Ternary solidification (what Paul didn't tell you)

R W McCallum

Ames Laboratory

And

Materials Science and Engineering

From Paul

RAgSb₂ to start

- RAgSb₂ compounds can be grown out of excess Sb.
- This is similar in spirit to growing CeSb₂ out of excess Sb: we are growing out of an excess of one of the constituent elements

K.D. Myers et al. | Journal of Magnetism and Magnetic Materials 205 (1999) 27-52

 $CeAgSb_2$ ($Ce_{25}Ag_{25}Sb_{50}$) can be grown from a melt with initial stoichiometry of $Ce_4Ag_9Sb_{87}$

This growth can be place in Al_2O_3 and sealed in silica. Temperature profile is:

Sb

 $Ce_{0.05}Cu_{0.475}Ge_{0.475}$ is placed in an Al_2O_3 crucible, sealed in a quartz ampule and heated to $1190^{\circ}C$. The ampule is cooled to $825^{\circ}C$ over 200 h and then the excess liquid is decanted. The resulting crystal

Terms

- Congruent
 - When one phase changes directly into another phase without any alteration in composition during the transformation, the phase change is said to be congruent
- Component
 - Any intermediate phase which behaves congruently in all transformations to which it is subject mab be regarded as a component

Equilibrium Crystallization Where all 2 Component Systems are Binary Eutectic Systems.

Prof. Stephen A. Nelson, Tulane

Figure 5.6. Cooling Path for Liquid of Composition X

with one of the lower surfaces of the primary crystallization space of C (point 6). The vertical section C-S is shown in Figure 5.7 and aids in the understanding of the crystallization path and the isoplethal analysis. Further cooling now places the composition into the region of binary crystallization, C+A+Liquid. At temperature T_7 the composition of the melt is given by the point at 7', and the crystalline portion of the sample is composed of A and C (point 7".

As the sample is cooled toward the ternary eutectic temperature E, the liquid composition moves along the boundary line (in the direction of decreasing

Dividing a ternary phase diagram

- When a congrently melting intermediate phase occurs in a ternary system, it sometimes happens that this phase forms a quasi-binary system with one of the other components.
- A single quasi-binary section divides ternary into two parts, two quasi-binary section divides ternary into three parts
- maximum number of quasi-binary sections is equal to the number of congruently melting phases

Crystallization in Ternary Systems Containing an Incongruently Melting Compound.

Ternary Phase Diagram

Di-An-Fo at 1 atm. (0.1 MPA)

