moments is dependent on the electronic structure of the 

compound through kF, Ef, m*, these parameters are approximately constant throughout a 

series as the trivalent rare earth is varied.  Therefore, the most significant difference in the 

coupling will depend on the magnetic properties of the rare earth ion, through the de Gennes 

factor, (gJ-1)2J(J+1).  Since the de Gennes factor is largest for Gd, compounds containing this 

element can be expected to have the highest ordering temperature.  Likewise, compounds 

containing Pr, or Tm, typically order magnetically at much lower temperatures.  It has been 

shown that for many compounds, TN and θp, scale approximately linearly with the de Gennes 

factor (Canfield, 1998), confirming the assumptions of the electronic structure and the 

validity of the RKKY interaction. 

2.7. Crystalline Electric Field 

2.7.1. Overview of Crystal Electric Field  

Although the exchange interaction may be anisotropic, the primary origin of 

anisotropies observed in the magnetic properties of rare earth intermetallic compounds is the 

crystalline electric field (CEF).  In the absence of any perturbations, the electron levels of an 
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ion are filled according to Hund’s rules.  If the ion is placed within a crystalline lattice, the 

electric field from the surrounding atoms may remove the degeneracy of the Hund’s rule 

ground state multiplet.  In transition metals with an unfilled 3d shell, this effect is quite large.  

However in the rare earth elements where the unfilled 4f shell is highly localized, the crystal 

field splitting is relatively small and may be treated as a perturbation of the ground state.  

This perturbation removes the degeneracy of the Hund’s rule ground state, resulting in 

anisotropy in the magnetic properties of the rare earth ions.  This introduction to the 

crystalline electric field primarily follows those found in Taylor and Darby (1972) and Elliot 

(1972). 

If the surrounding atoms are treated as point charges at position Ri, the potential at the 

rare earth site is simply the sum of the potential from all of these point charges: 
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This potential is a solution to Laplace’s equation if the charge density from the surrounding 

ions does not overlap the rare earth ion, and may be expanded in spherical harmonics, 

Yl
m(θ,φ), as: 
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It is generally more convenient to express this result in tesseral harmonics Zl
m defined by: 
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Within this representation, the potential energy may then be expressed as: 
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The number of terms in the CEF potential are restricted by the point symmetry at the 

rare earth ion, giving the following rules: 

If the z-axis contains an m-fold rotation, then the potential contains terms with Vl
m. 

If a center of inversion exists, then there will be no terms with odd l. 

Finally, no elements of the potential will exist with l larger than 6.  This arises from the 

calculation of the matrix elements of the potential with the 4f electrons.  Since the 

angular part of the 4f wavefunctions are proportional to Y3
m(θ,φ), the angular integral in 

the matrix element given by 

( ) θθμμ dVVV m
l sin'

3
*

3∫ ,        (3.32) 

vanishes if l is greater than 6.  

Since the effects of the CEF are small in rare earth ions compared to the spin-orbit 

splitting, the potential (Eq. 3.30) may be treated as a perturbation to the free-ion states.  In 

principle, the eigenvalues of the CEF states may be found by diagonalizing the matrix 

elements of this potential.   
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2.7.2. Stevens Equivalent Operators 

A much simpler method to calculate the effect of the CEF potential is to introduce the 

Stevens equivalent operators.  It has been shown (Stevens, 1952) that the matrix elements of 

the crystal field Hamiltonian (Eq. 3.30) are proportional to a set of operators containing 

components of the total angular momentum, J.  The Hamiltonian in this representation then 

becomes: 
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where On
m represents the expansion of the CEF potential shown in Table 3.2.  The energy 

splitting of the Hund’s rule multiplet may now be relatively easily calculated by applying the 

operators and diagonalizing the matrix elements.  Examples of this process have been 

performed in detail for cubic symmetry in Talyor and Darby (1972) and Lea, Leask, and 

Wolf (1962).  Finally, a method to numerically fit the crystal field parameters to 

experimental data is outlined in MacKeown and Newman (1987). 

2.7.3. Determination of B2
0 from Magnetic Susceptibility 

If the point symmetry of the rare earth ion is tetragonal, the CEF Hamiltonian will 

consist of only five nonzero terms (Prather, 1961) (Wallace, 1973): 
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From an expansion of the magnetic susceptibility as a function of temperature, it has be 

shown (Boutron, 1973) (Wang, 1971) that the B2
0 term of the Hamiltonian will be dominant 

at high temperatures, introducing an anisotropy in the Weiss paramagnetic temperatures: 
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Table 3.2  Operator equivalents and the standard notation for terms in the crystal electric 
field Hamiltonian. 

 

Term in electrostatic 
potential 

Operator equivalent Standard notation  

Σ(3z2-r2) αJ<r2>[3Jz
2-J(J+1)] αJ<r2>O2

0

Σ(35z4-30r2z2+3r4) βJ<r4>[35Jz4-30J(J+1)Jz
2+25Jz

2-
6J(J+1)+3J2(J+1)2] 

βJ<r4>O4
0

Σ(x4-6x2y2+y4) βJ<r4>[J+
4+J-

4] βJ<r4>O4
4

Σ(231z6-315z4r2 

+105z2r4-5r6) 
γJ<r6>[231Jz

6-315J(J+1)Jz
4 

+105J2(J+1)2Jz
2-525J(J+1)Jz

2+294Jz
2- 

5J3(J+1)3+40J2(J+1)2- 60J(J+1)] 

γJ<r6>O6
0

Σ(11z2-r2)(x4-6x2y2+y4) γJ<r6>(1/4)[(11Jz
2-J(J+1)-38)(J+

4+J-
4) 

+(J+
4+J-

4)(11Jz
2-etc.)] 

γJ<r6>O6
4

 
 

 

 

 

Table 3.3 Crystal electric field parameters of rare earth ions.  (Taylor and Darby, 1972) 
(Elliot, 1972) 
 
Ion αJ βJ γJ <r2> <r3> <r6> 
Ce3+ -5.71 63.5 0 1.200 3.455 21.226 
Pr3+ -2.10 -7.35 61.0 1.086 2.822 15.726 
Nd3+ -0.643 -2.91 -38.0 1.001 2.401 12.396 
Pm3+ 0.771 4.08 60.8 0.935 2.130 10.4 
Sm3+ 4.13 25.0 0 0.883 1.897 8.775 
Tb3+ -1.01 1.22 -1.12 0.758 1.44 5.8 
Dy3+ -0.635 -0.592 1.03 0.726 1.322 5.102 
Ho3+ -0.222 -0.333 -1.30 0.695 1.22 4.5 
Er3+ 0.254 0.444 2.07 0.666 1.126 3.978 
Tm3+ 1.01 1.63 -5.60 0.640 1.03 3.454 
Yb3+ 3.17 -17.3 148.0 0.613 0.960 3.104 
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Furthermore, in uniaxial systems, such as tetragonal, B2
2 = 0 (Wang, 1971).  

Therefore, the B2
0 term in the CEF Hamiltonian may be determined from the difference in 

the Weiss paramagnetic temperatures: 

)(
)32)(12(3

100
2 abcJJ

B θθ −
+−

= .      (3.36) 

Since, within the point charge model, B2
0 = αJ<r2>A2

0, the sign of B2
0 will only depend on 

the sign of the Stevens multiplication factor, αJ, which only depends upon the rare earth ion.  

Note that a change of the sign of αJ, given in Table 3.3, is observed between Ho and Er.  

Therefore, if B2
0 is the dominant term, and the moments align within the basal plane for 

HoAgSb2, the moments of ErAgSb2 will be along the c-axis.  Finally, since A2
0 is the 

expansion of the crystal field due to the surrounding ions, it should not vary significantly as 

different rare earth elements are used.  A complete discussion of the experimentally 

determined values of B2
0 is presented in Chapter 4. 

2.7.4. Modification of Magnetic Ordering Temperatures Due to the CEF 

Another effect of the anisotropy introduced by the crystal electric fields is the 

modification of the magnetic ordering temperatures, TM.  As discussed previously, if the 

RKKY interaction is the dominant interaction, TM may be expected to scale with the 

deGennes factor, (gJ-1)2J(J+1).  Noakes and Shenoy (1982) have proposed that the de Gennes 

scaling may be modified by the CEF anisotropy.  Specifically, if the rare earth ion is in a 

position with tetragonal point symmetry and the CEF constrains the magnetic moments to be 

oriented along the c-axis, an enhancement in TM will be observed.  This effect has been 

experimentally observed in the RRh4BB4 (Noakes and Shenoy, 1982) and RNi2B2B C (Canfield, 

1998) series of compounds. 
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2.8. Resistivity 

Measurements of the transport properties of new materials frequently corroborate the 

findings of thermodynamic measurements and serve as valuable probes of the electronic 

structure.  For example, the Curie temperature of ferromagnetic materials is generally 

difficult to determine directly from measurements of the temperature-dependent 

magnetization, since this feature is typically very broad.  This is often not the case in 

measurements of the resistivity, where the resistivity sharply decreases below the Curie 

temperature, corresponding to a loss of disorder scattering from the magnetic moments.  

Transport measurements, such as electrical and thermal conductivity may also reveal 

properties that are not readily visible in the magnetization or specific heat, such as the 

appearence of gaps in the Fermi surface due the charge or spin density waves or superzone 

gaps arising from a periodicity in the magnetic order.  Finally, the application of a magnetic 

field may drastically change the resistivity and provide a probe of the Fermi surface. 

2.8.1. Matthiessen’s Rule  

The analysis of the zero-field resistivity is typically more difficult than that of 

thermodynamic properties such as magnetization and specific heat.  Fortunately, much of this 

complexity may be removed through the use of Mathiessen’s rule.  Mathiessen’s rule states 

that the total resistivity of a compound is the sum of the individual components of the 

resistivity (i.e.: ρ(T) = ρe-ph(T) + ρe-e(T) + ρm(T) + ρi + ...) (Ziman, 1967).  If multiple 

scattering mechanisms exist, the total probability that an electron will be scattered is simply 

the sum of the probabilities of each scattering mechanism.  Within the framework of 

Matthiessen’s rule the individual contributions to the resistivity are additive and may be 

treated separately. 
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2.8.2. Impurity Scattering 

At the lowest temperatures, scattering from impurities and imperfections is the 

dominant contribution to the resistivity.  Due to the large variety of specific mechanisms 

contained within this term, no general expression adequately describes the magnitude of this 

contribution.  However, the order of magnitude of these contributions is provided in previous 

studies (Ziman, 1967) on the effects of dislocations in Cu.  In this specific case, the 

resistivity due to imperfections  (ρi), increases as approximately 1.5 μΩ cm per atomic 

percent.  It is important to note that the scattering due to nonmagnetic impurities and 

imperfections is independent of temperature.  Therefore, at very low temperatures this is the 

only remaining contribution to the resistivity.  The residual resistivity ratio (RRR) of a 

sample is generally defined as the ratio of the room-temperature resistance to the resistance 

extrapolated to 0 K [ρ(300 K)/ρ(0 K)], providing a measure of the degree of perfection of a 

sample.  

2.8.3. Phonons 

The dominant mechanism in the resistivity, at high temperatures, arises from  

electron-phonon scattering.  At high temperatures, relative to the Debye temperature (θD), the 

number of phonons increases approximately linearly, since phonons follow Bose-Einstein 

statistics.  This will cause the resistivity due to phonons (ρe-ph) to also increase approximately 

linearly with temperature.  At low temperatures, the electronic distribution and the details of 

the electron-phonon interaction must also be included.  Consideration of these factors leads 

to the Bloch T5 law (Ziman, 1967): 
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It should be noted that, at very high temperatures, the resistivity may saturate as the mean 

free path of the electrons becomes comparable to the interatomic spacing. 

2.8.4. Spin-Disorder Scattering 

In the paramagnetic state, the conduction electrons may scatter from the disordered 

local magnetic moments.  Since this component of the resistivity depends upon the strength 

of the interaction between the conduction electrons and the local moments (Eqs. 3.13 and 

3.23), it will scale with the de Gennes factor.  Specifically, the magnitude of the magnetic 

component of the resistivity in the high temperature limit may be found using the Born 

approximation and the interaction Hamiltonian given by Eq. 3.13 (Coqblin, 1977): 
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In practice, measurement of this component of the resistivity is difficult since the sample 

geometry must be determined very precisely.  Furthermore, the magnetic transition must be 

at a high enough temperature to allow a measurement of the residual resistivity without any 

contribution from the spin-disorder scattering.  Although this may be possible in members of 

a series with R = Gd or Tb, the ordering temperature for R = Er or Tm is typically too small. 

2.8.5. Electron-Electron Scattering 

Finally, scattering may arise from electron-electron scattering.  This contribution to 

the resistance is given by (Ashcroft and Mermin, 1976): 
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At room temperature this component to the resistivity is approximately 104 times smaller 

than the other mechanisms.  Furthermore, at lower temperatures, the resistivity decreases as 

T2 allowing this contribution to be neglected within the temperature regions of interest. 
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2.9. Magnetoresistance 

2.9.1. The Hall Effect 

Classically, an electron moving in a magnetic field is governed by the Lorentz force: 

F=-eV×B.  This force bends the path of the electron into a helix with the axis parallel to the 

direction of the applied field.  The angular velocity of the electron around this axis is simply 

the cyclotron frequency: ωc =eB/m*.  If the path is not bent sufficiently before the electron is 

scattered, no effect will be observed.  In other words, ωcτ must be large for the observation of 

magnetoresistance, where τ is the relaxation time.  

In general, the zero field resistivity of a material will be anisotropic, with principal 

axes corresponding to the crystal axes.  The resistivity must now be expressed as the tensor, 

ρij.  Ohm’s law would then be given as: Ei =ρijJj or Ji =σijEj.  If a magnetic field is applied, the 

non-diagonal components of ρij and σij will not necessarily be zero.  For example, if a 

magnetic field is applied along the z axis, and the current is along the x-axis, the components 

of the resulting electric field will be given by Ex=ρxxJx and Ey=ρxyJx.  The electric field 

induced perpendicular to the direction of the current (Ey) is the known as the Hall field.  The 

magnitude of this field may be deduced by considering the equation of motion of an electron 

in a magnetic field: 
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This equation may be solved to yield: 
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where σ0 = ne2τ/m*.  Since the current is applied along the x-axis, Jy = 0 and Ey = -ωcτ/Ex.  

Therefore, an electric field will be induced perpendicular to both the current density, Jx, and 

the applied magnetic field, H.  For a single band of electrons, the Hall coefficient is given by  

RH = -1/ne.   

2.9.2. The Two Band Model 

If the material contains only a single spherical electronic band, the Hall field will 

exactly cancel the deflection of the electrons due to the Lorentz force.  In this case, the 

magnetoresistance will vanish.  However, if multiple bands are present, the Hall field cannot 

completely cancel the Lorentz force for all of the charge carriers.  The magnetoresistance for 

a metal with two spherical bands is given by (Ziman, 1967): 

( )
( ) ( )2

1221
22

21

22
2121

0 σβσβσσ
ββσσ

ρ
ρ

+++
−

=
Δ

H
H

,     (3.42) 

where β1 = eτ1/m1c, β2 = eτ2/m2c and σ1 = n1e2τ/m1 and σ2 = n2e2τ/m2 are the zero field 

conductivities of bands 1 and 2, respectively.  Several limiting cases of this expression 

should be analyzed.  First, at low fields, the magnetoresistance is approximately proportional 

to H2.  Second, at high fields, the magnetoresistance saturates to the value: 
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Third, this saturation is not observed if n1 = n2 and the charge of the band 1 carriers is 

opposite to the band 2 carriers.  In other words, if the metal is perfectly compensated with the 

number of holes equal to the number of electrons, no saturation will be observed in the 

transverse magnetoresistance.  In practice, there are generally more than two electronic bands 

and these are seldom spherical.  Calculation the magnetoresistance in these complicated 
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cases is difficult and requires exact knowledge of the shape of the Fermi surface.  Example 

calculations are given in Pippard (1989). 

2.9.3. Fermi Surface Topology 

Although the exact behavior of the magnetoresistance is complex to calculate, the 

overall response of the magnetoresistance is a function of the topology of the Fermi surface.  

The topology of a Fermi surface may be divided into two categories, closed and open orbits.  

In the case of a closed orbit, like a sphere, the transverse magnetoresistance will saturate at 

high fields regardless of the orientation of the current if the orbit is uncompensated.  The 

magnetoresistance saturates because the electrons can execute complete orbits under the 

influence of an applied field, which essentially removes the ability of the electrons to 

contribute to the current. 

Open orbits are more complex.  In this case, the transverse magnetoresistance will 

saturate at all angles except when the applied magnetic field is parallel to the direction of the 

open orbit.  In this case the electrons cannot complete a full orbit on the Fermi surface.  Since 

the velocity of the electrons will always maintain a component in the direction of the current, 

the electrons will always contribute to the conductivity.  Detailed studies of the angular 

dependence of the magnetoresistance may therefore be used to determine the direction of the 

open surface. 

2.9.4. Kohler’s Rule 

Kohler’s rule states that the change in resistance, Δρ, due to the application of a 

magnetic field, H, is related to the zero-field resistivity ρ0 by (Pippard, 1989): 
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where F is a function depending on the electronic structure of the material. The important 

feature of this expression to note is that the zero-field resistivity, and hence the scattering 

rate, must be as small as possible to observe the largest change in resistivity due to the 

application of a magnetic field.  Conceptually, this implies that for the observation of 

magnetoresistance, the electrons must be able to complete a significant portion of their orbit 

before being scattered by impurities or defects.  A more formal justification of Kohler’s rule 

is straightforward.  Semiclassically, electrons will proceed in circular orbits with a 

circumference inversely proportional to the applied field.  If the magnetic field and the 

scattering rate are increased by the same factor, the probability that an electron will complete 

an orbit will remain constant.  Kohler’s rule implies that it is advantageous to make 

magnetoresistance measurements on samples with the lowest possible zero-field resistivities.  

As mentioned previously, the dominant source of scattering at low temperature is due to 

impurities and lattice defects.  However, a sudden increase in zero-field resistivity, such as 

the acquisition of magnetic scattering in the paramagnetic state, may also dramatically 

decrease the magnitude of the observed magnetoresistance.  This effect is observed in 

SmAgSb2 and will be discussed in Chapter 4. 

2.10. The de Haas-van Alphen and Shubnikov-de Haas Effects 

In addition to magnetoresistance, detailed analysis of the de Haas-van Alphen and 

Shunikov-de Haas effects can provide insight into the nature of the electronic structure of 

compounds.  The effective masses of the orbits can be determined from the temperature 

dependence of the amplitudes of the oscillations.  The angular dependence of the frequencies 

indicates the topology of parts of the Fermi surface.  Although these quantum oscillations are 

typically measured only in extremely pure elements at the lowest obtainable temperatures 
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and the highest possible fields, the oscillations are clearly observed in the RAgSb2 series in 

modest fields and at remarkably high temperatures.  This section will provide an overview of 

the origin of the quantum oscillations and the techniques used to obtain information 

concerning the electronic structure of the RAgSb2 compounds.  This section will principally 

follow the presentation of Shoenberg (1984). 

