Reactivity of Primary Soil Minerals and Secondary Precipitates Beneath Leaking Hanford Waste Tanks

(Nov. 2001)

Kathryn Nagy

Department of Geological Sciences University of Colorado

Steve Yabusaki and Jeff Serne

Pacific Northwest National Laboratory

How have leaking tank fluids reacted with sediments?

Altered flowpaths?

Created colloids?

Radionuclide sorption?

Radionuclide coprecipitation?

Future distribution of contaminants?

Effects of remediation?

Approach

- Focus on reactions involving bulk composition of tank fluids (not only trace contaminants)
 - determine changes in mineral assemblage
 - quantify effect on fluid flow properties
 - quantify effect on reactive surfaces for sorption
- Develop quantitative mechanistic "model"
 - use kinetic data from monomineralic experiments
 - test with reactive/transport model on complex experimental data
 - finalize on unsaturated flow column experiments using tank fluid simulants and Hanford sediments

Results

- Kinetic data on mineral dissolution and growth
 - Quartz dissolution (Bickmore and Nagy, GCA, in prep.)
 - Cancrinite precipitation (Bickmore et al. (2001) ES&T)
 - Biotite dissolution (in progress)
 - Magnetite dissolution (in progress)
- Phyllosilicate surface area determination by AFM (Bickmore et al., Amer. Min., in review)

Quartz Dissolution Rates

Quartz: (Aldrich) pretreated (magnetic separation/sulfuric acid wash) Solutions: (NaNO₃, Al(NO₃)₃, NaOH, CO₂-purged) Experiments: 2 g quartz, 65 g solution Time series: 8 bottles/experiment 59, 75, and 89 °C Analyses: Al & Si (UV-Vis; ICP-AES); pH (solid-state electrode) Speciation: Pitzer model (no polysilicate species) Rates: Initial rates - linear with time

untreated acid-washed reacted

Quartz dissolution in the presence of $AI(OH)_4$ (aq) B. R. Bickmore and K. L. Nagy, ms. in preparation

pH Dependence of Initial Dissolution Rates of Quartz

Dependence of Quartz Dissolution Rate on pH

low pH, low temperature

Mechanism #1

Dove (1994) Am. J. Sci.

high pH, higher temperature

Mechanism #2

Xiao and Lasaga (1996) GCA

Dependence of Quartz Dissolution Rate on [AI]

Al Reduces Quartz Dissolution Rate

• Slower rate at lower pH and higher $[Al(OH)_4]$

model

Aluminosilicate species observed at high pH
Consistent
With
Precipitated aluminosilicate gels at pH 9 with Al:Na = 1:1

• Precipitated aluminosilicate gels at pH 9 with Al:Na = 1:1 (Milliken, Discuss. Faraday Soc., 1950)

0.005 m Al(OH)₄⁻ - 24 days 0.01 m A

3.00kV

x500

50 PA

0.01 m Al(OH)₄ - 13 days

5ku

11 000

pH 11.3; 2 m Na⁺; 2 m NO₃⁻

7 m m

pH 12.4; 2 m Na+; 2 m NO₃-

Cancrinite Precipitation Reaction

8 Na⁺ + 6 Al(OH)₄⁻ + 6 H₂SiO₄²⁻ + 2 NO₃⁻ \Leftrightarrow Na₈Si₆Al₆O₂₄(NO₃)₂4H₂O(s) + 12 OH⁻ + 8 H₂O

pH 12.4 (1.0 m OH⁻) Log $K_{eq} = 36.2 \pm 0.6$ (95% confidence) pH 11.3 (0.1 m OH⁻) Log $K_{eq} = 30.4 \pm 0.8$ (95% confidence)

Initial Precipitation Rates

Rate_{ppt} (mol cancrinite/s) = $1.03 \pm 0.05 \times 10^{-6} [AI]^{1.22} [Si]^{0.23}$

Time (hrs)

Reactive surface area of phyllosilicates

	KGa-1	KGa-1b	KGa-2
# particles	32	52	77
Mass (g)	5.19 x 10 ⁻¹²	5.67 x 10 ⁻¹²	2.35 x 10 ⁻¹²
ESA/TSA (%)	27.3 ± 0.7	30.0 ± 0.8	18.2 ± 0.5
SSA (m²/g)	10.1 ± 0.3	11.3 ± 0.3	24.1 ± 0.6
SSA (m²/g, BET _{pub})	8.2-11.2 <i>(5)</i>	11.7-12.5 <i>(2)</i>	22.4-24 (3)

Approach could be used to assess reactive edge and basal surface areas of micas at Hanford site.

Quantifying surface areas of clays by atomic force microscopy B. R. Bickmore, K. L. Nagy, P. E. Sandlin, and T. S. Crater, in review

Biotite Dissolution Kinetics @ 25°C

Future Plans

- Continue kinetics experiments (CU)
- Conduct saturated and unsaturated flow column experiments (PNNL)
- Refine models with new data
- Use refined models for parameter-sensitivity feedback to experiments (PNNL, CU)
- Present and publish results