B-Fe-Nd. Isothermal section at rt

Boron - Iron - Neodymium

Landolt-Bömstein New Series IV/11D1

Annelies Malfliet, Gabriele Cacciamani, Nathalie Lebrun, Peter Rogl

B-Fe-Nd. Isothermal section at 900°C

B-Fe-Nd. Fe rich part of the temperature - composition section at Nd:B = 2:1

B-Fe-Nd. Fe rich part of the temperature - composition section at Nd:B = 2:1

	-		
* τ ₁ , Nd ₂ Fe ₁₄ B	tP68 $P4_2/mnm$ $Nd_2Fe_{14}B$	<i>a</i> = 880.4 <i>c</i> = 1220.5	[1984Sho] $R_F = 0.066$ (all reflections); called "Nd ₃ Fe ₁₆ B" by [1979Cha]
	true symmetry monoclinic Cm		structure below $T_{\rm C} = 588$ K [1996Wol, 1996Obb, 2001Wol]
			for dependency of lattice parameters as $f(T)$, $10 < T < 1000$ K see [2005Yan]
* τ ₂ , Nd _{1.11} Fe ₄ B ₄	<i>t</i> P162+18ε <i>Pccn</i> RE _{1+ε} Fe ₄ B ₄ incommensurate	<i>a</i> = 711.7 <i>c</i> = 3507	[1986Giv] $R_F = 0.081$ $c_{Fe}/c_{Nd} = 1 + \epsilon = 10/9;$ $c_{Fe} = 389.7, c_{Nd} = 350.2$ labelled "Nd ₂ Fe ₇ B ₆ " by [1984Sag1]
* τ ₃ , Nd ₅ Fe ₂ B ₆	hR39 R3m Pr5C02B6	a = 546.4 c = 2417	[1997Yar] Nd _{5-x} Fe _{2+x} B ₆ ; called "Nd ₂ FeB ₃ " by [1979Cha]
* τ_4 , Nd ₂ Fe ₂₃ B ₃ metastable < 750°C	cI224 I43d Nd ₂ Fe ₂₃ B ₃	<i>a</i> = 1419	[1986DeM] from rapidly quenched alloys; labelled "Nd ₆ Fe ₇₇ B ₁₇ " [1994Gu]
* τ ₅ , "Nd _{4.4} Fe _{84.4} B ₁₁ " metastable < 700°C	<i>cI</i> 146-156? <i>Im</i> 3 <i>m</i> or subgroups Nd _{4.4} Fe _{84.4} B ₁₁ type	a = 1237.7	[1988Alt] from rapidly quenched alloys
* τ_6 , NdFe ₁₂ B ₆ metastable < 750°C	hP57 R3m SrNi ₁₂ B6	a = 960.5 c = 754.9	[1986Bus1, 1986Bus2] from rapidly quenched alloys
* τ_7 , Nd _{2-x} Fe ₁₄ B metastable < 750°C	<i>cI</i> ? Superstructure of W type	a = 601.4 ($a = 2a_0$)	0 < x < 1 [1993Kha] from rapidly quenched alloys Nd2Fe20B
* τ_8 , Nd ₂ Fe ₃₄ B ₅ metastable < 750°C	<i>cI</i> ? Superstructure of W type	a = 1240 ($a = 4a_{o}$)	0 < x < 1 [1993Kha] from rapidly quenched alloys
* τ ₉ metastable	tetragonal ?	a = 615.1 c = 675.6	decomposition product of τ_7 or τ_8 on heating above 1000 K [1993Kha]