2.10.1. The Origin of Quantum Oscillations 

To determine the origin of quantum oscillations within solids, it is useful to first 

consider the free electron gas in the presence of a magnetic field.  The solution of the energy 

levels of a electron in a 3-D infinite well with a magnetic field along the z-axis is given by: 
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where ωc is the cyclotron frequency given by: 

*m
eH

c =ω .         (3.46) 

Classically, this corresponds to the electrons moving in circular orbits normal to the z-axis.  

Since there is no component of the Lorentz force if the velocity is parallel to the z-axis, the 

angular and azimuthal quantum numbers, kz and ν, are independent.  Motion perpendicular to 

the z-axis is affected by the magnetic field, so the energy levels would be determined by ν.  

Since the orbital levels are quantized in the presence of a magnetic field, the electrons are 

constrained to have quantum numbers corresponding to cylinders in k-space.  These 

cylinders, called Landau tubes, are shown in Fig. 3.3 for a spherical Fermi surface.  

At very high quantum numbers, which is applicable to solids since only the electrons 

near the Fermi surface may contribute, the motion of the electrons may be treated 
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semiclassically.  Through the Bohr Correspondence principle, the difference in energy 

between two states is given by ΔE = 2πh/Τ where T is the period of the oscillation.  

Semiclassically, this period  may be expressed as: 
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where A is the area enclosed by the orbit.  The area of the orbit will be a function of the 

applied field, given by the Onsager relation: 
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As the applied field increases, the Landau tubes move outward.  When the cross 

sectional area of the Fermi suface is a maximum or a minimum, a sharp decrease in the 

 

 

Fig. 3.3 Schematic diagram of Landau tubes for a spherical Fermi surface. The dotted line 
represents the Fermi surface in the absence of an applied field. (after Shoenberg, 1984). 
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density of states will result when the Landau tubes leave the Fermi surface.  Therefore, a 

periodic variation of the density of states at the Fermi surface as a function of (1/H) will be 

observed.  As seen in Fig. 3.2, this effect is greatest when the curvature of the Fermi surface 

in the direction parallel to the applied field is a minimum (as for a cylindrical surface).  In 

this case, a large section of the Fermi surface will undergo the periodic variation as the field 

is varied.   These quantum oscillations will be observed in any physical property that is 

dependent of the density of states at the Fermi surface, such as magnetism or resistivity. 

Since the frequency of the observed oscillation is dependent on the minimal or 

maximal cross sectional areas in the plane perpendicular to the applied field, measurement of 

the frequency as a function of the angle of the applied field yields valuable information of the 

topology of the Fermi surface. For example, if a section of the Fermi surface is cylindrical, 

the frequency will be a minimum when H is parallel to the axis of the cylinder.  As the 

applied field is rotated away from the axis, the cross sectional area, and hence the frequency 

will diverge as 1/cos(θ).  Likewise, the angular dependence of the frequency of an ellipsoidal 

surface will follow: 
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where θ is the angle away from the semi-major axis of the ellipsoid and c/a  is the ratio of the 

semi-major to semi-minor axes.  

2.10.2. Temperature Dependence and Determination of the Effective Mass. 

So far, the discussion has been limited to zero temperature.  Since the effect of 

temperature on the electronic structure in a metal is introduced through the Fermi-Dirac 
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distribution, the Fermi surface becomes broader as the temperature increases.  The result of 

this smearing is that each observed orbit on the Fermi surface at zero temperature will be 

replaced at finite temperature by a distribution of orbits, with subsequent distributions of 

frequencies and phases.  The total contribution of this thermal distribution found by 

integrating the individual contributions, decreases the observed amplitude with increasing 

temperature.  Detailed analysis (Shoenberg, 1984) shows that the functional form of the 

reduction of the amplitude of the pth harmonic of a given orbit as a function of temperature is 

given by: 

( )πλ
πλ

sinh
=TR ,        (3.50) 

where λ = 2πpkT/βH and β = eh/m*.  Note that at T =0 this term approaches 1, indicating no 

thermal broadening.   

This result may be used to determine the effective mass of the observed orbit, since it 

is only dependent on temperature, applied field and effective mass.  In practice, it is 

impossible to keep the field strictly constant as the temperature is varied, since oscillations 

must be observed as a function of 1/H.  Therefore, the effective mass may be found by 

measuring the amplitude over large enough a field range for the accurate determination of the 

amplitude from the Fast Fourier Transform (FFT) of M(1/H).  This is repeated at the same 

field ranges and data densities.  Finally, the effective mass may be found by fitting Eq. 3.50 

to the temperature dependent amplitude. 

2.10.3. The Dingle Temperature 

The addition of extra scattering mechanisms, through impurities or disorder, into the 

sample will attenuate the dHvA signal, by causing the electrons to be scattered out of their 
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orbits.  The electrons will now have a finite relaxation time (τ), which, through the 

uncertainty principle, results in a broadened Fermi energy.  This smearing of the Fermi 

surface has a similar effect on the observed amplitude as an increase in temperature, and 

therefore may be characterized by a quantity known as the Dingle temperature.  If the 

probability of scattering is represented by a Lorentzian distribution and is independent of the 

electronic structure, the corresponding reduction in amplitude will be given by: 

Hpx
D eR /α−= ,         (3.51) 

where x is the Dingle temperature and α =1.469(m/m0)×105 GK-1 (Shoenberg, 1984).  Once 

the effective mass of the orbit is known, the Dingle temperature may readily be determined 

from the slope of a plot of ln[ApHnsinh(αpT/H)] as a function of 1/H, where n depends upon 

the measurement method (for measurements of the magnetization, n= ½). 

2.10.4. The Lifshitz-Kosevich Equation 

Now that the effects of finite temperature and impurity scattering have been 

described, it is possible to determine the magnitude of the quantum oscillations as a function 

of applied field, temperature, and the electronic structure of the material.  This expression is 

known as the Lifshitz-Kosevich (LK) equation: 
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where A´´ is the second derivative of the cross sectional area of the Fermi surface along the 

direction of the applied field, and p is the number of the harmonic of the oscillation, x is the 

Dingle temperature, discussed previously.  The importance of this expression resides in the 

assumption that neither the scattering mechanisms or the electronic structure vary as a 
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function of applied field or temperature.  In SmAgSb2, as discussed in chapter 6, this 

expression appears to inadequately model the observed oscillations as the compound 

becomes magnetically ordered. 
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SYSTEMATIC STUDY OF ANISOTROPIC TRANSPORT AND 
MAGNETIC PROPERTIES OF RAgSb2 (R= Y, La-Nd, Sm, 

Gd-Tm) 

2.11. Introduction 

Recent measurements (Bud’ko, 1998) on single crystals of the RSb2 (R = La-Nd, Sm) 

series of orthorhombic compounds revealed a rich magnetic and electronic system with 

strong anisotropies, large, near-linear magnetoresistances [Δρ(55kOe)/ρ(0) of SmSb2 > 500], 

complex metamagnetic transitions, and de Haas-van Alphen oscillations accessible at 

relatively small fields.  In addition, anomalous features in the temperature-dependent 

resistivities, possibly resulting from either charge or spin density waves are reported in PrSb2 

and NdSb2. 

This chapter will provide an overview of the anisotropic magnetization and transport 

properties of the RAgSb2 series of compounds.  Measurements of the magnetization along the 

c-axis and within the basal plane show strongly anisotropic behavior.  In addition, the 

magnetization of some of the compounds is shown to be anisotropic within the plane.  

Resistivity measurements, as functions of temperature and applied magnetic field, highlight 

the excellent sample quality through large residual resistivity ratios and small residual 

resistivities.  At low temperatures, the magnetoresistance of many of the compounds is 

extremely large, with Δρ/ρ approaching 60 for SmAgSb2 in an applied field of 55 kOe.  
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2.12. Results and Analysis 

2.12.1. YAgSb2 

YAgSb2 has electronic and magnetic properties consistent with a non-magnetic, 

intermetallic conductor.  The temperature-dependent resistivity of YAgSb2 (Fig. 4.1) 

demonstrates metallic behavior, with a linear increase of resistivity with temperature and a 

residual resistivity ratio [ρ(300 K)/ρ(2 K)] of 17.  Below 30 K, the impurity scattering 

becomes dominant with a residual resistivity at 1.8 K of 1.6 μΩcm.  The magnetization as a 

function of temperature (Fig. 4.2) is approximately temperature independent with a mean 

value of about –2×10-4 emu/mol. 

The transverse magnetoresistance of YAgSb2 (lower inset, Fig. 4.1) is anisotropic, 

and linear for the field applied both parallel and perpendicular to the c-axis.  The 

magnetoresistance for H || c is large, with Δρ(Η=55 kOe)/ρ(0) ≈ 0.9.  The magnetoresistance 

is smaller H ⊥ c, with Δρ(Η=55 kOe)/ρ(0) ≈ 0.26.   

2.12.2. LaAgSb2 

Overall, LaAgSb2 is similar to YAgSb2, except that a striking feature is observed in 

the resistivity [Fig. 4.3 (a)] of LaAgSb2 near 212 K.  Above 212 K, the resistivity increases 

linearly with increasing temperature.  Below 212 K, there is a sharp change in dρ/dT with a 

weak local maximum in ρ(T) just below 212 K, At even lower temperatures, the resistivity is 

resumes a linear temperature dependence.  The lower inset of Fig. 4.3 (a) shows the effect of 

a magnetic field upon this transition where the application of 55 kOe causes the transition to 

shift upward in temperature by less than 1 K.  
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Fig. 4.1 Resistivity (ρ) versus temperature of YAgSb2 for zero field (+)and 55 kOe for H || c 
( ) and H ⊥ c ( ). Top inset: Expanded view of low temperature resistivity.  Bottom inset: 
Transverse magnetoresistance, [ρ(H)-ρ(0)]/ρ(0) at 2 K for H || c ( ) and H ⊥ c ( ). 
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Fig. 4.2 Magnetization divided by a 55 kOe applied field (M/H) versus temperature for H || c 
( ) for YAgSb2. 
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Fig. 4.3 (a) Resistivity (ρ) versus temperature of LaAgSb2 for zero field (+) and 55 kOe for H 
|| c ( ) and H ⊥ c ( ). Top inset: Expanded view of low temperature resistivity.  Bottom 
inset: expanded view of the resistivity showing the anomalous behavior below 212 K. (b) 
Magnetization divided by a 55 kOe applied field (M/H) versus temperature for H || c ( ) and 
H ⊥ c ( ) for LaAgSb2. 
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The magnetic susceptibility as a function of temperature of LaAgSb2 is shown in Fig. 

4.3(b).  At low temperatures (<50 K) the susceptibility increases for both orientations, due to 

paramagnetic contributions from magnetic impurities.  For H || c, peaks are observed at 184 

K and 207 K.  Although the 207 K maximum corresponds to the feature in the resistivity, no 

anomalies are present in the resistivity near 184 K.  Applying the H ⊥ c gives similar 

behavior, but only a broader 207 K peak is observed.  This peak in the magnetic 

susceptibility, coupled with the resistive behavior, suggests the existence of either charge or 

spin density wave states creating a gap in the Fermi surface below 212 K.  
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Fig. 4.4 Transverse magnetoresistance of LaAgSb2 for both H || c ( ) and H ⊥ c ( ) for T = 2 
K. 
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 70

However, preliminary neutron diffraction measurements have failed to find any diffraction 

peaks below the transition arising from a spin density wave.  From the change in the 

resistivity above and below this transition, the decrease in the number of carriers may be 

estimated to be about 5% of the total carrier density, assuming all the carriers have the same 

mobility. 

The 2 K transverse magnetoresistance at low fields (Fig. 4.4) increases nearly linearly 

for both H || c and H ⊥ c, with maximum values obtained for Δρ(Η=55kOe)/ρ(0) of 6.7 and 

2.9, respectively.  The magnetoresistance is still nearly linear with no saturation observed in 

high field transverse magnetoresistance isotherms up to 180 kOe [Fig. 4.5(a)], where for H || 

c Δρ(Η=55kOe)/ρ(0) ≈ 25.  As expected, the magnitude of the magnetoresistance decreases 

with increasing temperature, which is consistent with the increase of scattering in zero field 

at higher temperature and is a consequence of Kohler’s rule.  In addition, a weak local 

maximum appears at high fields in the temperature-dependent magnetoresistivity [Fig. 

4.5(b)].  Although the origin of this anomaly is currently unknown, similar behavior is also 

present in the transverse magnetoresistance of PrSb2 (Bud’ko, 1998)  at high fields. 

2.12.3. CeAgSb2  

CeAgSb2 is a rare example of a Ce-based Kondo lattice system with low-temperature 

ferromagnetic ordering.  At 2 K, the magnetization isotherms (Fig. 4.6) suggest that CeAgSb2 

is ferromagnetically ordered and at low fields has a net moment along the c-axis.  

Specifically, for H || c, the magnetization rapidly rises to 0.37 μB/Ce (well below the 

expected full moment of 2.14 μB/Ce) below 400 Oe and remains constant for higher fields.  

This ferromagnetism is consistent with the hysteresis (inset, Fig. 4.6).  
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Fig. 4.6 Magnetization (M) versus applied field (H) of CeAgSb2 for H || c ( ) and H ⊥c ( ) 
at 2 K.  Inset: Hysteresis loop for H || c and T = 2 K. observed at 2 K. 

 
 
The remnant magnetization is 0.37 μB/Ce with a field of –60 G required to decrease the 

magnetization from its saturated value.  This unusual feature may be the result of a large 

energy required to nucleate an initial domain wall.  On the other hand, for H ⊥ c, the 

magnetization increases nearly linearly to 1.1 μB/Ce below 30 kOe and then remains nearly 

constant for higher fields, possibly indicating the presence of a metamagnetic transition.  

These data are consistent with previous reports of M(H) of polycrystalline samples 

(Houshiar, 1995) (Sologub, 1994), and the existence of a complex (possibly conical) 

magnetic structure.  
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Fig. 4.7 (a) Temperature-dependent inverse susceptibility (M/H) of CeAgSb2 in an applied 
field of 1 kOe for H || c ( ), H ⊥ c ( ), and the polycrystalline average (solid line).  Inset: 
expanded view of M/H for low temperatures, showing the magnetic transition at 9.6 K.  (b) 
Temperature-dependent resistivity of CeAgSb2 in zero field (+), and in 55 kOe for H || c ( ) 
and H ⊥ c ( ).  Inset: detail of resistivity below 30 K. 
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The temperature of the magnetic transition may be estimated from the temperature 

dependence of the magnetization [inset, Fig. 4.7(a)].  For H || c, the magnetization increases 

rapidly for T < 10 K, which is consistent with H along the easy axis of the ferromagnetically 

ordered state.  On the other hand, for H ⊥ c, a peak at 9.6 K, indicates the magnetic 

transition.  Above 200 K [Fig. 4.7(a)], the inverse susceptibility is linear, with a fit of the 

polycrystalline average, determined by χpoly=(2χab+χc)/3, to the Curie-Weiss law giving an 

effective moment of 2.26 μB/Ce, somewhat smaller than the accepted theoretical value of 

2.54 μB/Ce for trivalent Ce.  The Weiss temperature of the polycrystalline average is 16.8 K, 

which is consistent with ferromagnetic interactions between the local moments.  Finally, the 

anisotropic Weiss temperatures of  –27.9 K for H || c and 34.6 K for H ⊥ c imply that the 

crystal electric field constrains the moments to the basal plane.  This is in contrast to the low 

temperature and low field tendency for the moments to align axially, due to the anisotropic 

exchange interaction. 

In zero field, the resistivity of CeAgSb2 [Fig. 4.7 (b)] increases rapidly from 1.16 

μΩ cm at 2 K to a maximum of 88.1 μΩcm at 18.2 K.  At 9.7 K, a sharp change in the slope 

of the zero field resistivity is observed [inset Fig. 4.7(b)], consistent with a loss of spin-

disorder scattering associated with the magnetic ordering as well as the possible  

suppression of the Ce hybridization due to the ferromagnetic ordering.  At higher 

temperatures, the resistivity decreases to a broad local minimum near 150 K.  The residual 

resistivity ratio [ρ(300 K)/ρ(1.8 K) ≈ 66] and the resistivity at 1.8 [ρ(1.8 K) ≈1.16 μΩ cm] 

suggest good sample quality. 
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The temperature-dependent resistivity of CeAgSb2 [Fig. 4.7 (b)] is typical of a Kondo 

lattice system.  Preliminary inelastic neutron scattering measurements indicate a Kondo 

temperature (TK) between 60 and 80 K (Thornton, 1998).  This value of TK is consistent with 

our initial measurements and analysis of specific heat of a variety of CexLa1-xAgSb2 

compounds (γ ≈ 200 mJ/mol Ce K) (Bud’ko 1998).  However, such a large TK is inconsistent 

with the magnitude of the saturated moment in CeAgSb2 at low temperatures, which for H ⊥ 

c at 2 K is approximately 1.1 μB/Ce.  Furthermore, measurements of the change in entropy up 

to TC are almost Rln2/(mole Ce) in the CexLa1-xAgSb2 compounds, which suggest that TK is 

comparable to, or less than, TC.  Further analysis is currently the subject of ongoing research 

(Bud’ko, 1998). 

The magnetoresistance of CeAgSb2 [Fig. 4.7(b)] is either positive or negative, 

depending on the temperature and orientation of the applied field.  This complexity is due to 

competing contributions from the Ce hybridization, magnetic ordering, and the electronic 

structure of the compound.  To further resolve this behavior, magnetoresistance isotherms 

were acquired at 2, 5, 11 and 30 K (Fig. 4.8).  At 2 K, The magnetoresistance is positive for 

both orientations up to at least 55 kOe.  For H ⊥ c, an anomaly is present below 30 kOe, 

corresponding to the field-induced transition observed in the 2 K M(H) data (Fig. 4.6).  At 5 

K, the peak corresponding to the planar metamagnetic transition is still observed in the H ⊥ c 

data, but the magnetoresistance becomes negative at high fields.  The difference between the 

2 K and 5 K data suggests that at low temperatures, the normal positive metallic 

magnetoresistance dominates.  The larger response for H || c is consistent with the rest of the 

RAgSb2 compounds.  However, as the temperature increases, this contribution, which is 
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Fig. 4.8  Transverse magnetoresistance [Δρ(Η)/ρ0] of CeAgSb2 at 2, 5, 11, and 30 K for H || c 
( ) and H ⊥ c ( ).  Note the different vertical scales for each temperature. 
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expected to follow Kohler’s rule, diminishes due to increased scattering, which will be 

discussed later.  This allows the negative magnetoresistance arising from the applied field 

polarizing the local moments and reducing the spin disorder scattering (Yamada, 1972) to 

dominate at higher temperatures. 

Above TC, CeAgSb2 is a paramagnetic Kondo lattice.  The magnetoresistance of a 

paramagnet is expected to be negative, since the local moments try to align parallel to the 

applied field, which essentially reduces the spin disorder scattering as the field is increased.  

