MTM Blessing Update

John Freeman Lina Galtieri, Jeremy Lys, Jason Nielsen, Igor Volobouev, Pedro Movilla Fernandez, Paul Lujan

LBNL/Texas Tech/UC Santa Cruz

March 29, 2007

To Be Blessed

- A couple of plots illuminating our analysis
- The systematic, and the final measurement
- Also, note that some already-blessed plots have had minor alterations:
 - GeV -> GeV/c^2
 - JES linearity plots have intercept information added to them along with slope
 - Changes can be seen in www-cdf.fnal.gov/internal/physics/top/run2mass/ multivar_analysis/mtm2/bless_plots.html

Hadronic-side propagator

Leptonic-side propagator

 Plot of our effective propagators on the hadronic and leptonic sides (no longer Breit-Wigners)

3

• Rebless; this was shown by Paul at DPF '06

John Freeman

• A plot of our TF-based efficiency as function of top mass and JES

John Freeman

TF Plots (I)

Fitted light guark transfer functions for parton P_T = 40 GeV/c

onex0.14

0.12

0.1

0.08

0.06

0.04

0.02

9 \$0.06

0.05

0.04

0.03

0.02

0.01

Ľ

• TF's: for light/b quarks, for each of the four detector regions, and for parton pt = 40 GeV/c and 70 GeV/c

p/E ratio

p/E ratio

Systematics Blessing, 3/29/07 John Freeman 5

TF Plots (II)

- Example of Johnson curve fits used to create the TF's here, the central eta region for light quark TF's is shown
- Also note that we fit only to region where jets are expected to pass selection cuts

John Freeman

Background Handling

 Plots of our discrimination variable for signal and background, for 1 tag and >1 tag cases

John Freeman

Likelihood Cut Efficiency

Type of event	1-tag	>1-tag
Good signal	94.7%	94.1%
Bad signal	73.7%	80.2%
Background	63.1%	57.5%

 Efficiencies for different types of event given our likelihood cut – nice indication of how useful this cut is

Systematics

- Changes since March 8
 - ISR, FSR, generator systematics all recalculated with new ttopel reconstructed mass of mt = 178.70 +/-0.22 GeV
 - Multiple Interaction systematic taken to be 0.05 GeV, rather than calculated from ttopzl sample
 - PDF reweighting systematics recalculated with updated, high-stats ttopel sample
- Final systematic: 1.4 GeV/c^2

Systematic source	2-D systematic (GeV)
ISR	0.75
FSR	0.67
MC generator	0.44
Gluon fraction	0.05
PDF re-weighting	0.46
Background fraction	0.39
Background composition	0.20
Background shape	0.29
Calibration	0.14
JES residual	0.28
Multiple interactions	0.05
b-JES	0.23
b-tag E_T dependence	0.02
Charm tag ratio	0.06
Lepton P_T	0.05
Background Q^2	0.30
Total	1.39

John Freeman

- Systematic error had been dominated by a mass measurement in ttopel which had a surprisingly high mass bias (A) compared to other Pythia samples (blind, ISR/FSR, etc.), and (B) compared to its higher stats re-measurement.
- With updated ttopel result, final systematic of 1.4 GeV; final measurement is :

 $Mt = 169.8 + -1.6 \text{ (stat.)} + -1.7 \text{ (JES)} + -1.4 \text{ (syst.)} \text{ GeV/c^2}$

 $\longrightarrow Mt = 169.8 + -2.7 \text{ GeV/c}^2$

John Freeman

BACKUP SLIDES

John Freeman

PDF Systematic

- Result updated using the high-stats ttopel sample
- Final systematic: 0.46 GeV

John Freeman

1-d vs. 2-d Systematic

Systematic source	1-D systematic (GeV)	2-D systematic (GeV)
ISR	0.74	0.75
FSR	0.48	0.67
MC generator	0.30	0.44
Gluon fraction	0.13	0.05
PDF re-weighting	0.18	0.46
Background fraction	0.22	0.39
Background composition	0.19	0.20
Background shape	0.55	0.29
Calibration	**	0.14
JES residual	**	0.28
Multiple interactions	0.05	0.05
b-JES	**	0.23
b-tag E_T dependence	0.28	0.02
Charm tag ratio	0.11	0.06
Lepton P_T	0.09	0.05
Background Q^2	0.34	0.30
Total	1.29	1.39

 Using 2-d systematic for b-JES, JES residual and calibration systematics, 1-d and 2-d systematics are actually quite close in value – 1.3 GeV (1-d case) vs. 1.4 GeV (2-d case)

John Freeman

ISR/FSR in 1-d and 2-d

Sample	1-d Mass Bias (GeV)	2-d Mass Bias (GeV)	JES Bias (1e-4)
Nominal	0.06 +/- 0.14	0.70 +/- 0.22	76 +/- 15
Less ISR	0.03 +/- 0.19	-0.05 +/- 0.29	3 +/- 21
More ISR	0.80 +/- 0.25	0.50 +/- 0.35	-18 +/- 27

Sample	1-d Mass Bias (GeV)	2-d Mass Bias (GeV)	JES Bias 1e-4
Nominal	0.06 +/- 0.14	0.70 +/- 0.22	76 +/- 15
Less FSR	0.13 +/- 0.22	0.03 +/- 0.34	0 +/- 24
More FSR	0.54 +/- 0.24	0.81 +/- 0.37	39 +/- 27

John Freeman