Table 3. Invariant Equilibria

Reaction $T [^{\circ}C]$ Type Phase Composition (at.%) В Fe Nd $L + NdB_6 + NdB_4 \Rightarrow FeB$ 47.74 1628 P_1 L 51.76 0.50 NdB₆ 85.72 0.00 14.28 0.00 NdB₄ 80.00 20.00 50.00 50.00 FeB 0.00 (continued) 12 B-Fe-Nd Reaction $T [^{\circ}C]$ Туре Reaction T [°C] Type Phase Composition (at.%) В Nd $L + NdB_6 \rightleftharpoons FeB + NdB_{66}$ 1533 U_1 Fe 5.89 82.35 11.76 τ_1 (yFe) 0.00 100.00 0.00 $L \rightleftharpoons \tau_1 + \tau_2 + Fe_2B$ 1095 E_2 L 20.00 72.00 8.00 $L \Rightarrow NdB_{66} + (\beta B) + FeB$ 1509 D_1 5.89 82.35 11.76 τ_1 20.94 20.94 58.12 τ_2 Fe₂B 33.33 66.67 0.00 $Fe_2B + \tau_1 \Rightarrow (\gamma Fe) + \tau_2$ 981 U_6 Fe₂B 33.33 66.67 0.00 $1 + \text{NdB}_4 = \tau_2$ 1411 5.89 82.35 11.76 p_4 τ_1 (yFe) 0.00 100.000.00 20.94 20.94 58.12 τ_2 $(\gamma Fe) + Nd_2Fe_{17} + \tau_1 \rightleftharpoons (\alpha Fe)$ 934 P_3 (yFe) 0.00 100.00 0.00 $L + FeB \rightleftharpoons NdB_4 + Fe_2B$ U_2 1388 Nd2Fe17 0.00 89.47 10.53 0.00 100.00 (aFe) 0.00 5.89 82.35 11.76 τ_1 $(\gamma Fe) + \tau_1 \rightleftharpoons (\alpha Fe) + \tau_2$ 922 U_7 (yFe) 0.00 100.00 0.00 $L + NdB_4 \Rightarrow Fe_2B + \tau_2$ 1375 U_3 5.89 82.35 11.76 τ_1 (aFe) 0.00 100.00 0.00 τ_2 20.94 20.94 58.12 $(\gamma Fe) + \tau_2 \Rightarrow (\alpha Fe) + Fe_2B$ 921 U_8 (yFe) 0.00 100.00 0.00 P_2 $L + NdB_4 + Nd_2B_5 \rightleftharpoons \tau_3$ 1237 20.94 58.12 τ_2 20.94 0.00 (aFe) 33.33 Fe₂B B-Fe-Nd U9 1.00 $L + Nd_2B_5 \rightleftharpoons \tau_3 + (\beta Nd)$ 894 L 71.43 Nd₂B₅ 1192 U_4 $L + NdB_4 \Rightarrow \tau_2 + \tau_3$ Reaction $T [^{\circ}C]$ Туре 46.16 τ_3 (BNd) 0.00 $(\beta Nd) \Rightarrow L + \tau_3 + (\alpha Nd)$ 854 D_2 (BNd) 0.00 $L + \tau_2 \cong (\alpha Nd) + \tau_1$ 685 U_{12} L 2 1180 $1 + (\gamma Fe) \Rightarrow \tau_1$ p_7 46.16 T3 (aNd) 0.00 $(\beta Nd) + Nd_2B_5 \Rightarrow (\alpha Nd) + \tau_3$ 854 D_3 (BNd) 0.00 $L = \tau_1 + Nd_5Fe_{17} + (\alpha Nd)$ 678 E_3 $L + (\gamma Fe) \Rightarrow \tau_1 + Nd_2Fe_{17}$ 1130 U5 71.43 Nd₂B₅ (aNd) 0.00 τ_3 46.16 $L + Nd_2Fe_{17} \Rightarrow Nd_5Fe_{17} + \tau_1$ 768 U_{10} L 0.60 Nd₂Fe₁₇ 0.00 $1 \Rightarrow \tau_1 + \tau_2$ 1115 e_6 Nd5Fe17 0.00 77.27 22.73 5.89 82.35 11.76 τ_1 L 77.00 $L + \tau_3 \rightleftharpoons (\alpha Nd) + \tau_2$ 702 U_{11} 1.00 22.00 $1 \Rightarrow Fe_2B + \tau_1$ 1110 e7 46.16 15.38 38.46 Τ3 (aNd) 0.00 0.00 100.00 τ_2 20.94 20.94 58.12 $L \Rightarrow Fe_2B + \tau_1 + (\gamma Fe)$ 1105 E_1 (continued)

Invariant points Nd-Fe-B

Phase

L

 τ_2

 τ_1

L

 τ_1

Nd₅Fe₁₇

(aNd)

(aNd)

Composition (at.%)

Fe

23.00

20.94

0.00

82.35

23.50

82.35

77.27

100.00

В

1.00

20.94

0.00

5.89

0.50

5.89

0.00

0.00

13

Nd

76.00

58.12

100.00

11.76

76.00

11.76

22.73

0.00

(continued)

Al-Ni-C

W. Huang, Y.A. Chang | In

Fig. 4. The Ni–Al–Cr liquidus projection calculated from the thermodynamic description obtained in the present work. The solid lines are univariant equilibria and dotted lines are isotherms. The primary phase fields marked by numbers are: (1) Al₈Cr₅_H, (2) Al₉Cr₄_H, (3) Al₈Cr₅_L, (4) Al₉Cr₄_L, (5) Al₄Cr, (6) Al₁₁Cr₂, (7) Al₁₃Cr₂, (8) fcc, (9) Al₃Ni, (10) Al₃Ni₂.