Clearly, this effect will be more pronounced if the field is applied along the easy axes of the 

local moments.  On the other hand, previous measurements (Flouquet, 1988) (Fierz, 1988), 

and theoretical models (Chen, 1993) (Kawakami, 1986) have indicated the possibility that at 

temperatures well below TK, the magnetoresistance of a Kondo lattice may be positive and 

exhibit a maximum at an applied field determined by its electronic structure.  Within these 

models, the magnitude of this maximum increases and moves to lower fields, eventually 

decreasing monotonically, as the temperature approaches TK.  The transverse 

magnetoresistance of CeAgSb2 at temperatures above TC (Fig. 4.8) is consistent with the 

presence of these two mechanisms.  The 11 K magnetoresistance at low fields is positive for 

both H || c and H ⊥ c, consistent with the Kondo effect.  At higher fields, the 

magnetoresistance becomes negative as the field saturates the paramagnetic ions.  The 

magnitude of this decrease is larger for H ⊥ c, which is the single ion easy axis determined 

from the M(T) data [Fig. 4.7 (a)].  At 30 K, the negative paramagnetic contribution is 

suppressed by the much higher temperature.  This allows the possible contribution from the 

Ce hybridization to be the dominant mechanism and leads to a positive transverse 

magnetoresistance.  Further analysis of the details of magnetoresistance in Kondo 
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compounds is outside the scope of this work and is currently the study of ongoing research 

(Bud’ko, 1998). 

2.12.4. PrAgSb2 

At high temperatures, magnetization measurements demonstrate that PrAgSb2 is a 

Curie-Weiss paramagnet.  Fitting the polycrystalline average of the inverse susceptibility 

above 100 K to the Curie-Weiss law yields an effective moment of 3.63 μB per Pr and a 

Weiss temperature of –7.2 K [Fig. 4.9(a)].  Anisotropic Weiss temperatures of -48.5 K for H 

|| c and 6.3 K for H ⊥ c imply that the local moments tend to align within the basal plane.  

The resistivity at high temperatures [Fig. 4.9(b)] is similar to the rest of the RAgSb2 series, 

manifesting typical metallic behavior.  The RRR of PrAgSb2 was 143, which suggests 

extremely small amounts of impurity and dislocation scattering.  

Unlike the rest of the RAgSb2 series with magnetic rare earth elements, no magnetic ordering 

is observed in PrAgSb2 for T >1.8 K.  Although a maximum in the H || c magnetization 

[inset, Fig. 4.9(a)] is observed at 3.1 K.  No corresponding loss of spin-disorder scattering is 

present in the resistivity [inset Fig. 4.9 (b)].  Instead, the zero-field resistivity decreases 

smoothly below about 10 K from 3.5 μΩ cm to 0.23 μΩ cm.This behavior of both the 

magnetization and resistivity is typical of a material possessing a non-magnetic ground state.  

The 2 K magnetic isotherms (Fig. 4.10), demonstrate a much larger magnetization for 

H ⊥ c than for H || c.  In addition, for H ⊥ c the magnetization increases more rapidly than 

expected for a J = 4 Brillouin function and tends to saturate at higher fields.  This is 

consistent with either the presence of a field induced magnetic transition.  On the 
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Fig. 4.9 (a) Temperature-dependent inverse susceptibility (M/H) of PrAgSb2 in an applied 
field of 1 kOe for H || c ( ), H ⊥ c ( ), and the polycrystalline average (solid line).  Inset: 
expanded view of M/H for low temperatures. (b) Temperature-dependent resistivity of 
PrAgSb2 in zero field (+), and in 55 kOe for H || c ( ) and H ⊥ c ( ).  Top inset: detail of 
resistivity below 10 K. Bottom inset: transverse magnetoresistance at 2 K for H || c ( ) and 
H ⊥ c ( ). 
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Fig. 4.10 Magnetization (M) versus applied field (H) of PrAgSb2 for H || c ( ) and H ⊥c ( ) 
at 2 K. 

 

other hand, M(H) is linear for  H || c, and only reaches 0.5 μB/Pr at 55 kOe. 

To clarify this low temperature behavior, the temperature-dependent specific heat was 

measured for PrAgSb2 and LaAgSb2, as shown in Figure 4.11.  A broad maximum centered 

at 6.5 K may be associated with the Schottky effect arising from a CEF splitting of the 

Hund’s rule ground state multiplet.  The sum of the electron and phonon contributions to the 

specific heat of PrAgSb2 may be approximated by the specific heat of LaAgSb2, allowing a 

separation of the Schottky contribution [ΔCp ≈ Cp(PrAgSb2) –Cp(LaAgSb2) ] for a two level 

system given by: 
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where R is the universal gas constant, Δ is the energy separation in K, and g0 and g1 are the 

degeneracies of the two levels.  Fitting this function (solid line in Fig. 4.11) to ΔCp gives 

reasonable agreement with the experimental data with Δ ≈18 K and g0/g1 ≈ 0.35.  The change 

in entropy of the system up to 20 K, found by integrating ΔCP/T with respect to T up to 20 K, 

is approximately Rln(3.8), consistent with a 4 state system.  Although the change in entropy 

and parameters of the fit to Csch suggest the existence of a singlet ground state and a triply 
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Fig. 4.11 Temperature dependence of the specific heat (Cp) for PrAgSb2 ( ), LaAgSb2 ( ), 
and their difference (ΔCp, +).  The solid line (ΔCp fit) is a fit to a two level Schottky system.  
The dashed line is the integrated change in entropy from 0 K.  
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degenerate excited state, the deviation of ΔCp at higher temperatures may indicate a more 

complex set of levels. 

The bottom inset to Fig. 4.9 (b) shows the transverse magnetoresistance in PrAgSb2 at 

2 K.  For H || c the magnetoresistance is large, reaching a maximum of nearly 10 at 55 kOe.  

A power law fit shows that Δρ(Η)/ρ(0) ∝ Η1.5.  At 55 kOe, the H || c magnetoresistance 

decreases as the temperature is increased to 4 K. This is a consequence of Kohler’s rule and 

will be discussed in detail in Section 4.3.6.  For H ⊥ c,  Δρ(Η)/ρ(0) only reaches 2.2 but still 

significantly deviates from quadratic behavior with Δρ(Η)/ρ(0) ∝ Η1.3.   This component of 

the transverse magnetoresistance remains positive below 4.6 K, but becomes negative 

between 4.6 K and 15 K. 

2.12.5. NdAgSb2 

Figure 4.12 (a) shows the inverse susceptibility of NdAgSb2 in a 1.0 kOe field for H || 

c and H ⊥ c, with the inset showing an expanded view of the magnetization for low 

temperatures.  Magnetic ordering is observed below 3.0 K, as determined by the maximum in 

d(χT)/dT, which is has a temperature dependence similar to the magnetic specific heat near 

an antiferromagnetic transition (Fisher, 1962).  Above 100 K, the inverse susceptibility is 

linear for both orientations.  Fitting the polycrystalline average to the Curie-Weiss law gives 

an effective moment of 3.6 μB/Nd and a Weiss temperature of –14.2 K.  Anisotropic Weiss 

paramagnetic temperatures are θp
c = -45.3 K and θp

ab = -4.0 K, suggesting antiferromagnetic 

interactions with the moments constrained to the basal plane. 

At low temperatures [inset, Fig. 4.12(b)], an abrupt decrease in the resistivity is 

consistent with the loss of spin disorder scattering near the magnetic ordering temperature, 
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determined by the maximum in dρ/dt at 2.8 K.  The large RRR of the sample studied [ρ(300 

K)/ρ(1.8 K) ≈ 60] and low resistivity at 1.8 K, (0.51 μΩ cm) are consistent with very low 

impurity concentrations.  At an applied field of 55 kOe, the resistivity for H || c, has a slight 

upturn below 3 K, the origin of which will be discussed later. 
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Fig. 4.12 (a) Temperature-dependent inverse susceptibility (M/H) of NdAgSb2 in an applied 
field of 1 kOe for H || c ( ), H ⊥ c ( ), and the polycrystalline average (solid line).  Inset: 
expanded view of M/H for low temperatures, showing the magnetic transition at 3.0 K.  (b) 
Temperature-dependent resistivity of NdAgSb2 in zero field (+), and in 55 kOe for H || c ( ) 
and H ⊥ c ( ).  Inset: detail of resistivity below 10 K.  
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Magnetization isotherms at 2 K (Fig. 4.13), show that for H || c the magnetization is nearly 

linear, reaching only 0.2 μB/Nd at 55 kOe.  However, for H ⊥ c, a weak positive curvature in 

M(H) between 20 and 30 kOe suggests the existence of a broadened metamagnetic transition.  

At 55 kOe, the planar magnetization is still only about 2.1 μB/Nd, well below the expected 

saturated magnetization of 3.27 μB for a free Nd3+ ion.  It is possible that an additional 

metamagnetic transition may lie beyond the maximum field of our magnetometer.  The 

transverse magnetoresistance of NdAgSb2 at 2 K (Fig. 4.13) is large [Δρ(55 kOe)/ρ(0) ≈ 3.4], 

positive and nearly linear for H || c.  For H ⊥ c, the magnetoresistance rises to a broad 

maximum near 32 kOe, and then decreases for higher applied fields, consistent with the 

metamagnetic transition as inferred from the M(H) data discussed above. 
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Fig. 4.13 Applied field dependent magnetization (M, left axis) for H || c (•) and H 
⊥ c ( ) and transverse magnetoresistance ([ρ(H)-ρ(0)]/ρ(0), right axis) for H || c 
( ) and H ⊥ c ( ) of HoAgSb2 at 2 K. 

 



 85

2.12.6. SmAgSb2 

Magnetic ordering in SmAgSb2 is observed below 8.6 K [inset, Fig. 4.14(a)], as determined 

by the local maximum in d(χT)/dT. Below this temperature, the magnetization decreases for 

H || c, but for H ⊥ c, the magnetization increases below a local minimum 7.5 K. A maximum 

observed in dρ/dt at 8.8 K is consistent with TN determined from M(T).  Below TN, the zero 

field resistivity decreases sharply by about 0.65 μΩ cm to 0.13 μΩ cm at 2 K [top inset, Fig. 

4.14(b)], consistent with a loss of spin-disorder scattering.  In a field of 55 kOe perpendicular 

to the c-axis, the planar resistivity decreases from 1.87 to 1.52 μΩ cm.  When a 55 kOe field 

is applied parallel to the c-axis, the resistivity increases below the magnetic ordering 

temperature from 3.0 μΩ cm to 8.7 μΩ cm, which will be discussed in detail in Section 4.3.6. 

At higher temperatures, the inverse susceptibility of SmAgSb2 [Fig. 4.14 (a)] is non-

linear for both H || c and H ⊥ c and tends to become temperature independent at high 

temperatures.  This behavior is typical in Sm containing compounds, since the first excited 

state of the Hund’s rule multiplet (J = 7/2) is very close to the ground state (J = 5/2).  The 

high temperature resistivity [Fig. 4.14(b)] is typical of intermetallic compounds. The 

unusually large RRR ≈ 200 and very small residual resistivity ρ(H=0,T=1.8 K) ≈ 0.125 

μΩcm indicate very small impurity and dislocation densities. 

There are two major features to note in the magnetization as a function of applied 

field at 2 K (Fig. 4.15).  First, M(H) is remarkably small even at high fields and is anisotropic 

with a much greater response for H ⊥ c [M(55 kOe) ≈ 0.015 μB/Sm] relative to M(H) for H || 

c.  Second, de Haas-van Alphen oscillations are very clearly observed for H || c.  An initial  
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Fig. 4.14 (a) Temperature-dependent inverse susceptibility (M/H) of SmAgSb2 in an applied 
field of 10 kOe for H || c ( ), H ⊥ c ( ), and the polycrystalline average (solid line).  Inset: 
expanded view of M/H for low temperatures, showing the magnetic transition at 8.8 K. (b) 
Temperature-dependent resistivity of SmAgSb2 in zero field (+), and in 55 kOe for H || c ( ) 
and H ⊥ c ( ).  Top inset: detail of resistivity below 10 K. Bottom inset: transverse 
magnetoresistance at 2 K for H || c ( ) and H ⊥ c ( ). 
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Fig. 4.15 Magnetization (M) versus applied field (H) of SmAgSb2 for H || c ( ) and H ⊥c 
( ) at 2 K. Note the de Haas-van Alphen oscillations present for H || c. 

 

analysis of these oscillations yields frequencies of 0.52 MOe, 0.55 MOe, 0.84 MOe, and 0.89 

MOe.  A full review of the de Haas-van Alphen oscillations will be the subject of Chapter 6. 

The anisotropic behavior in the transverse magnetoresistance at 2 K can be seen in the 

bottom inset of Fig. 4.14 (b).  The magnetoresistance is positive and proportional to H1.6  for 

H || c and H1.1 for H ⊥ c.  In both cases there are no signs of saturation at high fields.  At the 

maximum obtainable field of 55 kOe, [ρ(Η=55kOe)−ρ(0)]/ρ(0) is over 60 and 10 for H || c 

and H ⊥ c, respectively. 
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2.12.7. GdAgSb2 

Figure 4.16 (a) displays the inverse susceptibility of GdAgSb2 in an applied field of 

1.0 kOe, with the low temperature susceptibility expanded in the inset.  For both the axial 

and planar orientations of the applied field, a sharp maximum in d(χT)/dT corresponds to an 

ordering temperature of 12.8 K.  Below this transition temperature, the susceptibility 

decreases for H ⊥ c and remains nearly constant for H || c, typical for antiferromagnetic 

ordering with no CEF anisotropy and the moments perpendicular to the c-axis.  Above TN, 

the inverse susceptibility of GdAgSb2 is isotropic and linear, yielding an effective moment of 

7.9 μB/Gd.  The Weiss paramagnetic temperature is -32.0 K for both orientations of the field, 

consistent with no crystal field splitting of the isotropic Gd3+ ion and antiferromagnetic 

ordering.   

The magnetic transition is also revealed in the resistivity as a function of temperature 

with a peak in dρ/dT at 12.8 K coinciding with the transition determined from M(T).  Below 

TN, a sharp decrease in the resistivity in zero field [inset Fig. 4.16(b)] is attributed to a loss of 

spin-disorder scattering associated with a paramagnetic-antiferromagnetic transition.  

Although an application of a 55 kOe field parallel to the c-axis apparently suppresses this 

low-temperature loss of resistivity, the transition is still observed at 12.8 K in M(T, H=55 

kOe) data [lower inset, Fig. 4.16 (a)].  Most likely, this apparent suppression is the result of a 

large electronic contribution to the transverse magnetoresistance, offsetting the loss of spin 

disorder scattering, which will be discussed in Section 4.3.6.  At higher temperatures, the  
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Fig. 4.16 (a) Temperature-dependent inverse susceptibility (M/H) of GdAgSb2 in an applied 
field of 1 kOe for H || c ( ), H ⊥ c ( ), and the polycrystalline average (solid line).  Inset: 
expanded view of M/H for low temperatures, showing the magnetic transition at 12.8 K. (b) 
Temperature-dependent resistivity of GdAgSb2 in zero field (+), and in 55 kOe for H || c ( ) 
and H ⊥ c ( ).  Inset: detail of resistivity below 20 K. 
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Fig. 4.17 Applied field dependent magnetization (M, left axis) for H || c (•) and H ⊥ c ( ) 
and transverse magnetoresistance ([ρ(H)-ρ(0)]/ρ(0), right axis) for H || c ( ) and H ⊥ c ( ) 
of GdAgSb2 at 2 K. 

 

resistance is linear, common to the majority of the RAgSb2 series.  Likewise, low impurity 

concentrations are indicated by the large RRR of 65 and low residual resistance of 0.32 μΩ 

cm at 1.8 K. 

At 2 K, the magnetization (Fig. 4.17) is linear and nearly isotropic up to applied fields 

of 55 kOe, reaching 1.4 μB /Gd, far below the theoretical saturated value of 7 μB /Gd for a 

free Gd3+ ion.  No metamagnetic transitions are observed, which is consistent with the high- 

field M(T) data.  The transverse magnetoresistance of GdAgSb2 at 2 K is large and 

anisotropic (Fig. 4.17) with a maximum Δρ(Η)/ρ(0) at 55 kOe of over 4 for H || c, and over 3 

for H ⊥ c.  
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2.12.8. TbAgSb2 

The magnetic properties of TbAgSb2 are strongly anisotropic, with the local Tb3+ 

moments constrained to the basal plane at low temperatures.  This is particularly evident in 

the anisotropic Weiss temperatures, θc =  -125 K and θab = -19 K obtained from fitting the 

inverse susceptibilities [Fig. 4.18 (a)] to the Curie-Weiss law.  The polycrystalline average of 

the inverse susceptibility gives an effective moment of 10.2 μB/Tb, larger than the expected 

effective moment of 9.72 μB for the free Tb3+, and θave = –41.4 K, consistent with 

antiferromagnetic exchange interactions.  Below 11.0 K, as determined by the maximum in 

d(χT)/dT [inset, Fig. 4.18 (a)], or 10.9 K from the maximum in dρ/dT [inset, Fig. 4.18 (b)], 

TbAgSb2 orders magnetically.  For H ⊥ c, the magnetization decreases with decreasing 

temperature below TN. Although no feature corresponding to the ordering is observed in the 

low-field magnetization for H || c, a broad peak in the magnetization is centered at 70 K, 

consistent with a strongly anisotropic CEF.  

The resistivity as a function of temperature [Fig. 4.18 (b)] in zero field is typical of 

intermetallic compounds with low-temperature magnetic ordering.  At high temperatures, the 

resistivity increases nearly linearly.  The RRR is 53, indicative of very low impurity and 

dislocation concentrations.  Below 10.9 K [inset Fig. 4.18(b)], there is a clear loss of spin-

disorder scattering, corresponding to the paramagnetic-antiferromagnetic transition.  

However, for H = 55 kOe perpendicular to the c-axis, this transition appears to move down to 

9.5 K.  For H || c, the transverse magnetoresistance increases with decreasing temperature as 

in many of the other members of the RAgSb2 series. 

The magnetization as a function of applied field (Fig. 4.19) is strongly anisotropic at 

1.8 K. For H || c, the magnetization increases nearly linearly, reaching a maximum of only 
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Fig. 4.18 (a) Temperature-dependent inverse susceptibility (M/H) of TbAgSb2 in an applied 
field of 1 kOe for H || c ( ), H ⊥ c ( ), and the polycrystalline average (solid line).  Inset: 
expanded view of M/H for low temperatures, showing the magnetic transition at 11.0 K. (b) 
Temperature-dependent resistivity of TbAgSb2 in zero field (+), and in 55 kOe for H || c ( ) 
and H ⊥ c ( ).  Inset: detail of resistivity below 20 K. 
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Fig. 4.19 Applied field dependent magnetization (M, left axis) for H || c (•) and 
H ⊥ c ( ) and transverse magnetoresistance ([ρ(H)-ρ(0)]/ρ(0), right axis) for H 
|| c ( ) and H ⊥ c ( ) of TbAgSb2 at 2 K. 

 

of only 0.5 μB/Tb at 55 kOe.  However, for H ⊥ c, a much greater and non-linear response is 

observed, with an upward curvature in slope for H≈30 kOe, which suggests the existence of 

at least one high-field metamagnetic transition.  At 55 kOe, the magnetization only reaches 

3.7 μB/Tb, less than half the expected saturated moment of a free Tb3+ ion of 9 μB.  The 

transverse magnetoresistance at 2 K (Fig. 4.19) is super-linear [Δρ(Η)/ρ(0) ∝ H1.3] for both H 

|| c and H ⊥ c, with a larger response for the former case.  At 55 kOe, Δρ(Η)/ρ(0) reaches 5.4 

for H || c and 3.2 for H ⊥ c.  Finally, a weak inflection point is present in the 

magnetoresistance for H ⊥ c near 30 kOe, coinciding with the proposed metamagnetic 

transition observed in the 2 K magnetization isotherm. 
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2.12.9. DyAgSb2 

The temperature-dependent susceptibility of DyAgSb2 is also strongly anisotropic, 

with the moments constrained to the basal plane, as shown by the inverse susceptibility [Fig. 

4.20 (a)].  Above 100 K, the inverse susceptibilities are linear, with μeff = 10.3 μB /Dy and θave 

=  –10.1 K.  The anisotropic Weiss temperatures are θc = –86.3 K and θab = 7.1 K. 

For a 1.0 kOe field applied perpendicular to the c-axis, magnetic ordering is observed 

below 9.4 K [inset Fig 4.20 (a)], determined from the a peak in d(χT)/dT.  The zero-field 

resistivity confirms the ordering temperature with a local maximum in dρ/dt at 9.4 K.  Below 

TN [inset Fig. 4.20 (b)], a decrease in the resistivity corresponds to the loss of spin-disorder 

scattering as the Dy3+ moments become antiferromagnetically ordered.  For H = 55 kOe 

parallel to the c-axis, a sharp decrease in magnetoresistance is observed below TN.  However, 

at even lower temperatures, the magnetoresistance increases similarly to that observed in the 

compounds with R = Nd, Sm, Gd, and Tb, which will be analyzed later.  For H= 55 kOe, 

perpendicular to the c-axis, the decrease in the resistivity at low temperatures is smooth, 

which is typical of the Brillouin saturation in the saturated paramagnetic state.  This data 

agrees with the previously published temperature-applied field phase diagrams (Myers, 

1999).  At higher temperatures, the resistivity [Fig. 4.20(b)] again shows the metallic 

behavior common to the rest of the series, with a large RRR [ρ(300 K]/ρ(1.8 K) ≈ 40], 

suggesting good sample quality. Exceptionally clear metamagnetism is evident in the 2 K 

M(H) and ρ(H) data, as seen in Figure 4.21 (a).  For H || c, the magnetization increases 

linearly to 1.8 μB/Dy at 55 kOe.  However, for H ⊥c, a series of sharp steps occur, with both 
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Fig. 4.20 (a) Temperature-dependent inverse susceptibility (M/H) of DyAgSb2 in an applied 
field of 1 kOe for H || c ( ), H ⊥ c ( ), and the polycrystalline average (solid line).  Inset: 
expanded view of M/H for low temperatures, showing the magnetic transition at 9.0 K. (b) 
Temperature-dependent resistivity of DyAgSb2.  Inset: detail of resistivity below 20 K for 
zero field (+), and for 55 kOe for H || c ( ) and H ⊥ c ( ) 
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Fig. 4.21 Applied field dependent magnetization (M, left axis) for H || c (•) and H ⊥ c ( ) 
and transverse magnetoresistance ([ρ(H)-ρ(0)]/ρ(0), right axis) for H || c ( ) and H ⊥ c ( ) 
of DyAgSb2 at 2 K. (b) Magnetization (M) as a function of applied field (H) for 5 different 
orientations within the basal plane of DyAgSb2: 0º or [110] ( ), 15º ( ), 22º (*), 30º (D), 
and 45º or [100] (+).  Angles are relative to the [110] axis.  
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the transition field and plateau magnetization dependent on the orientation of the magnetic 

field within the basal plane, as seen in Fig. 4.21(b).  The maximum magnetization measured 

was 10.1 μB/Dy for θ = 0º (along the [110] axis), which is consistent with the saturated 

moment of the free Dy3+ ion.  However, for H parallel to the [100] axis, the maximum 

saturated magnetization is only about 7 μB/Dy at 55 kOe, suggesting the presence of strong 

CEF-induced anisotropy within the basal plane.  A full analysis of the angular dependence of 

the planar metamagnetism in DyAgSb2 is presented in Chapter 5. 

At 2 K, the transverse magnetoresistance [Fig. 4.21(a)] is large and very anisotropic 

in the same manner as that seen in other members of the series.  For H ⊥ c, the 

magnetoresistance is highly non-monotonic with a break in the slope at the lower 

metamagnetic transition and a sharp local maximum at the higher transition.  Applying a 

field in the basal plane (H ⊥ c) yields a Δρ(Η)/ρ(0) of 1.5 at 55 kOe, with anomalous 

behavior between 18 and 40 kOe, typical of metamagnetic transitions.  With an axial 

orientation of the field (H || c), Δρ(Η)/ρ(0) increases to 4.5 at 55 kOe. 

2.12.10. HoAgSb2 

Like the majority of the RAgSb2 series, HoAgSb2 is strongly anisotropic and 

antiferromagnetically ordered at low temperatures [inset Fig. 4.22(a)].  The temperature of 

the magnetic transition, determined from the maximum in d(χT)/dT at 5.4 K, is in good 

agreement with the maximum in dρ/dt at 5.3 K [inset Fig. 4.22 (b)].  Throughout the whole 

temperature range, the axial susceptibility is diminished relative to the planar susceptibility, 

indicating a preference for the moments to align within the basal plane.  The polycrystalline 

average of the inverse susceptibility may be fit to the Curie-Weiss law [Fig 4.22 (a)], 
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Fig. 4.22 (a) Temperature-dependent inverse susceptibility (M/H) of HoAgSb2 in an 
applied field of 1 kOe for H || c ( ), H ⊥ c ( ), and the polycrystalline average 
(solid line).  Inset: expanded view of M/H for low temperatures, showing the 
magnetic transition at 5.4 K. (b) Temperature-dependent resistivity of HoAgSb2 in 
zero field (+), and in 55 kOe for H || c ( ) and H ⊥ c ( ).  Inset: detail of resistivity 
below 25 K. 
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yielding μeff =10.1 μB/Ho and θave = –1.7 K.  Anisotropic Weiss temperatures are θc =  –39.5 

K and θab = 9.2 K. 

Overall, the resistivity of HoAgSb2 [Fig. 4.22 (b)] suggests good sample quality with 

a RRR of about 10.  The high temperature resistivity is typical of intermetallic compounds, 

increasing linearly up to 300 K, with no signs of saturation.  At low temperatures, the zero-

field resistivity as a function of temperature [inset Fig. 4.22(b)] shows a clear loss of spin 

disorder scattering below 5.3 K, with a decrease in the resistivity of about 1 μΩ cm from the 

paramagnetic state to the antiferromagnetic state.  In 55 kOe for H ⊥ c, the resistivity 

smoothly decreases, typical of a Brillouin saturation of magnetic moments and agrees with 

M(H,T = 2 K) for H ⊥ c, which also suggests that at 55 kOe, HoAgSb2 is a saturated 

paramagnet. Likewise, above TN, the transverse magnetoresistance becomes negative, the 

result of decreased scattering due to the near saturation of the Ho3+ in the paramagnetic state.  

For H || c, the loss of spin disorder scattering is still observed, since the applied field is not as 

strongly coupling to the Ho3+ moments, which reside in the basal plane.  

Although not as well defined as for DyAgSb2, planar metamagnetism is observed in 

HoAgSb2 at 2 K, as seen in Fig. 4.23.  The magnetization of the compound increases linearly 

for H || c, only reaching about 2 μB/Ho at 55 kOe.  Likewise, the transverse 

magnetoresistance (Fig. 4.23) for H || c is nearly linear. However, more complicated behavior 

is observed for H ⊥ c, where the magnetization exhibits a positive curvature below 16 kOe 

and saturates to 8.7 μB/Ho above 20 kOe, short of the expected saturated moment of a free 

Ho3+ ion of 10 μB.  A broad peak at 14 kOe in the 2 K transverse magnetoresistance 

coincides with the observed transition in M(H).  
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Fig. 4.23 Applied field dependent magnetization (M, left axis) for H || c (•) and H ⊥ c ( ) 
and transverse magnetoresistance ([ρ(H)-ρ(0)]/ρ(0), right axis) for H || c ( ) and H ⊥ c ( ) 
of HoAgSb2 at 2 K. 

 

2.12.11. ErAgSb2 and TmAgSb2 

As previously discussed, the flux growth of single crystals of the RAgSb2 series of 

compounds becomes very difficult as the rare earth ions become heavier and smaller.  

Consequently, the uncertainty in the measured effective moments increases due to the small 

size of the crystals obtained for these compounds.  Along with the smaller sample yield, the 

quality of the crystals decreases for the compounds.  This is reflected in the residual 

resistivity of ErAgSb2 (Fig. 4.24), which is much larger [ρ(1.8 K) = 3.86 μΩ cm] than the 

other members of the series  [ρ(1.8 K) = 0.13 μΩ cm in SmAgSb2), possibly due to increased 

impurity and defect scattering inherent in the samples.  Likewise, the RRR [ρ(300 K)/ρ(1.8 
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K) ≈ 5] is smaller than the other samples measured.  Finally, the small size of the TmAgSb2 

crystals precludes reliable measurements of resistivity. 

Unlike the rest of the RAgSb2 series of compounds, the CEF splittings of the Hund’s 

rule ground state constrain the local rare earth moments to align parallel to the c-axis in 

ErAgSb2 and TmAgSb2.  At high temperatures, ErAgSb2 and TmAgSb2 are Curie-Weiss 

paramagnets.  In ErAgSb2 [Fig. 4.25 (a)], the inverse of the polycrystalline average of the 

susceptibility gives μeff = 9.1 μB/Er and θB ave = –2.2 K.  Anisotropic inverse susceptibilities 

yield Weiss paramagnet temperatures of θc = 9.8 K and θab = -14.6 K, consistent with 

antiferromagnetic interactions and an easy axis.  The temperature dependent magnetization of 

TmAgSb2 [Fig. 4.25 (b)] is similar to that of ErAgSb2 with anisotropic Weiss temperatures of  
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Fig. 4.24 Temperature-dependent resistivity of ErAgSb2 in zero field (+), and in 55 kOe for 
H || c ( ) and H ⊥ c ( ).  Inset: detail of resistivity below 8 K. 
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θc = 53 K and θab = -44 K.  The polycrystalline average of the M(T)data yields a Weiss 

temperature of θave = 0.9 K, and an effective moment of 6.55 μB/Tm, considerably smaller 

than the expected theoretical value of the free Tm3+ moment of 7.56 μB.   

Low-temperature magnetic ordering is observed or inferred in both compounds. 

Specifically, ErAgSb2 is antiferromagnetic with TN = 3.9 K, determined from the maximum 

in d(χT)/dT.  A clear loss of spin disorder scattering is also observed in the resistivity of 

ErAgSb2 [inset Fig. 4.24] below 4.1 K in zero applied field.  A peak in dρ/dt at 3.8 K 

indicates magnetic ordering and is consistent with the M(T) data.  However, no loss of spin 

disorder scattering is observed in the 55 kOe for either H || c or H ⊥ c orientations of the field 

in ErAgSb2.  The ordering temperature of TmAgSb2 is smaller than for ErAgSb2.  Although 

no peak is present in d(χT)/dT of TmAgSb2 down to 1.8 K, the M(T) data [inset, Fig. 4.25 

(b)] suggest an ordering temperature near 1.8 K. 

The nature of the magnetic order at low temperature may be seen in the magnetization 

isotherms at 1.8 K.  The magnetization of both compounds increases linearly for H ⊥ c, 

reaching 1.7 μB/Er [Fig. 4.26(a)] and 1.1 μB/Tm [Fig. 4.26(b)] at 55 kOe.  For H || c, there is 

a well-defined step in the magnetization in each compound between 5 and 20 kOe.  Above 20 

kOe the magnetization appears to saturate to 7.8 μB/Er and 4.6 μB/Tm, below the expected 

magnetic moments for the accepted theoretical values for the free ions of 9 μB/Er and 7 

μB/Tm.  In both compounds, the saturated moment along the easy axis is considerably less 

than expected.  Although this discrepancy could be the result of uncertainty in the mass due 

to small sample size, scaling the masses to match the accepted values of the Curie-Weiss  
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Fig. 4.25 Temperature-dependent inverse susceptibility (M/H) of (a) ErAgSb2 in an applied 
field of 1 kOe and (b) TmAgSb2 in an applied field of 55 kOe for H || c ( ), H ⊥ c ( ), and 
the polycrystalline average (solid line).  Insets: expanded views of M/H for low temperatures, 
showing the magnetic transition at 3.8 K for ErAgSb2 and magnetic ordering below 
approximately 2 K in TmAgSb2 with H = 1 kOe. 
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Fig. 4.26 (a) Applied field dependent magnetization (M, left axis) for H || c (•) and H ⊥ c ( ) 
and transverse magnetoresistance ([ρ(H)-ρ(0)]/ρ(0), right axis) for H || c ( ) and H ⊥ c ( ) 
of ErAgSb2 at 2 K.  (b) Magnetization (M) versus applied field (H) of TmAgSb2 for H || c 
( ) and H ⊥c ( ) at 2 K. 
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effective moment still produces saturated moments too small to fully account for the 

difference.  It is therefore likely that either the local moments are not aligned perfectly along 

the c-axis in the ordered state, suggesting a possible conical structure, or a metamagnetic 

transition exists at higher fields. 

The 2 K transverse magnetoresistance of ErAgSb2 [Fig. 4.26(a)] demonstrates 

characteristic behavior of metamagnetism for H || c. In this case, Δρ(H)/ρ(0) increases to a 

peak at 11 kOe and then abruptly drops to a minimum at 19 kOe.  Above 25 kOe, Δρ(H)/ρ(0) 

increases linearly up to above 0.10 at the maximum applied field of 55 kOe.  The 

magnetoresistance perpendicular to the direction of the magnetic moments (H ⊥ c) increases 

monotonically to 0.09 at 55 kOe.   

2.13. Discussion 

2.13.1. Crystal Electric Field  

Throughout the RAgSb2 series of compounds, the magnetic and transport properties 

are strongly anisotropic due to the CEF splitting of the Hund’s rule ground state multiplet.  

Specifically, for high temperatures, the easy axis for the magnetization in the compounds 

with R = Ce-Nd, Tb-Ho lies within the basal plane, with θP
ab > θP

c.  For R = Er and Tm, this 

is reversed, with the moments aligning parallel to the c-axis and  θP
c > θP

ab.    

Analysis of this axial-planar anisotropy allows a determination of the leading term in 

the crystal field Hamiltonian, using the differences in the paramagnetic temperatures (θp
c-

θp
ab).  When the rare earth ion is in a location with tetragonal point symmetry, the CEF 

Hamiltonian may be written as: 

H B O B O B O B O B OCEF = + + + +2
0
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where the Bn
m are the Stevens coefficients and On

m are the Stevens equivalent operators.  It 

has also been shown (Wang, 1971) (Boutron, 1973) that if coupling between the moments is 

ignored, at high temperatures only the B2
0 term contributes to the Weiss temperatures giving:  

( ) 0
2, 10

)32)(12(3 BJJ
cba

+−
=−θθ  

The point charge model may be used to predict the sign of B2
0, where  

B r A J2
0 2

2
0= α . 

and by definition, <r2> is always positive.  In the point charge model, A2
0 is a coefficient in 

the expansion of the solution of Laplace's equation in spherical harmonics for the 

electrostatic potential at the rare earth site due to the CEF.  Since A2
0 is purely geometrical, it 

should remain constant throughout the rare earth series, neglecting the rare earth contraction.  

The sign of B2
0 will therefore only depend on the sign of αJ, a rare earth dependent 

coefficient given in Table 2.  Subsequently, the sign of αJ is enough to predict whether the 

compound will have an easy plane or an easy axis.  Table 2 shows the easy orientation is 

consistent with the point charge model, and lists experimental values of B2
0 and A2

0.  Note 

the change in sign of αJ corresponds to the change from easy plane to easy axis between 

HoAgSb2 and ErAgSb2.  Although A2
0 should be approximately constant throughout the 

series, the calculated values vary by about 50%.  This variation could be due to the simplicity 

of the point charge model, the result of anisotropy within the basal plane modifying the high 

temperature susceptibility, or the coupling between the local moments.  To test the latter 

case, samples of YAgSb2 were prepared with a small amount of Dy introduced into the melt.  

From the Curie-Weiss effective moment, and the saturation magnetization, the concentration 
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Table 4.1.  Magnetic properties of the RAgSb2 compounds.  Uncertainties reflect 
experimental limits and in the case of TM include any variation between magnetic 
susceptibility and resistivity data.  Crystalline electric field parameters (αJ, <r2>) are from 
Taylor (1972). 

 
 
 
Compound TM (K) 

(±0.1 K) 
μeff (μB) 
(±0.1 K) 

θave (K) 
(±0.2 K) 

θc (K) (±0.2 
K) 

θab (K) 
(±0.2 K) 

B2
0(K) 

(±0.3 K) 
<r2> (a0

2) αJ×102 Α2
0  

(±0.3) 

CeAgSb2 9.6 2.3 16.8 -27.9 34.6 6.5 1.200 -5.71 -1.0 
PrAgSb2 2.8 3.6 -7.2 -48.5 -6.3 1.8 1.086 -1.05 -1.6 
NdAgSb2 2.9 3.6 -14.2 -45.3 -4.0 1.4 1.001 -0.643 -2.2 
SmAgSb2 8.7 - - - - - 0.883 4.13 - 
GdAgSb2 12.8 7.9 -32.0 -32.0 -32.0 - - - - 
TbAgSb2 11.0 10.2 -41.4 -125 -19.0 2.1 0.758 -1.01 -2.8 
DyAgSb2 9.4 10.3 -10.1 -86.3 7.1 1.2 0.726 -0.635 -2.7 
HoAgSb2 5.4 10.1 -1.7 -39.5 9.2 0.6 0.695 -0.222 -3.7 
ErAgSb2 3.8 9.1 -2.2 9.8 -14.6 -0.3 0.666 0.254 -1.9 
TmAgSb2 ~1.8 6.6 0.9±0.5 53±0.5 -44±0.5 -1.9±0.7 0.640 1.01 -3.0±0.7 

 



 108

was found to be Dy0.07Y0.93AgSb2.  From the high-temperature inverse susceptibility (Fig. 

4.27), the Weiss paramagnetic temperatures were found to be θp
c = -87.9 and θp

ab = 22.0 K, 

giving a value of B2
0 for the dilute compound of 1.45 K, compared to the value found for 

DyAgSb2 of 1.23 K, a difference of 18%.  This suggests that the coupling between the local 

moments may significantly affect the magnetization at high temperatures and indicates that 

similar dilutions for each R are required for more accurate determinations of B2
0 in the rest of 

the RAgSb2 compounds. 