On the Reaction Scheme and Liquidus Surface in the Ternary System AI-Fe-Si

NATALIYA KRENDELSBERGER, FRANZ WEITZER, and JULIUS C. SCHUSTER

METALLURGICAL AND MATERIALS TRANSACTIONS A

Fig. 2—Isothermal section for 550 °C (note: phase boundaries shown are schematic only).

On the Reaction Scheme and Liquidus Surface in the Ternary System Al-Fe-Si

NATALIYA KRENDELSBERGER, FRANZ WEITZER, and JULIUS C. SCHUSTER

METALLURGICAL AND MATERIALS TRANSACTIONS A

Phase	Composition	Reference	Crystal Structure Data
τι	Al _{21.5-45} Fe _{36.5-37.5} Si _{8.5-41.5} Al ₂ Fe ₃ Si ₃	6 20	confirming Refs. 4, 5, 18, and 19 <i>P</i> -1, <i>aP</i> 16 $a = 0.4651(2) \text{ nm}, \alpha = 101.38(2) \text{ deg}$ $b = 0.6326(2) \text{ nm}, \beta = 105.92(2) \text{ deg}$ $c = 0.7499(3) \text{ nm}, \gamma = 101.24(2) \text{ deg}$
	other names found in the literatur	e: Al ₃ Fe ₃ Si ₂ , K1, [[]	^{4]} D,E, ^[5,21] τ ₉ ^[2,18]
τ_2	Al _{53,9-65,3} Fe _{19,5-20,5} Si _{15,2-25,6} Al ₃ FeSi	6 9	confirming Refs. 5, 9, 10, 18, 19, and 22 , mC^* $a = 1.78(1)$ nm $b = 1.025(5)$ nm, $\beta = 132$ deg
	other names found in the literatur	e: β , ^[3] α_3 , ^[10] γ , ^[7,9]	$^{22,23]}$ K, $^{[5,21]}$ Al ₅ Fe ₂ Si ₂ ^[2,18]
τ_3	Al _{53–56} Fe _{23.5–24.5} Si _{20.5–22.5} Al ₂ FeSi	6 24	confirming Ref. 4 Cmma, oC128 $a = 0.7995(2) nmb = 1.5162(6) nmc = 1.5221(6) nm$
	other names found in the literatur	e: ζ, ^[3] Al ₁₂ Fe ₆ Si ₅ ,	K_{2} , ^[4] G, ^[5,21] τ_{2} , ^[22] Al ₉ Fe ₅ Si ₅ , ^[2] F, ^[21] τ_{23} , ^[23]
τ ₄	Al _{45.5-54} Fe _{15.5-16.5} Si _{30.5-38} Al ₃ FeSi ₂	6 26	confirming Refs. 4, 5, and 25 I4/mcm, $tI24$, GaPd ₅ $a = 0.607$ nm c = 0.950 m
	other names found in the literatur	e: δ , ^[3,7,10,23] K ₄ , ^[4]	γ , ^[12] A, ^[5,21] Al ₃ FeSi ₃ , ^[2,25] Al _{2,7} FeSi _{2,3} ^[27]
τ ₅	Al ₆₈₋₇₂ Fe _{18-19.5} Si _{10-12.5} Al _{7.4} Fe ₂ Si	6 29	confirming Refs. 5, 12, 18, 19, 22, and 28 $P6_3/mmc$, $hP(244-7.4)$ $a = 1.2404(1)$ nm a = 0.6204(2) nm
	other names found in the literatur	e: β , ^[3] K ₅ , ^[4] α , ^{[11,}	$^{c} = 2.6234(2) \text{ mm}$ $^{(2,22,29)} \alpha_2, ^{[10]} \text{ M}, ^{[5,21]} \text{ Al}_5 \text{Fe}_6 \text{Si}_5, ^{[27]} \text{ Al}_7 \text{Fe}_2 \text{Si}^{[18,30]}$