2.13.2. Determination of Exchange Coupling 

Once a value of B2
0 is determined from the anisotropic inverse susceptibility of 

Dy0.07Y0.93AgSb2, the coupling constants of the exchange interaction in DyAgSb2 may be  
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Fig. 4.27 Inverse susceptibility of Dy0.07Y0.93AgSb2 in a 10 kOe field for H || c ( ) and H ⊥ c 
( ).  Solid lines represent linear fit to the H/M data.  Dotted line is the inverse susceptibility 
of the polycrystalline average, as described in the text. 
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calculated from the paramagnetic Weiss temperatures using (Boutron, 1973) (Chevalier, 

1985): 

( ) ( )( )

( ) ( )( ) 0
2
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2

10
3212

3
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JJ
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−=
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θ
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In DyAgSb2 the anisotropic Weiss temperatures of θp
c = -86.3 and θp

ab = 7.1 K give exchange 

constants of Jex
c = 0.62 K and Jex

ab = 1.39 K.  These values imply ferromagnetic interactions 

within the basal plane and between the planes, which is inconsistent with the observed 

antiferromagnetic ordering at low temperatures and zero field.  However, since DyAgSb2 

manifests a rich metamagnetic structure, this discrepancy indicates the need to include higher 

order terms (Boutron, 1973).  Examples of these higher order terms, which were calculated 

from detailed measurements of the angular dependence of the metamagnetic transitions may 

be found in Chapter 5. 

2.13.3. Planar Metamagnetism 

In addition to the axial-planar magnetic anisotropy, considerable anisotropy is 

observed within the basal plane.  A dramatic example of this occurs in DyAgSb2 (Fig. 4.22) 

where sharp step-like metamagnetic transitions shift both their critical fields and net 

magnetic moments as a function of the orientation of the applied field in the basal plane.  

Other field-dependent magnetic transitions are readily observed in the compounds containing 

Nd, Tb, and Ho.  As with DyAgSb2, considerable in-plane anisotropy may be present in these 

compounds and further study is needed to quantify this.  Although these compounds lack the 

striking step-like behavior observed in DyAgSb2, clear upward curvature is observed in 

M(H) at 2 K for H applied perpendicular to the c-axis.  Since all M(H) measurements were 
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performed at 2 K,  the effective temperature increases as the magnetic ordering temperature 

decreases.  Therefore, it is not surprising that any metamagnetic behavior would be thermally 

broadened in the Nd, Ho, and Er compounds where TN is less than 5 K.  On the other hand, 

DyAgSb2 and TbAgSb2 have relatively high ordering temperatures (9 and 11 K, 

respectively).  Considering the higher TN of the Tb compound, it is surprising that the field-

induced transition is so smooth at 2 K. Since the dG factor is representative of the exchange 

energy, it is possible that the stronger exchange in the Tb compound is pushing the 

metamagnetic transitions out of the field range of our magnetometer. 

2.13.4. DeGennes Scaling 

Neglecting crystalline electric field effects, the scaling of the ordering temperatures 

across the RAgSb2 series may be described within the framework of Weiss molecular field 

theory where the magnetic ordering temperature may be approximated by (Noakes, 1982):  

)1()1(
3
2 2 +−= JJgIT JM , 

where I is the exchange interaction parameter and [(gJ-1)2J(J+1)] is the de Gennes factor (dG) 

with J being the total angular momentum of the Hund's rule ground state of the rare earth ion 

and gJ is the Landé g factor. The overall trend of increasing ordering temperature with 

increasing dG factor  [Fig. 4.28(a)] is consistent with the magnetic interaction between the 

local moments of the rare earth ions being an indirect exchange via the conduction electrons, 

the Rudermann-Kittel-Kasuya-Yosida (RKKY) interaction.  However, as seen in Fig. 

4.28(a), significant deviations from linearity are present, suggesting other factors may be 

involved. 
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Fig. 4.28 (a) Magnetic ordering temperature (TN) versus the de Gennes factor [dG = (gJ-
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Deviations from this scaling may occur when a strong CEF constrains the moments to 

either along the c-axis or within the basal plane.  Since for the axial case (B2
0 < 0), the CEF 

constrains Jz to equal J resulting in an enhancement in the ordering temperature, TM, given by 

(Noakes, 1982): 

22
, )1(2 JgIT JaxialM −= , 

resulting in a higher TM for R= Er and Tm. Although the strong CEF splitting may be 

responsible for the higher than expected TN of ErAgSb2, this still can not account for the 

lower than expected TN of GdAgSb2, relative to the compounds with R = Tb, Dy, and Ho. 

HoAgSb2 and DyAgSb2.  

Within the mean field approximation, the Weiss paramagnetic temperature, θp, arises 

from indirect interactions between the local moments.  Therefore, θp may also be expected to 

scale with the strength of these interactions, and hence, the de Gennes factor. This may be 

expressed as (Coqblin, 1977): 

( ) ( 11
4

3 2
22

2*2

+−
Γ

−= JJg
k

mz
k J

F

eff
PB

h

πθ ) , 

where Γeff is the effective interaction between the conduction electrons and local moments 

and also dependent upon both the crystal structure and oscillatory nature of the RKKY 

interaction.  Figure 4.28(b) shows that for the RAgSb2 series of compounds, the 

paramagnetic temperatures fail to scale with the de Gennes factor.  This deviation may 

simply be the result of CEF anisotropy.  More detailed analysis requires the removal of the 

CEF effects through either a detailed study of the CEF in dilute compounds, such as the 

previously mentioned Dy0.07Y0.93AgSb2 measurements, or magnetic measurements on 

polycrystalline samples or powdered single crystals.  
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2.13.5. Resistivity 

Above the magnetic ordering temperatures, the resistivity for the RAgSb2 series of 

compounds is common to other intermetallic compounds.  A positive curvature in the 

resistivity is observed in most of the compounds below 100 K, consistent with a decrease in 

the number of phonons at low temperature.  At higher temperatures, the resistivity becomes 

linear with temperature, suggesting the electron-phonon interaction is the dominant scattering 

mechanism.  Up to the maximum temperature of 300 K, no saturation of the resistivity is 

observed. 

2.13.6. Transverse Magnetoresistance 

The magnitude of the transverse magnetoresistance at 2 K varies widely in the 

RAgSb2 with Δρ(Η=55 kOe)/ρ(0)  ranging from 0.1 in ErAgSb2 to nearly 65 in SmAgSb2.  

The existence of de Haas-van Alphen and Shubnikov-de Haas oscillations at relatively low 

fields and high temperatures, low residual resistivities (typically < 10-6 Ωcm) and large 

magnetoresistances suggest that ωcτ  >> 1 for relatively small fields.  Since, as an 

approximation ωc ≈ eH/m*, the high value for ωcτ is most likely a consequence of very high 

sample purity, which increases the time between electron scatterings, τ, and small electron 

 effective mass.  Since no saturation is observed in the transverse magnetoresistance, for 

either H || c or H ⊥ c, it is likely that the RAgSb2 compounds are at least partially 

compensated, although the existence of open orbits can not be dismissed. 

It is clear from the Kohler plots [Figs. 4.29(a) and (b)] that the transverse 

magnetoresistance of the RAgSb2 series (R=Y, La-Nd, Sm) fails to show a quadratic 

dependence at all applied fields below 55 kOe, with least squares fits giving power law 
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dependencies of the field ranging from Δρ/ρ ∝ H0.94 for LaAgSb2 to Δρ/ρ ∝ H1.6 for 

SmAgSb2.  Furthermore, the slope of the transverse magnetoresistance of each compound in 

the Kohler plots are similar for H || c and H ⊥ c, which indicates approximately the same 

power law dependence for both orientations.  This deviation from quadratic 

magnetoresistance is similar to that observed in the RSb2 compounds, where the exponent for 

the power law fit of Δρ/ρ varied from 1.0 to 1.3 (Bud’ko, 1998).  Although exact knowledge 

of the Fermi surface is required for any detailed discussion of the transverse 

magnetoresistance, a thorough review of possible mechanisms for linear magnetoresistance 

may be found in Bud’ko (1998). 

The low temperature rise in the resistivity in the presence of an applied field along the 

c-axis is a consequence of Kohler’s rule: Δρ(Η,Τ)/ρ(H=0,T) = F(H/ρ0), where F(H/ρ0) is a 

function of H/ρ0 and ρ0=ρ(H=0,T).  This may be rewritten as ρ(H,T)=ρ0F(H/ρ0)+ ρ0.  From 

this, it is clear that as long as the dominant behavior of F(H/ρ0) goes as (H/ρ0)n with n≥1, the 

resistivity in a given applied field will increase as ρ0 decreases.  It is also evident that the 

increase in magnetoresistance becomes particularly pronounced when a loss of spin-disorder 

scattering sharply suppresses ρ0 for T<TN, as observed in compounds with magnetic rare 

earths.  As an example, consider the transverse magnetoresistance of SmAgSb2 [inset, Fig. 

4.14 (b) and Fig. 4.29(a)].  From the 2 K, H || c transverse magnetoresistance data, F(H/ρ0) = 

4.13×10-3(H/ρ0)1.6, with H expressed in kOe.  This expression may then be used to model the 

temperature dependence of the magnetoresistance, assuming Kohler’s rule is valid.  The 

results of this model, with three different values for the applied field, are shown in Fig. 4.30, 

along with the experimental zero field, 16, 40 and 55 kOe resistivities for SmAgSb2 with 
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Fig. 4.30  Resistivity (ρ) as a function of temperature for H || c in SmAgSb2 for H =0 (+),  16 
kOe (Δ), 40 kOe (*) and 55 kOe (•).  The solid lines represent data modeled from Kohler’s 
rule as described in text. 
 
H || c.  The modeled data (solid lines) are in agreement with the experimental values of 

ρ(H,T), indicating that the decrease in magnetoresistance with increasing temperature is a 

consequence of Kohler’s rule.  In addition, this model adequately describes the temperature 

dependence of the magnetoresistance for R = Pr, Nd, Gd-Dy.  In each of these cases the 

magnetoresistance decreases below TN and then becomes larger as the magnetic contribution 

to the scattering decreases, similar to the 16 and 40 kOe data in Fig. 4.30, suggesting that the 

smaller values of ρ(H,T) at low temperatures are consistent with larger amounts of impurity 

scattering and possible differences in the Fermi surface, modifying ωcτ.  
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2.13.7. Transverse Magnetoresistance and Metamagnetic Transitions 

When the magnetic field is applied along the easy axis in compounds containing Dy, Ho, 

and Er, sharp peaks followed by a decrease in the magnetoresistance are superimposed on the 

nearly linear and anisotropic response seen the light rare earth compounds.  This anomalous 

behavior coincides with the critical fields of the metamagnetic transitions when the field is 

applied along the easy axis.  No anomalies are present in the magnetoresistance when the 

field is perpendicular to the easy axis.  This behavior is qualitatively consistent with the 

predictions of Yamada and Takada (1973), although their model assumes the material is 

metallic, antiferromagnetic orders with the moments constrained along the c-axis, and has a 

spherical Fermi surface.  The magnetic properties of their model include weak axial 

anisotropy with a first order spin flop transition at HC1, and a second order transition to a 

saturated paramagnetic state at HC2.  Within this framework, the contribution to the 

magnetoresistance (Δρ/ρ) for  H || (easy axis) is expected to be positive and proportional to 

H2 for H<<HC1, have a local maximum at HC1 and at higher fields become negative and 

proportional to 1/ 1 −CHH .  Qualitative agreement is good for both HoAgSb2 and ErAgSb2, 

where only a single metamagnetic transition is observed.  Agreement with this model suffers 

in DyAgSb2, due to the complicated series of metamagnetic transitions which creates a 

plateau in the resistance between the first and final critical fields.  

2.14. Summary 

Anisotropic magnetization and transport measurements have been performed on most 

of the members of the RAgSb2 series of compounds.  Strong anisotropies due to CEF 

splitting of the Hund’s rule ground state multiplet constrain the local moments to the basal 

 



 118

plane for the whole series, except for ErAgSb2 and TmAgSb2 which are axial.  From the 

inverse susceptibility at high temperatures, estimates of the leading term in the CEF 

Hamiltonian may be determined.  All of the compounds with magnetic rare earth ions 

antiferromagnetically order at low temperatures except for PrAgSb2 (which does not order) 

and CeAgSb2 (which is ferromagnetic.)  From the failure of TN and θP to scale linearly with 

the de Gennes factor, even when CEF effects are considered, it is deduced that the electronic 

structure varies with the choice of rare earth (Taylor, 1972).  This may indicate the existence 

of small pockets of Fermi surface, which would be particularly sensitive to changes in the 

lattice constants with varying rare earth ions.  Finally, the magnetic isotherms reveal 

metamagnetic transitions in most of the compounds, with DyAgSb2 being a particularly 

dramatic example. 

The transverse magnetoresistance at 2 K is found to be very large throughout the 

series, suggesting that the electrons have small effective masses and extraordinarily long 

relaxation times.  This is consistent with the large residual resistivity ratios obtained for most 

of the members, indicating low impurity and dislocation concentrations.  Also appearing in 

the magnetoresistance are anomalies corresponding to the metamagnetic transitions.  Several 

theories have been proposed to account for these. However, their utility is limited, due to lack 

of knowledge of the electronic structure and wave vector of the magnetic ordering.  Clearly, 

neutron and magnetic X-ray diffraction would provide more insight into the magnetic and 

transport properties of these materials.  
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ANGULAR DEPENDENCE OF METAMAGNETIC 
TRANSITIONS IN DyAgSb2

2.15. Introduction 

Recent studies of HoNi2BB2C and other RNi2B2B C compounds have shown that the net 

distribution of magnetic moments in a metamagnetic system may be determined from the 

analysis of the angular dependence of the magnetization and transition fields of the 

metamagnetic states (Canfield 1997a, Canfield 1997b, Kalatsky 1998).  Although no 

information about the wavevector associated with the metamagnetic ordering may be 

obtained, this approach allows a vast amount of information to be gained about the 

metamagnetic phases, without requiring neutron or magnetic x-ray diffraction.  

In HoNi2BB2C, a strong crystalline electric field (CEF) anisotropy constrains the local 

moments to the [110] crystallographic axes, leading to four well-defined metamagnetic states 

with relatively simple angular dependence.  This angular dependence suggests that the net 

distribution of magnetic moments may be described by ↑↓ for H < Hc1, ↑↑↓ for Hc1 < H < 

Hc2, ↑↑→ for Hc2 < H < Hc3, and ↑↑↑ for H > Hc3, where ↑ and → correspond to the 

moment directed either along or perpendicular to the [110] axis nearest to the field and Hci 

are the four angular dependent critical fields.  Recent theoretical work (Kalatsky 1998) has 

analyzed these data within the framework of the “4-position clock model,” where the local 

moments are restricted to either the <110> or <100> sets of axes by a strong CEF anisotropy. 

 

To further understand this type of planar metamagnetism, we have undertaken a 

search for other systems that have rare earth ions in locations with tetragonal point 

symmetry.  Although the RSb2 series with R = Ce, Pr, and Nd is strongly anisotropic and 
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exhibits sharp well-defined metamagnetic states for the field applied within the ab-plane 

(Bud’ko 1998), the crystal structure is weakly orthorhombic (Hullinger 1979, Wang 1967), 

which greatly complicates the analysis of the magnetic structure. In contrast to the RSb2 

series of compounds, RAgSb2 crystallizes in the simple tetragonal ZrCuSi2 structure 

(P4/nmm, # 129) (Brylak 1995, Flandorfer 1996, Sologub 1994) consisting of Sb-RSb-Ag-

RSb-Sb layers with the R3+ in a location with tetragonal point symmetry (4mm).   

Measurements of the magnetization as a function of applied field along high 

symmetry axes in DyAgSb2 revealed a series of 4 sharp steps in the magnetization for the 

field applied within the basal plane, making the compound a potential candidate for further 

study of the angular dependence of metamagnetic states.  

In this paper, we present a study of the angular dependence of the metamagnetic 

transitions of DyAgSb2.  After an overview of the experimental techniques used to grow and 

characterize the samples, results and plausible model of the net distribution of magnetic 

moments will be presented. Finally, the angular dependencies of the critical fields will be 

used to deduce the coupling parameters within the framework of the 4-position clock model. 

2.16. Experimental Methods 

Magnetic measurements were performed in a Quantum Design SQUID magnetometer 

with a specially modified sample holder to rotate the sample, keeping the c-axis 

perpendicular to the field.  A sample mass below 0.5 mg was used to avoid torque on the 

rotator due to the extreme magnetic anisotropy.  To reduce the effects of weighing errors, 

M(H) data were collected on a 10.62 mg sample from the same batch, for H || [100] and  

[110].  The data from the small sample were then normalized to the larger  
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Fig. 5.1 Applied field divided by magnetization (H/M) for H || c (g) H ⊥ c ( ) and 
polycrystalline average (solid line) versus temperature for DyAgSb2.  Inset:  low temperature 
behavior of magnetization divided by field for H || c (g) H ⊥ c ( ), and polycrystalline 
average (solid line).   

 

sample data.  Angular uncertainty in the rotator is estimated to be less than 1°.  Additional 

uncertainty in the sample orientation could arise from a failure to align the c-axis of the 

sample exactly perpendicular to the applied field.  However, due to the construction of the 

sample holder, this misalignment should be no more than 10º.  

2.17. Experimental Results 

2.17.1. Temperature Dependence of the Magnetization 

The inverse susceptibility (Fig. 5.1) of DyAgSb2 illustrates the strong anisotropy, 

with the local Dy moments aligning within the basal plane. Above 100 K, the inverse 
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susceptibilities are linear, allowing fits to the Curie-Weiss law.  The polycrystalline average, 

determined by (2χH⊥c+χH||c)/3, yields an effective moment of 10.3 μB /Dy and a Weiss 

temperature of –10.1 K.  Anisotropic Weiss temperatures are -86.3 K for H || c and 7.1 K for 

H ⊥ c.  The inset to Fig. 5.1 clearly shows that magnetic ordering is present below 9 K, with 

the susceptibility for H ⊥ c rapidly decreasing below 9 K.   

2.17.2. Applied Field Dependence of the Magnetization and Hysteresis 

In order to better understand the nature of the ordering below 9 K, magnetization as a 

function of applied field was measured at 2 K for H parallel to the c-axis and for H parallel to 

[100] and [110], shown in figure 5.2.  For the applied field along the c-axis, the 

magnetization is linear, only reaching about 1.6 μB/Dy at 55 kOe.  However, for the applied 

field in the basal plane, four well-defined metamagnetic states and the low-field 

antiferromagnetic state are observed, with the transition fields and the plateau magnetizations 

varying strongly with the angle of the applied field. At 55 kOe, M for H || [110] is slightly 

less than 10 μB/Dy while for H || [100] M is approximately 7.2 μB/Dy.  This is consistent with 

the easy magnetic axis being along the <110> directions.  In addition, some of the field-

induced magnetic transitions exhibit field up/field down hysteresis.  In particular, the higher 

field knee-like states (M3 and M6) persist for a greater range of fields as the magnitude of the 

applied field is decreased.  

2.17.3. The Stability of the Knee-Like States 

Although the range of stability of the knee-like states M1, M3, M4 and M6 is quite 

small, the fact that they exist in both the field up and field down data leads to the 
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Fig. 5.2  M(H, T= 2 K) for increasing and decreasing field for the field applied along [001] 
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Fig. 5.3 Detail of M(H) for H || [110] for the M1 state. Solid line is M(H) at 2 K zero-field 
cooled, Open circles ( ) are for zero-field cooled magnetic isotherm up to 19.7 kOe. Squares 
(g) are magnetic isotherm for the sample cooled to 2 K from 12 K in a 19.7 kOe field. Note: 
the plateau at 19.7 kOe is stabilized by field cooling. Inset: M(T) in 19.7 kOe for increasing  
( ) and decreasing temperature (g). 
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conclusion that they are stable states rather than just metastable, transitional states.  As a 

further test of the stability of these metamagnetic phases, the following experiment was 

performed.  After cooling to 2 K in zero field, M(H) for H || [110] was measured with 

increasing field up to 19.7 kOe, entering the knee-like M1 plateau, as shown in Fig. 5.3.  

Maintaining 19.7 kOe, the temperature was then increased up to 12 K, well above the 

ordering temperature of 9.5 K, and then decreased back to 2 K (Inset Fig. 5.3)  Finally, M(H) 

was measured for fields greater than 19.7 kOe.    These data are consistent with M1 being 

thermodynamically stable for this applied field, since the moments would have minimized 

the energy after the “anneal,” by settling into the lowest energy state for the given magnitude 

and orientation of the magnetic field.  By analogy, it is assumed that the M3, M4 and M6 are 

also stable states. 

2.17.4. Temperature-Applied Field Phase Diagrams 

Figures 5.4 (a) and (b) show the temperature-applied field phase diagrams for H 

parallel to [110] and [100], respectively. The points were determined from the local maxima 

in dM/dH (shown by ) from M(H) field-increasing scans at selected temperatures and 

dM/dT (shown by g) from M(T) scans at selected fields.  Both phase diagrams are 

qualitatively similar at low temperatures, with the knee-like phases M1, M3, M4, and M6 

persisting up to approximately 6 K, and the other metamagnetic states persisting up to about 

8 K.  However, an additional phase boundary is evident between 9.5 and 11 K in the H || 

[100] phase diagram, separating the M7 metamagnetic state and the paramagnetic region.  

The lack of this upper transition in the H || [110] phase diagram, combined with the fact that 

M(55 kOe) ≈ 10μB/Dy, suggests that the high-field, low temperature state may simply be a 

saturated paramagnet state. 
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Fig. 5.4 Applied Field-Temperature phase diagrams for (a) H || [110]  (b) H || [100]. Points 
are determined from M(T) (g) and M(H) ( ). 
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2.17.5. Planar Anisotropy and Magnetization Versus Angle  

To study the angular dependence of the metamagnetic states, it is important to  first 

determine the single ion anisotropy associated with the CEF splitting of the Hund’s rule 

ground state J-multiplet.  To measure this, crystals of YAgSb2 were grown with a small 

amount of Dy introduced into the melt.  From the Curie-Weiss effective moment and the 

saturated magnetic moment, the crystals were determined to be Dy0.07Y0.93AgSb2. 

Magnetization versus angle measurements in a 55 kOe field at 2 K for both DyAgSb2 and 

Dy0.07Y0.93AgSb2 (Fig 5.5) show that the dilute case closely follows a M ∝ cos(θ) 

dependence (shown by solid line).  Since only the component of the magnetization parallel to  
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Fig. 5.5  M(θ) at H=55 kOe for DyAgSb2 ( ) and Dy0.07Y0.93AgSb2 (g).  Solid line is 
Msat=10μB cos(θ). 
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the field is measured, this is consistent with the local Dy3+ moments being constrained to the 

nearest easy, [110], axis within the basal plane. Although 4-fold symmetry is also observed 

in the M(θ) scans of DyAgSb2, large deviations from M ∝ cos(θ) are readily apparent, where 

interactions between local moments (deviations from cos(θ) ) and hysteresis (asymmetry of 

M(θ) curves) affect the magnetization. These data are consistent with a number of 

metamagnetic states crossing 55 kOe at different angles. 

2.17.6. Magnetization as a Function of Applied Field and Angle 

Magnetization isotherms are shown in Figs. 5.6 (a-c) for a series of angles relative to 

the easy [110] axis, divided into three angular regions for clarity.  In region I (θ < 10º), five 

different states are observed. Below 19 kOe, the compound orders in the antiferromagnetic 

state (AF).  As the field increases, a small knee-like state (M1) is followed by a well-defined 

plateau (M2) with a saturated moment near 5 μB/Dy.  Above 38 kOe, another knee-like state 

(M

B

3) is followed by a final plateau, corresponding to the 

saturated paramagnetic (SP) state with a moment close to the full saturated moment, gJJμB, of 

the Hund’s rule ground state of 10 μB/Dy.  

For angles between 10º and 25º (Region II), the magnetization isotherms become 

more complex, with as many as 7 metamagnetic states appearing, depending on the angle of 

the applied field.  Many of these states are present for limited field and angular ranges, 

sometimes only appearing as inflection points with no clear plateaus in the magnetization. 

(M5 and M7) each preceded by a knee-like step (M4 and M6).  In this case, however, the 
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When the angle increases above 25º (Region III), the magnetization isotherms 

become similar to region I, with the low field antiferromagnetic state (AF) and 2 large steps  

maximum value for the magnetization in the highest field state (M7) approaches only about 

7.2 μB /Dy as seen in Fig. 5.6(c). 

From the magnetization isotherms [Figs. 5.6 (a-c)], the critical fields (Hc) and 

saturation magnetizations (Msat) may be determined for each state as a function of angle, 

shown in Figs. 5.7(a) and (b), respectively. When possible, the saturated magnetic moment 

(Msat) was determined by the magnetization, M(H), midway between the bordering transition 

fields (shown by • in the figure). For the highest field states, Msat was simply determined by 

the magnetization at the highest field attained (55 kOe).  

The critical fields, determined from local maxima in dM/dH, are shown in Fig. 5.7 

(b). For transitions at angles between 12º and 25º, the peaks in dM/dH were frequently broad 

and poorly defined, particularly for the higher field states.  Consequently, no meaningful 

direct fit to an angular function could be made (see below).  

From the magnetization isotherms shown in Figs. 5.6(a-c) and the angular 

dependence of the critical fields and saturated moments [Figs. 5.7(a) and (b)], it is natural to 

divide the analysis into three regions.  Within region I, the critical fields of the four states (2 

large steps, and 2 knees) are a minimum at θ = 0º and increase slightly as the angle increases.  

The solid lines in this region are fits to Hc(θ) = Hc/cos(θ) with HcAF,1 = 19.4, Hc1,2 =  20.6, 

Hc2,3 = 37.8, and Hc3,4 = 39.4 kOe, where HcAF,1 denotes the critical field between the AF and 

M1 states. The saturated moments of these states are all a maximum at 0º and decrease 
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Fig. 5.7  Angular dependence of (a) saturated moment (Msat) and (b) critical field (Hc) using 
criteria described in text.  Solid lines are fits to the data. 
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as the angle increases.  The solid lines in the figure show fits to Msat = Msatcos(θ) with Msat1 = 

1.0, Msat2 = 5.0, Msat3 = 5.8, and Msat4 = 10.0 μB/Dy. 

In Region III, the critical fields of the 4 transitions are all minimized at 45º.  Fits 

(shown by solid line) show that Hc(θ) = Hc/cos(45º-θ) with HcAF,4 = 18.4, Hc4,5 =  20.9, Hc5,6 

= 24.8,  and Hc6,7 = 25.7 kOe.  Likewise the saturated moments are maximized at 45º and 

vary as Msatcos(45º-θ) with Msat4 = 2.6, Msat5 = 3.5, Msat6 = 4.5,  and Msat7 =  7.2μB/Dy. 

2.18. Experimental Data Analysis 

2.18.1. Angular Dependence of Saturated Magnetization 

Despite the complexity of the metamagnetism presented in this system, it is possible 

to create a consistent model of the net distribution of the magnetic moments.  To facilitate 

this, we introduce the 4-position clock model (Kalatsky 1998).   This model arises from a 

strong CEF anisotropy restricting the local moments to lie along one of four 

crystallographically similar orientations within the basal plane given by ↑, ←, ↓, →, or 

angles relative to the nearest easy <110> axis (0, 90, 180, or 270º).  

Within this model, the net distribution of the local moments may be determined from 

the angular dependence of the critical fields and saturated moments of the metamagnetic 

states (Canfield 1997a).  Since the magnetometer measures only the projection of the 

magnetic moment along the applied field, the angular dependence of the magnetization of an 

arbitrary state is given simply by: 

∑ −=
i

iSat N
MM )cos()( φθθ , 

where θ is a continuous variable expressing the orientation of the applied field and φi  is a 

discrete variable denoting the orientation of the ith moment relative to the easy axis, free to 
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take values of 0, 90, 180, or 270º.  N is the number of moments needed to describe the state, 

and M is the saturated moment of the free Dy3+ ion in the CEF split ground state. Therefore, 

when Msat(θ) ∝ cos(θ), all of the moments are aligned parallel to the closest easy axis or are 

cancelled out by  antiparallel  moments (e.g. ↑↑↑↓ or ↑↑↑↑). However, when Msat ∝ 

cos(45º-θ), an equal number of moments are directed along the two nearest easy orientations 

with the rest of the moments canceling each other (e.g. ↑↓↑→,  ↑→) since, cos(θ) + cos(90º-

θ) = 2 cos(45º-θ). It should be noted that it is impossible to determine from magnetic 

measurements whether canceling antiparallel pairs of moments consist of ↑↓ or ←→.  For 

simplicity, ↑↓ will be used to denote a pair of canceling moments. 

Regions of the data in Fig. 5.5 are consistent with the two extremes described above.  

For the isolated Dy ion in the Dy0.07Y0.93AgSb2 pseudoternary the moment is always along 

the nearest easy [110] axis.  For the concentrated DyAgSb2, in which the Dy moments are 

ordered at low temperature, for –15º < θ < 15º the moments have a behavior consistent with 

the saturated paramagnetic state.  On the other hand, for 30º < θ < 60º, M(θ) follows cos(θ-

45º), consistent with an ordered structure with a net distribution of moments ↑→. 

2.18.2. Angular Dependence of Critical Fields 

An equally simple argument may be used to determine the angular dependence of the 

critical fields. Since the energy due to a moment in a magnetic field is just H•M, the 

difference in energy to due to application of magnetic field between two different 

metamagnetic states (consisting of N1 moments with orientations φi1 and N2 moments with 

orientations  φi2 ) is simply:   
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If a critical energy (ECrit) exists which must be exceeded to induce the next higher 

metamagnetic state, then the critical field will be given by: 
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In principle, ECrit may be taken as a constant for a given transition since it depends only on 

the differences in the coupling between the two metamagnetic states. Therefore, the angular 

dependence of the critical fields may be used to gain insight into the net distribution of 

moments of the metamagnetic phases without a priori knowledge of the details of the 

ordering.   For example, the critical field for a transition from ↑↓ (AF) to ↑↓↑↑ (M2) (i.e. a 

flip of one spin from ↓ to ↑) will be proportional to 1/cos(θ) while a transition from ↑↓ (AF) 

to ↑↓↑→ (M5) (i.e. a flip of one spin from ↓ to →) will be proportional to 1/cos(45º-θ). 

2.18.3. Determination of the Net Distributions of Moments  

It is now possible to assign net distribution of moments for each of the metamagnetic 

states.  For the two large plateaus within region I (M2 and SP), the saturated moment as a 

function of angle closely follows Msatcos(θ), suggesting that all of the moments are either 

canceled by an antiparallel moment (↑↓) or lie along the nearest axis to the field (↑).  Since 

the magnetization for state SP corresponds to the saturated moment for Dy3+, all of the 

moments must be parallel giving a net distribution of moments of ↑.   The saturated moment 

of M2 is near 5 μB/Dy, consistent with half of the moments canceling and half aligned parallel 

to 0º giving ↑↓↑↑.  Since the two knee-like states (M1 an M3) are stable for a very limited 
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range of fields, an accurate determination of the saturated moment is difficult.  However, Fig 

5.7(a) shows the angular dependence of Msat for these states is consistent with Msatcos(θ) 

with Msat1 ≈ 1.0 μB/Dy and Msat3 ≈ 5.8 μB/Dy.  From these estimates, a possible net 

distribution of moments for M1 is ↑↑↓↑↓↑↓↑↓, although other distributions with a larger 

number of moments can not be dismissed.  Likewise, the magnetization of M3 corresponds to 

↑↑↑↑↓.  The angular dependence of the critical fields within region I is consistent with the 

net distribution of moments for these four states since for all of the transitions, Hc(θ) ∝ Hc 

cos(θ), which is expected for a moment (or multiple moments) flipping from ↓ to ↑. 

In region III, the analysis is similarly straightforward.  For all of the states,  Msat(θ) ∝ 

Msatcos(45º-θ) and Hc(θ) ∝ Hc/cos(45º-θ).   This behavior is consistent with an equal number 

of unpaired moments parallel and perpendicular to the nearest easy axis (↑→).  Starting with 

M7, we see that maximum magnetization is about 7.2 μB/Dy, corresponding to ↑→, since 7.2 

μB/Dy ≈ 10 μB/Dy cos(45º). Likewise, the plateau magnetization of M5 is 3.5 μB/Dy, close to 

half of M7, indicating that half of the moments cancel, yielding a net distribution of moments 

of ↑↓↑→.  Analysis of the two knee-like states within this region, M4 and M6, also show 

similar angular behavior.  From the magnetization of these states, possible net distributions 

of moments are consistent with ↑↓↑↓↑→ for M4 and ↑→↑→↑↓ for M6.  The angular 

dependencies of the critical fields corroborate these assignments, since Hc(θ) ∝ Hc/cos(45º-θ) 

for a change from ↓ to →.   

Now that a plausible model for the states in regions I and III has been presented, we 

can turn the analysis to region II.  Within this region (Fig. 5.7), many states exist for 

extremely limited range of fields and angles, greatly complicating the analysis.  Furthermore, 
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two new states appear at high fields, M8 and M9. This situation is simplified if a polar plot of 

the critical fields is made (Fig 5.8).  From the polar plot, it becomes clear that many of the 

transitions observed in region II arise from the M(H) scan crossing a corner of a larger region 

of phase space, as shown by the line representing the M(H) scan at 18.5º.  In the polar plot, 

the angular dependencies of all of the transitions becomes clear, particularly critical fields 

involving the two states existing only in region II. As seen in Fig 5.8, four types of transitions 

are observed, each possessing linear phase boundaries, but with slopes in the polar plot of 

either 0, ∞, +1, or -1.  Since the general equation of a straight line (with slope m and y-

intercept b) on a polar plot is given by R(θ)=b/(sinθ + m cosθ), the angular dependence of Hc 

may easily be deduced from the polar plot.  Within the lower right half of the phase diagram, 

the slopes, angular dependencies, and change in net distribution of moments are given by:  

 

m = 0   Hc(θ) ∝ Hc/sinθ  ← to → 
m = ∞   Hc(θ) ∝ Hc/cosθ           ↓ to ↑ 
m = +1   Hc(θ) ∝ Hc/sin(45º-θ)  → to ↑  
m = -1    Hc(θ) ∝ Hc/cos(45º-θ)  ↓ to → 
 
 
This is consistent with the transitions previously discussed.  Furthermore, since HC7,8 

(the critical field between states M7 and M8), HC8,9, and HC9,SP all exhibit slopes of near unity 

in the polar plot, these transitions correspond to flips of one moment from → to ↑.  It should 

also be noted that deviations from linearity or a slope deviating from the aforementioned 

ones may indicate more complex transitions. 

With the net distributions of moments of M7 known to be ↑→ and SP known to be ↑, 

it follows that M8 and M9 will then consist only of a number of ↑ moments and a smaller 
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Fig. 5.8 Polar plot of the critical fields (Hc) with the metamagnetic phases labeled. Labels 1-4 
represent the critical points used in the determination of the coupling constants as described 
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Fig. 5.9 Detail of M(H) for θ = 18.5º showing the magnetization of the M8 and M9 states. 
Lines represent calculated magnetization for the possible net distributions of moments (given 
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number of → moments. The next step then is to determine this distribution. Unfortunately, 

considerably larger slopes are present in the magnetizations of the M8 and M9 states, making 

an accurate determination of the saturated moment difficult. Figure 5.9 shows an expansion 

of a selected M(H) scan in this region with the calculated magnetization of some of the 

possible distributions of moments.  If the midpoint of the magnetization plateau, between the 

neighboring critical fields, is used, the magnetization suggests that the net distribution of 

moments of M8 and M9 are likely given by ↑↑→ and ↑↑↑↑→, respectively.   However, other 

distributions containing larger numbers of moments can not be ruled out.  

2.18.4. Determination of Coupling Constants 

A more detailed investigation into the nature of the magnetic order for each of the 

metamagnetic phases is possible, now that a consistent model for the net distribution of 

moments for each state has been determined.  Within the “4-position clock model,” the 

Hamiltonian an arbitrary magnetic state, Φ, consisting of moments φi may be obtained by an 

extension of the anisotropic next-nearest neighbor Ising (ANNNI) model, to include four 

possible directions instead of two and interactions with more than next-nearest neighbors. 

We introduce the general spin-chain Hamiltonian with interactions between all spins: 

( ) [ ] ∑∑∑ ∑
∞

−∞=

∞

−∞=

∞

=

∞

−∞=
++ −−−+−=Φ

i
iy

i
ix

n i
niinniin hhLK φφφφφφ sincos)(2cos)cos(

1
H . 

where Kn and Ln are coupling constants, φi represents the angular orientation of the moment 

(constrained to only 0, 90, 180, or 270º by the CEF) of ion i, and hx and hy are the x and y-

components of the applied field, respectively. As written, the Hamiltonian includes all spins, 

since the summation on n runs from 1 to infinity.  With up to 3rd nearest neighbor 

interactions, stable phases are calculated with periods up to 6 moments, with Table 2 listing 
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the energies of some of these metamagnetic states.  For the transition from metamagnetic 

state Φ1 to Φ2, the critical field may then be given by: 

[ ] [{ }
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where the numerator is the energy that must be overcome, Ecrit, to stabilize the new state,  as 

discussed previously.   

Once the net distribution of moments for each state is determined, summarized in 

Table 5.1 it is possible to calculate the coupling coefficients, Kn and Ln, in the Hamiltonian. 

To do this, it is helpful to return to the polar plot of Hc (Fig. 5.8). Here, the angular 

dependencies are more readily seen, especially for the intermediate angles (Region II). The 

following series of equalities and an inequality may also be acquired from the triple points in 

the phase diagram, labeled 1-4 in the lower right half of the diagram.  

h1x = 2(K1 - K2 + K3) = 20 kOe  h1y = -4(L1 + L2 + L3) = 7 kOe 
h2x = 2(K1 + K3) + 4L2 = 24 kOe  h2y = 2K2 – 4(L1 + L3) = 11 kOe 
h3x = 2(K1 + K3) - 4L2 = 34 kOe  h3y = h2y
h4x = 2(K1 + K2 + K3) = 38 kOe  h4y = h1y
 
In addition, since the ↑↑↓ state does not appear in the phase diagram, its energy must 

be greater than that for the ↑↑↑↓ state.  Therefore, (-K1/3 – K2/3+K3 +L1+L2 +L3-hx/3) > (L1 

+ L2 + L3 – hx/2), gives 3K3 > K1 + K2 –½ h1x.  Finally, since the antiferromagnetic ordering 

is observed for zero field, K1 must be positive. 