τ_6	Al _{64.5-67.5} Fe _{15.5-16.5} Si ₁₇₋₁₉ Al _{4.5} FeSi	6 33	$\begin{array}{c} \text{confirming Refs. 5, 12, 18, 19, 22, 28, 31, and 32} \\ C2/c, \ mC52 \\ b = 0.6175(3) \ \text{nm}, \ \beta = 90.42(3) \ \text{deg} \end{array}$
	other names found in the literatur	e: X, ^[3] K ₆ , ^[4] β , ^[7,]	c = 0.6161(3) nm $L_{1}^{[5,21]} Al_9 Fe_2 Si_2^{[2]} Al_4 Fe Si^{[18]}$
τ ₇	Al _{39.2-48.7} Fe _{23.5-24.5} Si _{27.8-36.3} Al ₃ Fe ₂ Si ₃	6 34	confirming Refs. 4, 5, 18, and 34 $P2_1/n, mP64$ $a = 0.7179(2) \text{ nm}$ $b = 0.8354(2) \text{ nm}, \beta = 93.80(2) \text{ deg}$
	other names found in the literatur	e: ζ , ^[3] K ₃ , ^[4] τ ₃ , ^[1]	c = 1.4455(4) mm B, ^[5,21] Al ₈ Fe ₅ Si ₇ , ^[21] τ_{23} , ^[23] Al ₆ Fe ₄ Si ₆ , $\tau_8^{[27]}$
τ_8	$\begin{array}{l} Al_{24,1-28,6} \ Fe_{31,9-32,9} \ Si_{39,5-43} \\ Al_2 Fe_3 Si_4 \end{array}$	6 20	or $Al_{38}Fe_{32}Si_{30}^{[5]}$ or $Al_{44}Fe_{32}Si_{24}^{[18]}$ <i>Cmcm</i> , <i>oC</i> 48 $a = 0.3669(2)$ nm b = 1.2385(7) nm a = -1.0147(5) rm
	other names found in the literatur	e: C, ^[5,21] τ ^{/[27]}	c = 1.0147(3) mm
τ_{10}	Al ₅₇₋₅₉ Fe ₂₄₋₂₅ Si ₁₇₋₁₈	6 this work	or $Al_{60}Fe_{25}Si_{15}^{[5]}$ or $Al_{59-63}Fe_{2-27}Si_{13-14}^{[18]}$ hexagonal $a = 1.5518(2) \text{ nm}$
	other names found in the literatur	e: \mathbf{F} , ^[5] τ_{23} , ^[23] \mathbf{Al}_4	c = 0.7297(1) nm Fe _{1.7} Si, τ ", ^[27] Al ₉ Fe ₄ Si ₃ ^[6]
τ11	Al _{64-66.5} Fe ₂₄₋₂₅ Si _{9.5-11} Al ₄ Fe _{1.7} Si	6 16	$P6_3/mmc, hP28, Co_2Al_5$ $a = 0.7509(3) \text{ nm}$ c = 0.7594(3) nm
	other names found in the literatur	e: ζ, ^[3] F (high-ter	np. modification), ^[5] Al ₅ Fe ₂ Si ^[6]

Table I. Ternary Phases: Compositions, Crystal Structures, and Alternate Labels Used Previously

On the Reaction Scheme and Liquidus Surface in the Ternary System AI-Fe-Si

NATALIYA KRENDELSBERGER, FRANZ WEITZER, and JULIUS C. SCHUSTER

METALLURGICAL AND MATERIALS TRANSACTIONS A

Fig. 2—Isothermal section for 550 °C (note: phase boundaries shown are schematic only).

Fig. 6—Liquidus projection for Al-Fe-Si (note: due to lack of space reaction, U₁₄ is not labeled).

DSC

ErRh₄B₄ synthesis

Rational Growth/Materials Preparation Center