Solving these equations yields the following coupling constants: 

K1 = 12.25 kOe    L1 = -0.5 kOe 
K2 = 4.5 kOe     L2 = -1.25 kOe 
K3 = 2.25 kOe     L3 = 0 kOe  
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TABLE 5.1.   Net distributions of moments for 
all of the observed metamagnetic states and the 
measured angular dependence of the saturated 
moment for each state. 

 
State Net Moments Msat(θ) (μB) 
AF ↑↓↑↓ 0 
F ↑↑↑↑ 10.0 cos(θ) 
M1 ↑↓↑↓↑↓↑↓↑↓↑ 1.0 cos(θ) 
M2 ↑↓↑↑ 5.0 cos(θ) 
M3 ↑↓↑↑↑ 5.8 cos(θ) 
M4 ↑↓↑↓↑→ 2.6 cos(θ-45º) 
M5 ↑↓↑→ 3.5 cos(θ-45º) 
M6 ↑↓↑→↑→ 4.5 cos(θ-45º) 
M7 ↑→↑→ 7.2 cos(θ-45º) 
M8 ↑↑↑→ 7.0 ± 0.3 
M9 ↑↑↑↑→ 7.8 ± 0.3 

 
 
 
 

TABLE 5.2.  Energies of metamagnetic states. 
 
 

State Energy of the state 
AF (↑↓) -K1 + K2 - K3 + L1 + L2 + L3

SP (↑) K1 + K2 + K3 + L1 + L2 + L3 - hx

↑→ K2 - L1 + L2 - L3 - ½ (hx +hy)  
↑↑↓ -(K1 + K2)/3 + K3 + L1 + L2 + L3 – hx/3 
↑↑→ (K1 + K2 + 3K3 - L1 - L2 + 3L3 - 2hx - hy)/3 
↑↑↑↓ L1 + L2 + L3 - hx/2 
↑↑↑→ (K1 + K2 + K3)/2 – (3hx + hy)/4 
↑↑↓→ -K2/2 – (hx + hy)/4 
↑↓↑→ -(K1 - K2 + K3)/2 – (hx + hy)/4 
↑↑↑↑↓ (K1 + K2 + K3)/5 + L1 + L2 + L3 – 3hx/5 
↑↑↓↑↓ -(3K1- K2 - K3)/5 + L1 + L2 + L3 – hx/5 
↑↑→↑→ (K1 + 3K2 + 3K3 – 3L1 + L2 + L3 –3hx –2hy)/5 
↑↑↑↑↑↓ (K1 + K2 + K3)/3 + L1 + L2 + L3 – 2hx/3 
↑↓↑→←→ -(2K1 - K2 - L1 + L2)/3 – L3 – (hx + hy)/6 
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2.18.5. Theoretical Phase Diagram 

Figure 5.10 shows the main features of the phase diagram calculated with these 

coupling constants is in good qualitative agreement with the measured phase diagram. 

However, the longer period phases (M1, M3, M4, M6, and M9) are absent. In order to obtain 

the phases with a period greater than 6 moments, one has to include further (n > 3) 

interactions in the spin-chain Hamiltonian, greatly complicating the analysis.  It may also be 

possible to use a more realistic Hamiltonian such as in (Pokrovskii, 1982), where coupling 

between the 2n-1 and 2n neighbors arise in the nth term of the high-temperature expansion of 

the free energy.  In principle, the introduction of this longer-range coupling may significantly 
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Fig. 5.10  Phase diagram determined from calculated coupling constants.  Arrows represent 
net distributions of moments for each of the metamagnetic states and point in the actual 
direction of the magnetic moment.  
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perturb the entire calculated phase diagram, providing the energies are large enough.  

However, observations of the stability of the calculated phase diagram suggest that the 

longer-range interactions are quite small.  For instance, taking K4 = 0.25 kOe introduces the 

M1 phase (↑↓↑↓↑↓↑↓↑↓↑) into the calculated phase diagram, with subsequent shifts of the 

other coupling constants by the same order of magnitude as K4.  These shifts are an order of 

magnitude smaller than the original values for the coupling constants, and will only affect the 

regions in the phase diagram near the present phase boundaries, keeping the main features of 

the diagram intact. Therefore, for the sake of simplicity we have refrained from considering 

higher order interactions. 

2.19. Conclusion 

We have shown that the CEF splitting of the Hund’s rule ground state creates a strong 

anisotropy where the magnetic moment of the Dy3+ ions is constrained to one of the <110> 

orientations within the basal plane.  Interactions between the Dy3+ ions create a rich system 

where up to 11 different metamagnetic states become energetically favorable, depending on 

the magnitude and direction of the applied magnetic field.  From the angular dependence of 

the saturated moments of each state and the critical fields between the states, net distributions 

of moments may be deduced. Finally, within an extension of the ANNNI model, the “4-

position clock model,” the coupling constants in the Hamiltonian may be calculated from the 

triple points in the phase diagram.   

Future work including high field magnetic measurements and neutron scattering 

would be useful to determine the strength of the CEF anisotropy and wave vectors associated 

with each of the metamagnetic states.  
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DE HAAS-VAN ALPHEN AND SHUBNIKOV-DE HAAS 
OSCILLATIONS IN RAgSb2 (R = Y, La, Pr, Nd, Sm) 

 
Introduction 

Although the magnetic and transport properties of the tetragonal RAgSb2 compounds 

have been carefully studied, very little is known of the electronic structure.  The observation 

of quantum oscillations in the magnetization and resistivity allows a first investigation of the 

Fermi surface.  The frequencies of these oscillations reveal the area of extremal cross 

sections of the Fermi surface.  Careful study of the angular dependence of the frequency may 

be used to determine the shape of the Fermi surface.  Finally, the effective masses of the 

electrons may be determined from the temperature dependence of the amplitudes of the 

oscillations.  

After a brief presentation of the experimental methods specific to the investigation of 

the quantum oscillations, data will be presented on the frequency spectra of de Haas-van 

Alphen and Shubnikov-de Haas oscillations in the RAgSb2 series for R=Y, La, Pr, Nd, and 

Sm.  The calculated Fermi surface will be used to discuss the origin of the various observed 

frequencies and their angular dependence.  Finally, the temperature dependence of the 

oscillations will be used as a probe of the effects of magnetic order on the electronic structure 

of the compounds. 

Experimental Details 

The magnetization measurements were performed in a Quantum Design SQUID 

magnetometer up to 55 kG, with the samples manually aligned.  Samples were carefully 

chosen on the basis of size and geometry and to minimize the effects of any residual flux on 
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the surface.  Angular dependent torque measurements were performed in a Quantum Design 

Physical Property Measurement System (PPMS) up to 90 kG, using the torque magnetometer 

and horizontal rotator options.  Uncertainty in the angular position is estimated to be less than 

one degree.  Due to the larger magnetic moments and strong anisotropies in NdAgSb2 and 

PrAgSb2 (Chapter 4), these samples were unsuitable for measurements in the PPMS. 

Resistivity measurements used the temperature-field environment of the 

magnetometer, with a Linear Research LR-400 AC resistance bridge.  A wire saw was used 

to cut the crystals into suitable geometry for resistance measurements with typical 

dimensions of 1 x 1 x 5 mm.  Contacts were attached with Epotek-H20E silver epoxy, 

yielding typical contact resistances of about 1 Ω. 

In all cases, the quantum oscillations were separated from the background 

magnetization or magnetoresistance by subtracting either a power law or a polynomial fit of 

the M(H), τ(H), or ρ(H) data.  Microcal Origin was used to create the Fast Fourier transforms 

(FFT) of the data, after the background was subtracted.  When possible, the data were 

acquired with varying applied field intervals such that the intervals in H-1 were constant.  

When this is not possible, such as the measurements in the PPMS, an interpolation routine 

was used to generate constant H-1 intervals.  The number of points used in interpolation 

method was adjusted to check for any artifacts appearing in the FFT.  

Data and Analysis 

YAgSb2 

Exceptionally clear oscillations are observed in the applied field-dependent torque of 

YAgSb2 at 2 K, shown in Figure 6.1.  The inset to Fig. 6.1 provides a detailed view of the 

torque as a function of inverse field between 66.7 and 90 kOe.  The two frequencies clearly 
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observed in the torque data correspond to strong peaks in the Fourier spectra [Fig. 6.2 (a)] at 

0.86 MG (β) and 10.04 MG (δ).  Smaller signals are also present at frequencies of 0.65 MG 

(α) and 1.82 MG (γ). 

The temperature (T) dependence of the amplitudes (A) of these frequencies, shown in the 

inset of Fig 6.2 (a), may be used to determine the effective mass of the orbits via the 

Liftshitz-Kosevich (LK) formula, as described in Chapter 3.  From the slope of ln(A/T) 

plotted as a function of temperature, the effective masses were found to be mβ =  0.16 ± 0.02 

m0, mγ =  0.28 ± 0.02 m0, and mδ =  0.46±0.02 m0, where m0 is the bare electron mass. 
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Fig. 6.1 Torque as a function of applied field in YAgSb2 at 2 K for H || c.  Inset: detailed 
view of the torque as a function of H-1 between 60 and 90 kG.  
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Fig. 6.2  (a) Fourier spectrum of the oscillations in YAgSb2 for H || c at 2 K, Inset: 
Temperature dependence of the amplitudes of the observed oscillations. (b) angular 
dependence of the frequencies.  θ is relative to the c-axis. The lines are fits to the cross 
sectional areas of a cylinder (β and δ) and an ellipsoid (α and γ). 
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An estimate of the topology of the Fermi surface may be obtained from the angular 

dependence of the frequencies of each quantum oscillation.  As seen in Fig.6.2(b), the 

frequencies of the α and γ orbits do not diverge with increasing angle and may be fit to the 

angular dependence of the cross section of an ellipsoid.  On the other hand, the frequencies of 

the β and δ orbits appear to diverge with increasing angle and  may be fit to the angular 

dependence of the cross sectional area of a cylinder.  In all cases, the frequencies, and hence 

cross sectional areas, are a minimum when the applied field is parallel to the c-axis of the 

sample. 

LaAgSb2

The torque as a function of applied field of LaAgSb2 at 2 K and H || c is shown in Fig. 

6.3 with the a detailed view of the oscillations at high fields, as a function of inverse field, 

displayed in the inset.  Although this plot is more complicated than that observed in YAgSb2, 

the frequencies of these oscillations are clearly resolved in the FFT  [Fig. 6.4(a)].  Large 

peaks are present in the spectra at 1.64 MG (β), 4.32 MG (γ) and 12.9 MG (δ).  In addition, 

weak peaks in the FFT indicate the presence of oscillations with frequencies of 0.72 MG (α), 

3.22 MG (2β), 4.94 MG (3α), and 15.69 MG.  

The effective masses, calculated from the temperature dependence of the amplitude of the 

oscillation [inset Fig. 6.4(a)], are mβ = 0.16 ± 0.02 m0, m2β =  0.32 ± 0.02 m0, mγ =  0.28 ± 

0.02 m0, and mδ =  0.42±0.02 m0.  Since the frequency and effective mass of the 2β orbit are 

twice that of the β orbit, it is concluded that the 2β is the first harmonic of the β orbit.  

Likewise, the frequency of the 3β orbit suggests that it is the third harmonic of β. 
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Fig. 6.3  Torque as a function of applied field in LaAgSb2 at 2 K for H || c.  Inset: detailed 
view of the torque as a function of H-1 between 60 and 90 kG.  
 

 

The angular dependence of the frequencies of the oscillations in LaAgSb2 [Fig. 

6.4(b)] is similar to that observed in YAgSb2.  The frequency corresponding to each of the 

orbits is minimal for H || c and increases as the angle increases.  The angular dependencies of 

the β and the δ family of orbits suggest the topologies of these parts of the Fermi surface are 

primarily ellipsoidal with the major axis parallel to the c-axis.  The angular dependence of 

the 2β and 3β orbits is consistent with harmonics of the β orbit. On the other hand, the γ orbit 

diverges more rapidly as the angle approaches 90º, suggesting a cylindrically shaped section 

of Fermi surface. 
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Fig. 6.4 (a) Fourier spectrum of the oscillations in the torque and magnetization of LaAgSb2 
for H || c at 2 K, Inset: Temperature dependence of the amplitudes of the observed 
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PrAgSb2

For H || c at 2 K, de-Haas-van Alphen oscillations were observed, superimposed on 

the nearly linear magnetic background of PrAgSb2.  Due to the much larger response of the 

magnetic moments to the applied field, the signal to noise ratio of the dHvA oscillations 

suffers in this compound.  Despite this significant magnetic background, Fourier analysis of 

the M(1/H) data (inset, Fig. 6.5) reveals 3 peaks in the spectrum (Fig. 6.5): a strong peak (α) 

at 0.46 MG, and weak peaks at 0.92 MG (2α) and 1.38 MG (β).  The peak in the FFT below 

the α peak is an artifact of the background subtraction and depends strongly on the method 

used to remove the contribution from the magnetic sublattice (Fig. 4.10).  Since the 

frequencies of the 2α and β peaks are twice and three times the frequency of the α  
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Fig 6.5 Fourier spectrum of de Haas van Alphen oscillations in PrAgSb2.  Inset: 
Magnetization as a function of H-1 after the removal of the magnetic background. 
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oscillation, these are possibly harmonics of α.  However the amplitude of β is larger than 2α, 

indicating this may be due to the observation of a different part of the Fermi surface.  

Unfortunately, the magnitudes of the oscillations are insufficient for a detailed analysis of the 

temperature dependence of the amplitudes or the angular dependence of the frequencies.  

Either of these methods would help to resolve the ambiguity of the β component.  

NdAgSb2

The oscillations observed in NdAgSb2 are of the same order of magnitude to those 

observed in PrAgSb2 with an approximate amplitude of 10-3 μB per formula unit at fields near 

50 kG.  However, the background magnetization at 2 K for H || c is only about 20% of that 

observed in PrAgSb2, creating a more favorable signal to noise ratio.  The oscillations are 

readily observed in M(1/H) (inset Fig. 6.6).  Two peaks are visible in the Fourier spectrum 

(Fig. 6.6) indicating the presence of frequencies at 0.56 MG (α) and 1.13 MG (2α).  The  
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Fig 6.6 Fourier spectrum of de Haas van Alphen oscillations in NdAgSb2.  Inset: 
Magnetization as a function of H-1 after the subtraction of the magnetic background.  
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small maximum in the FFT at very low frequencies changes according to the method of 

background subtraction and therefore is not likely to originate from a quantum oscillation.  

The oscillations were of sufficient amplitude to allow an estimation of the effective masses of 

the electronic bands, through the temperature dependence.  Fitting the data to the LK 

equation yields an effective of the α orbit of 0.07±0.02 m0.  The effective mass of the 2α 

peak was found to be 0.17±0.02 m0, which is twice the effective mass of α within 

experimental uncertainty. 

SmAgSb2

SmAgSb2 is an ideal compound to study the effects of antiferromagnetic ordering on the 

Fermi surface.  The magnetic ordering temperature is large enough (TN = 8.8 K) to allow 

detailed study of the frequencies and their amplitudes in the ordered state.  Oscillations are 

also observed well above TN, which permits the comparison with the low temperature data.  

Furthermore, the single crystals of SmAgSb2 have the smallest residual resistivity of the 

RAgSb2 series, and hence, would be expected to demonstrate quantum oscillations with the 

largest amplitude.  Figure 6.7 (a) shows these oscillations in the magnetization for H || c 

persisting up to temperatures of 20 K.  Oscillations in the resistivity are also clearly resolved 

after the subtraction of the background, as seen in Fig. 6.7 (b).    

The spectrum of oscillations observed in SmAgSb2 for H || c at 2 K [Fig. 6.8(a)] is 

much more complicated than those observed in the other members of the series.  In the 

torque data up to 90 kG [inset, Fig. 6.8 (a)], strong peaks are present at 0.54 MG (α), 0.87 

MG (β), and 2.05 MG (ε).  Much weaker peaks in the torque data exist at 0.13MG (θ), 1.62 

MG (2β), 2.76 MG (2β), 3.53 MG (4β), 4.14 (2ε), 6.17 MG (ζ), 8.97 (η), and 10.13 MG (δ). 
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oscillations are still readily visible at 20 K and the magnetic background is consistent with 
the temperature dependent magnetization in Fig. 4.14 (a).  (b) Resistivity as a function of 
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The Fourier spectra of the magnetization and resistivity data up to 55 kG are similar to the 

FFT of the torque data.  However, the ε oscillation is significantly suppressed relative to the 

other oscillations, in both M(H) and ρ(H), and the α oscillation is weak in ρ(H).  The η and δ 

orbits are not visible in the FFT of either ρ(H) or M(H), probably due to the lower maximum 

field attainable in the MPMS. 

The observation of additional oscillations in SmAgSb2 may be the result of two 

different factors.  First, the residual resistivity in SmAgSb2 is significantly lower than in the 

other members of the series.  This allows the higher frequency oscillations to be observed at 

much lower fields, via a reduction in the Dingle temperature.  Second, SmAgSb2 orders 

antiferromagnetically at 8.8K, as determined by the temperature dependent susceptibility and 

resistivity [Fig 4.14(a)].  The new periodicity due to the wavevector of antiferromagnetic 

ordering may significantly perturb the Fermi surface and create new extremal orbits.  

Unfortunately, the exact nature of the ordered state, such as the wave vector is not known, 

which prevents an accurate determination of the electronic band structure in the ordered state. 

The angular dependence of the observed frequencies [Fig. 6.8(b)] is also more 

complex than any of the other compounds studied here.  The frequencies of the α, β, and θ 

oscillations are minimal at H || c and increase with increasing angle.  None of these 

frequencies diverge with increasing angle, suggesting the presence of ellipsoidally shaped 

sections of Fermi surface.  Fitting these data to the cross section of an ellipse gives c/a ratios 

of 4.3, 4.0 and 10.8 for the α, β, and θ oscillations, respectively.  The ε, λ, and κ frequencies 

also appear to be predominately ellipsoidal at low angles.  However, these orbits are not 

observed at large enough angles to accurately determine the topologies of the Fermi surface. 
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Fig. 6.8 (a) Fourier spectrum of the oscillations in the torque and magnetization of SmAgSb2 
for H || c at 2 K, Inset: Temperature dependence of the amplitudes of the observed 
oscillations.  (b) Angular dependence of the frequencies measured by torque magnetometry 
( ) and magnetization ( ).  θ is relative to the c-axis.  The solid and dotted lines connect the 
frequencies observed in the torque and magnetization data, respectively.  
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The frequency of the ζ oscillation is nearly constant with increasing angle, which indicates 

the existence of a nearly spherical section of Fermi surface.  Finally, additional frequencies, 

denoted μ, ν, ξ, and π, appear at intermediate angles.  The origins of these frequencies are 

currently unknown and are the subject of continuing investigation. 

The effect of the magnetic phase transition is particularly evident in the temperature 

dependence of the amplitude of the oscillations.  As seen in Fig.6.9, the temperature 

dependence of the dHvA oscillations for H || c significantly deviates from the expected 

Lifshitz-Kosevitch (LK) behavior, with an anomalous suppression of the dHvA amplitudes 

near TN.  Specifically, the amplitude of the α orbit decreases sharply as the temperature 

approaches TN.  Above TN, the amplitude partial recovers, and may easily be fit to the LK  
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Fig. 6.9 Temperature dependence of the amplitudes of the α and β oscillations in SmAgSb2.  
Inset: temperature dependence of the relative phase of the oscillations.  Note the suppression 
of the α amplitude and discontinuity in the phase at TN=8.8 K. 
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equation.  Fitting this data above TN yields an effective mass of the α orbit of 0.06±0.01 m0, 

consistent with the rest of the RAgSb2 series.  Likewise, the amplitude of β orbit (0.87 MG) 

decreases as the temperature approaches TN with no observation of this signal above TN. 

Below TN, the fit of the temperature dependence to the LK equation is poor, suggesting that 

the magnetic ordering is influencing the amplitude.  Although the β orbit is only observed 

below TN, it is currently impossible to determine whether this is due to a new section of 

Fermi surface below TN or increased scattering and broadening of the Fermi surface with 

increasing temperature.  

As seen in Fig. 4.14 (b), the resistivity of SmAgSb2 increases near TN, due to the 

introduction of spin-disorder scattering in the paramagnetic state.  It is possible that the 

additional scattering in the paramagnetic state increases the Dingle temperature, and hence, 

suppresses the amplitude.  However, if the deviation from the LK behavior were due entirely 

to the increased scattering from the addition of a magnetic component, it is unlikely that the 

amplitude of the α oscillation would actually increase between TN and 10 K.  

When the magnetic sublattice in a compound becomes antiferromagnetically ordered, 

new periodicity is introduced into the lattice with the wavevector of the magnetic ordering.  

This extra periodicity may significantly perturb the Fermi surface by rearranging the sections 

of the Fermi surface and introducing superzone gaps (Miwa, 1963; Elliot (1963).  These 

effects may be responsible for the appearance of new frequencies below TN, and the phase 

change and the anomalous behavior in the amplitude of the α oscillation.  However, without 

explicit knowledge of the ordering wavevector and the band structure of the ordered state, a 

quantitative analysis of these effects is difficult. 
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The perturbation of the Fermi surface may account for the temperature dependence of 

the amplitude in several ways.  First, the magnetization M is proportional to (A'')-(1/2), within 

the LK expression (Eq. 3.52), where A'' is the second derivative of the cross sectional area 

with respect to the wave vector in the direction of the applied field.  Increasing this curvature, 

while keeping the extremal cross sectional area constant, will diminish the amplitude of the 

measured oscillation.  Second, electron-electron scattering may increase in the magnetically 

ordered state.  Although electron-electron scattering does not generally affect the resistivity, 

it may be much more important in studies of dHvA effect through the scattering of carriers 

out of the observed band due to the close proximity of perturbed sections of Fermi surface.  

Since no changes in frequency are readily observable for the α oscillation, most likely 

another, not observed, band is affected by the antiferromagnetic ordering.  This band, in turn, 

may be mapped into a different part of the Brillouin zone, and hence, indirectly affect the 

carrier-carrier scattering.  This effect would decrease at lower temperatures (Eq. 3.39) due to 

the decrease in thermal broadening of the Fermi surface. 

The effect of magnetic ordering may also be seen in a shift in the relative phase of the 

α oscillation above and below TN as seen in the M(1/H) data (inset Fig 6.9).  Since the 

frequency of the oscillation is constant, within experimental resolution, above and below the 

transition, this phase shift may result from the perturbation of the Fermi surface due to a new 

periodicity arising from the magnetic ordering.  The section of Fermi surface would have to 

altered in such a way that the cross sectional area remains constant, but the extremal orbit 

changes from being a minimum to a maximum, or vice versa.  This effect may be seen within 

the LK expression (Eq. 3.52), where the relative phase difference between a maximal and 

minimal orbit is 90º, which is approximately the phase shift observed in the data. 
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Analysis 

Band Structure of LaAgSb2 and YAgSb2

Ab initio local density approximation (LDA) electronic bands of YAgSb2 and LaAgSb2 were 

calculated using the tight-binding, linear muffin tin orbital (TB-LMTO) method within the 

atomic spheres approximation (ASA) developed by O. K. Andersen (1985).  Interstitial 

spheres were added to fill empty parts of the cell. The 4f electrons in Pr, Nd, and Sm are not 

expected to significantly contribute to the electronic structure since these electrons are 

strongly localized and well screened.  Therefore, these electrons may be considered part of 

the electronic core.  This implies that the Fermi surfaces of the rest of the RAgSb2 series are 

expected to be closely similar to those obtained for YAgSb2 and LaAgSb2. 

Figure 6.10 shows the electronic structure of YAgSb2 and LaAgSb2 along several 

high symmetry directions.  Relevant features of these plots include two bands crossing EF 

near the Γ point and the two bands crossing EF near the X point.  In addition, another band 

crosses EF between Γ and Z. This band is particularly important since it possesses very little 

curvature, and hence may lead to dramatic changes of the topology of the Fermi surface with 

small changes in lattice parameters or Fermi energy.  Figure 6.11 shows the Fermi surface in 

the kz= 0 plane of the four bands the cross the Fermi energy with the Brillouin zone of a 

primitive tetragonal lattice displayed in the inset.  

Three dimensional plots of the calculated Fermi surface of LaAgSb2 are shown in Fig. 

6.12 (a-d).  Band 1 is centered at the Γ point and is nearly spherical, with a cross sectional 

area in the basal plane corresponding to a frequency of approximately 4.7 MG for H || c.  The 

γ orbit, observed in SmAgSb2 and LaAgSb2 has a frequency of approximately 4.3 MG. 
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(a) 

 

(b) 

 

Fig. 6.10 Band Stucture of (a) YAgSb2 and (b) LaAgSb2 calculated from tight binding linear 
muffin tin orbital calculations within the atomic spheres approximation. 
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In LaAgSb2, the angular dependence of this frequency is nearly constant for low angles, 

relative to H || c, which is consistent with the calculated band. However, at higher angles, the 

frequency appears to diverge, indicating non-spherical behavior.  Figure 6.13(a), shows 

constant energy surfaces of this band in the kx- kz plane, centered at the Γ point.  If the Fermi 

energy is increased by approximately 50 meV, the topology of this band changes 

dramatically with the appearance of thin necks connecting this band to the next Brillouin 

zone.  This modified band is now much more consistent with the observed angular 

dependence of the γ frequencies.  Although the cross sectional area for H || c does not depend 

strongly on the EF, this band may also be the origin of the ζ oscillation (6.2 MG) in SmAgSb2 

which is nearly spherical.  Furthermore, the necks may also help to account for the extremely  
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Fig. 6.11 The Fermi surface of LaAgSb2 in the kz = 0 plane, calculated as described in the 
text.  The four bands crossing EF are labeled 1-4.  Inset: the Brillouin zone of a primitive 
tetragonal lattice with the high symmetry points labeled.  
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1      2        4 

 
     3 

 
Fig. 6.12  3-dimensional plots of the 4 bands crossing the Fermi surface.  Bands 1 and 2 are 
centered at Γ.  Band 4 is centered at X.  Band 3 extends throughout the zone.  In this figure 
the Γ point is at the center of the lower square.  The vertices of the squares are at the X 
points. 
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approximately corresponds to the α orbits (0.55 MG) the angular dependence is not is good 

agreement, since the α orbits appear to be ellipsoidal.  Better agreement is found in the 

sectional area of the necks for H || c θ orbit of SmAgSb2 which has a frequency of 0.13 MG 

and a shape corresponding to either a cylinder or an elongated ellipsoid with a c/a ratio near 

10. 

Band 2 is also centered at Γ, but is mostly cylindrical with an axis along kz, This 

energy band possesses a nearly circular cross section at kz = 0 and a somewhat square cross 

section at kz = π/c.  Maximal cross sectional areas for H || c correspond to frequencies of 13.2 

and 11.5 MG for kz =0 and π/c, respectively.  A minimal area is also observed for kz ≈ 0.4 

π/c with a frequency of 9.7 MG.  These frequencies are approximately equal to the δ 

frequencies observed in some of the compounds. (F ≈ 10.1 MG for SmAgSb2, 10.04 MG in 

YAgSb2, and 12.5 MG, 12.9 MG and 15.7 MG in LaAgSb2).  In SmAgSb2 and YAgSb2, the 

frequency of the δ orbit diverges with small frequencies observed for H || c in a most of the 

compounds.  Although the cross increasing angle away from H || c.  However, the angular 

dependence of δ family of orbits in LaAgSb2 is more closely ellipsoidal than cylindrical, 

possibly due to significant changes in the Fermi surface corresponding to the resistivity 

anomaly at 210 K (Fig. 4.3a).  Taken together, the topology and cross sectional areas for H || 

c suggest that this band is the origin of the δ orbits observed in the magnetization and torque 

data.  The effective masses of each of the observed frequencies for H || c are approximately 

0.46 m0 in YAgSb2 and 0.42 m0 in LaAgSb2 . 

Band 3 consists of adjacent square cylinders with vertices near each of the X points. 
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Fig. 6.13 Constant energy contours in the kx-kz plane for bands 1 (a) and 4 (b).  The 
difference in energy of the contours is 50 meV.. 
 

One square cylinder is centered at Γ,  and the other is centered the M point.  Due to 

the extremely large cross sectional areas, it is not expected that any of the features of this 

band would be visible in the relatively low fields currently accessible.  However, it should be 

noted that at very high fields, the close proximity of these surfaces may result in magnetic 

breakdown. 

An ellipsoidal hole pocket centered at the X point in the Brillouin zone is created by 

band 4.  The cross sectional area of this band for H || c is maximal at kz=0 and predicts the 

presence of a frequency of 0.9 MG.  For H ⊥ c, the maximal cross sectional area of this orbit 

is approximately 3.7 MG, indicating a c/a ratio of about 4.  The β frequency is observed in all 

of the compounds and ranges from 0.86 in SmAgSb2 to 1.64 in LaAgSb2.  In each case, the 

effective masses calculated from the temperature dependence of the amplitudes of the 

oscillation are approximately 0.17 m0.  The angular dependence of the measured frequencies 
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suggests ellipsoidal topology in SmAgSb2 and LaAgSb2 with a c/a ratio of 4.0.  These 

frequencies and angular dependencies in these compounds are consistent with the calculated 

dimensions of this energy band centered at the X point.  However, in YAgSb2, the frequency 

of the orbit tends to diverge as the angle increases away from H || c, indicating a more 

cylindrical topology.  Further analysis indicates that by shifting the energy of this band 

downward by 50 meV, the orbit becomes more cylindrical and connected by a thin neck to 

the next Brillouin zone [Fig. 6.13 (b)].    

Conclusion 

The RAgSb2 series of compounds is an ideal system for the study of changes in the 

Fermi surface due to different rare earth ions and magnetic order.  The excellent quality of 

the crystals allows the measurement of de Haas-van Alphen and Shubnikov-de Haas 

oscillations at relatively low applied fields and exceptionally high temperatures.  The 

persistence of the oscillations in SmAgSb2 up to temperatures as high as 25 K permits the 

study of changes in the Fermi surface above and below the ordering temperature.  Clearly, 

significant changes in the Fermi surface of SmAgSb2 result from additional periodicity 

introduced by magnetic order.  Overall, the agreement between the calculated Fermi surface 

and measured quantum oscillations is good.  Although the smaller frequencies are not 

accounted for in the calculated Fermi surface, the magnitude of many of the frequencies and 

their angular dependence correlate with the ab initio Fermi surface. 

Neutron or magnetic X-ray diffraction would be useful to determine the microscopic 

nature of the magnetic ordering in the materials with magnetic rare earth ions.  This 

knowledge would allow the precise determination of the Fermi surface in the 

antiferromagnetically ordered states of SmAgSb2.  The study of the de Haas-van Alphen or 
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Shubnikov-de Haas effects at higher fields would help resolve larger sections of Fermi 

surface, not observed in the relatively low fields currently accessible.  Angle resolved 

photoemission, cyclotron resonance or studies of the anomalous skin effect would be useful 

to further resolve and verify the Fermi surface of these compounds.  
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3. CONCLUSIONS 

This study of the RAgSb2 series of compounds arose as part of an investigation of 

rare earth intermetallic compounds containing antimony with the rare earth in a position with 

tetragonal point symmetry.  Materials with the rare earth in a position with tetragonal point 

symmetry frequently manifest strong anistropies and rich complexity in the magnetic 

properties, and yet are simple enough to analyze.  Antimony containing intermetallic 

compounds commonly possess low carrier densities and have only recently been the subject 

of study. 

Large single grain crystals were grown of the RAgSb2 (R=Y, La-Nd, Sm, Gd-Tm) 

series of compounds out of a high temperature solution.  This method of crystal growth, 

commonly known as flux growth is a versatile method which takes advantage of the 

decreasing solubility of the target compound with decreasing temperature.  Overall, the 

results of the crystal growth were impressive with the synthesis of single crystals of LaAgSb2 

approaching one gram.  However, the sample yield diminishes as the rare earth elements 

become smaller and heavier.  Consequently, no crystals could be grown with R= Yb or Lu.  

Furthermore, EuAgSb2 could not be synthesized, likely due to the divalency of the Eu ion. 

For most of the RAgSb2 compounds, strong magnetic anisotropies are created by the 

crystal electric field splitting of the Hund’s rule ground state.  This splitting confines the 

local moments to lie in the basal plane (easy plane) for the majority of the members of the 

series.  Exceptions to this include ErAgSb2 and TmAgSb2, which have moments along the c-

axis (easy axis) and CeAgSb2, which at intermediate temperatures has an easy plane, but 

exchange coupling at low temperatures is anisotropic with an easy axis. Additional 
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anisotropy is also observed within the basal plane of DyAgSb2, where the moments are 

restricted to align along one of the <110> axes. 

Most of the RAgSb2 compounds containing magnetic rare earths, 

antiferromagnetically order at low temperatures.  The ordering temperatures of these 

compounds are approximately proportional to the de Gennes factor, which suggests that the 

RKKY interaction is the dominant exchange interaction between local moments. 

Although metamagnetic transitions were observed in many members of the series, the 

series of sharp step-like transitions in DyAgSb2 are impressive.  In this compound, up to 11 

different magnetic states are stable depending on the magnitude and direction of the applied 

field.  The saturated magnetization of these states and the critical fields needed to induce a 

phase transition vary with the direction of the applied field.  Through detailed study of the 

angular dependence of the magnetization and critical fields, the net distribution of magnetic 

moments was determined for most of the metamagnetic states.   In DyAgSb2, the crystal 

electric field (CEF) splitting of the Hund’s rule ground state creates a strong anisotropy 

where the local Dy3+ magnetic moments are constrained to one of the equivalent <110> 

directions within the basal plane.  The “four position clock model” was introduced to account 

for this rich metamagnetic system.  Within this model, the magnetic moments are constrained 

to one of four equivalent orientations within the basal plane and interactions are calculated 

for up third nearest neighbors.  The theoretical phase diagram, generated from the coupling 

constants is in excellent agreement with the experimental phase diagram.  Further 

investigation of this compound using magnetic X-ray or neutron diffraction would be 

extremely useful to verify the net distributions of moments and determine the wave vectors 

of each of the ordered states. 
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The resistivity of the RAgSb2 series of compounds is typical of rare earth 

intermetallic compounds.  At high temperatures the resistivity is linear, and shows no signs 

of saturation.  At low temperatures, the resistivity of the compounds with magnetic rare 

earths decreases dramatically due to a loss of spin disorder scattering in the magnetically 

ordered states.  The resistivity of the samples is typically about 30 μΩ cm, which is also 

typical of rare earth intermetallic compounds.  The residual resistivity ratio, which provides a 

measure of sample purity is generally better than 50 in the series but ranges from near 200 in 

SmAgSb2 to as low as 5 in ErAgSb2. 

The temperature dependent resistivity also suggests that CeAgSb2 manifests behavior 

typical of a dense Kondo lattice with low temperature magnetic order.  The interaction 

between ferromagnetism and Kondo lattice behavior, observed in this compound is the 

subject of continuing investigation.  This study consists of measurements of the resistivity, 

magnetoresistance, specific heat,  and magnetization of the series of diluted compounds 

(CexLa1-xAgSb2). Detailed understanding of the Kondo effect in these dilute compounds 

should help determine the Kondo temperature, clarify the interaction between the 

ferromagnetic order and the Kondo effect, and address the crossover between single impurity 

and Kondo lattice behavior. 

Due to the small residual resistivities and effective masses, the magnetoresistance in 

the RAgSb2 series of compounds is positive and very large at low temperatures.  In 

SmAgSb2, for example, Δρ(Η)/ρ approaches 60 at 55 kOe.  At a constant field of 55 kOe, the 

resistivity decreases with increasing temperature.  This effect is particularly dramatic in the 

compounds that magnetically order and is attributed to Kohler’s rule, through the increasing 

of scattering at higher temperatures or in the paramagnetic state.   
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The electronic structure of the RAgSb2 series of compounds with R=Y, La, Pr, Nd 

and Sm was investigated via the analysis of de Haas-van Alphen and Shubnikov-de Haas 

effects.  For R= Y, La, and Sm, these quantum oscillations were clearly visible in the 

magnetization isotherms at 2 K.  In particular, the oscillations in YAgSb2 are exceptionally 

clear for H || c, since the only two orbits with large amplitudes have frequencies separated by 

an order of magnetude.  For R= Nd and Pr, the oscillations in the magnetization were weaker 

and obscured by a stronger magnetic background.  In SmAgSb2, the oscillations were clearly 

visible in applied fields below 55 kOe, up to 20 K.   

The angular dependence of the observed frequencies was carefully studied for R=Y, 

La, and Sm.  The frequencies of all of the orbits in YAgSb2 and LaAgSb2 were minimal for 

the magnetic field applied along the c-axis.  In most cases, the angular dependence of these 

orbits were successfully fit to the angular dependence of the cross sectional area of either a 

cylinder or an ellipsoid.  The angular dependence of the oscillations of SmAgSb2 is much 

more complex, possibly due to a perturbation of the band structure in the magnetically 

ordered state.   

Since SmAgSb2 is antiferromagnetically ordered below TN = 8.8 K, this compound 

provides a rare opportunity to study the perturbation of the electronic band structure due to 

antiferromagnetic ordering.  The effects of the ordering are seen in the suppression of the 

amplitudes in the vicinity of TN, as well as a shift in the relative phase of the oscillations.  An 

exact determination of the microscopic nature of the antiferromagnetically ordered state is 

essential for further study of the effects of magnetic ordering on the Fermi surface.  This 

information, acquired via magnetic X-ray or neutron diffraction, would permit the calculation 

of the band structure in the ordered state which would clarify the effects of magnetic order on 
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the Fermi surface.  Measurements of either the de Haas-van Alphen or Shubnikov-de Haas 

effects in higher fields and lower temperatures should permit the observation of sections of 

Fermi Surface with larger cross sectional areas and identify the existence of magnetic 

breakdown.  The study of the quantum oscillations under pressure would also help to clarify 

the electronic structure.  Finally, other probes of the Fermi surface, such as angle resolved 

photoemmision and cyclotron resonance would be useful to help verify the first principles 

band structure calculations presented here. 

Further work should also include the determination of the origin of the transition 

observed near 210 K in LaAgSb2.  Although the behavior of the resistivity near this transition 

is typical of either a charge or spin density wave, preliminary attempts to verify this have 

been inconclusive.  High resolution X-ray diffraction should provide the necessary precision 

needed to identify the physics of this transition. 
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