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Determination of Planeness and Bending of Optical Flats
Walter B. Emerson

The true contours, undistorted by gravitational bending, were determined for four
10 ̂ -inch-diameter standard optical flats of fused quartz. The bending deflections of
these flats were determined by a method based upon the differential bending with thickness
of the flats. Bending deflection curves of a flat supported ac three points equidistant from
the center of the flat and equidistant from each other were obtained. The locus of the
bending deflections at the center of a flat, similarly supported but with supports at different
distances from the center, approximates a straight line. This paper describes the method
used to obtain the true contours and the bending deflection curves of the flats, and compares
the bending values so determined with theoretically derived values.

1. Introduction
One activity of the National Bureau of Standards

is to determine the deviation from a plane of surfaces
of optical flats submitted for calibration. Usually
these are disks of fused quartz used as working
standards by makers of optical elements. Disks
10 in. in diameter, with specified maximum deviation
from a plane of 0.1 fringe (approximately 0.000,001
in.) are frequently submitted. These are tested by
interferometric comparison with the Bureau's 10 %-
in.-diameter fused quartz standard planes, the con-
tour of which should be known to a few hundredths of
a fringe to make the tests valid to the required
tolerance.

It is commonly assumed th^t by intercomparison
of three surfaces, the deviation of each surface from
a plane may be determined. This is true if the
flats are similarly supported and are identical except
for differences in surface contour. Otherwise, con-
sideration mast be given to the deflection of each
flat when supported in its position of test. Even
in the case of support of the lower flat in mercury,
some bending attributable to nonuniform distribu-
tion of forces by the weight of the upper flat and by
surface-tension effects at the edge of the lower flat
is to be expected. The theory of the bending of
circular plates has been developed by Nadai [1, 2,
3]* and Timoshenko [4], and from these theoretical
considerations an equation was formulated for cir-
cular plates supported at the vertices of an inscribed
equilateral triangle whereby the gravitational bend-
ing deflection along a diametric line parallel to two of
the supports may be determined with respect to a
plane passing through the points of support. The
results, based on a value ^ = 0.14 for Poisson's ratio,
are plotted as a dimensionless function from which
the bending along a given diameter of a quartz
plate may be readily determined.

In addition to deflections caused by bending, de-
flections are present because of shearing stresses and
stress normal to the face of the plate. When these
stresses are all taken into account for the case of a
plate simply supported at the edges, Timoshenko [4]
gives the following equation for the lateral deflection:

a)
1 Figures in brackets indicate the literature references at the end of this paper.

v2),

where
w=lateral deflection,
q=lateral pressure,

£>=flexural r i g i d i t y = M 3/12
!£= Young's modulus,
a=plate radius,
r=distance from center,
Ji=plate thickness,
*> = Poisson's ration.

For plates acted on by gravitational forces, the
lateral pressure is given by

q=pgh, (2)

where p is the density and g the acceleration of grav-
ity. Substituting (2) into (1) and replacing D by
M 8 / (1 — v2) gives

(3)

It is seen that the first term in this equation varies
inversely as the thickness squared and the second
term is independent of thickness. Relations similar
to (3), but depending differently on r, apply when the
plate is supported by other means than simple sup-
port. One can express the deflection of the plate as

1
(4)

where the functions /6, for bending, and/s, for shear
and lateral pressure depend only on the means of
support

It should be pointed out that eq (3) does not in-
clude the effect of local deformation near points of
concentrated load. These will be shown to be small,
by measurement, for the plates tested.

Relationship (4) furnishes a basis for determining
the true contour, undistorted by bending, shear, and
lateral pressure effects, of the surfaces of optical flats.

A method for determining the true contour and the
bending (the first term in relation (4)) of optical flats
is presented and this method is applied to determina-
tions of contour and to evaluation of the bending of
four optical flats, and compares the bending values so
determined with the values obtained according to
theory.
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2. Methods

2.1 Determination of True Contours

If a circular plate, resting on supports at the
vertices of an inscribed equilateral triangle, supports
a similar plate on supports directly above those for
the lower plate, the surfaces of the plates tend to sag.
If the surfaces were originally plane, the upper surface
of the lower plate will now be concave, and the adjac-
ent surface of the upper plate will be convex by an
equal amount if the plates are of equal thickness,
and by a greater amount if the upper plate is thinner-
With three transparent plates of like material,
properties, and diameter the true contour of their
surfaces (that is, if the plates were supported uni-
formly and did not bend) may be determined by
intercomparison of the plates, but no knowledge
of the amount the plates bend will be obtainable.
However, intercomparison of a series of plates
that differ only in thickness will yield not only the
true contour of the surfaces but also an evaluation
of the change in contour (bending deflection) of the
surfaces caused by the weight of the plates.

The following fused-quartz optical flats having a
nominal diameter of 10 5/8 in. were available for
intercomparison in this investigation:

Flat number

1
2
3
4

Diameter

Inches
10. 66
10. 61
10. 59
10. 58

Thickness
(0

Inches
1. 428
1.626
2. 50
2.50

t2

2. 039
2. 644
6. 250
6. 250

Flats 1 and 2, which have served as standard planes
at the Bureau for the past 30 years, contain numerous
strias and inclusions, and the quality of their ma-
terials is inferior to that of flat 3, which was recently
purchased, and also of flat 4, which was loaned for
this investigation by the maker of flat 3. Plats 3
and 4 are slightly wedge-shaped, and the listed
thickness is the average of measurements at several
places around the circumference. For the purpose
of this investigation, flats 3 and 4 are considered
identical, except for difference in contour.

Based on the relationship that the bending deflec-
tion varies inversely as the square of the thickness,
the deflection of flat 1 will be 1.30 times that of
flat 2 and 3.07 times that of 3 or 4; the deflection
of flat 2 will be 2.36 times that of 3 or 4.

By intercomparing flats 1,2, and 3 in the relative
positions shown in figure 1 (series 1) the true contour
of flat 1 may be obtained directly from interfero-
metric measurements of the sum. of the contours of
adjacent surfaces of the supported flats.
Let:

Each flat be supported at three points equidistant
from the center and equidistant from each other; the
supports for the upper flat be directly above those

SERIES

2

3

SERIES

1

3

SERIES

1

4

SERIES

1

3

No.

No.

No.

No.

1

2

3

4

— a

—a

Figure 1. Series 1—Combinations of flats to determine the true
contour of Numbers 1, 2, S, and 4-

for the lower flat; the algebraic sum of the contours
of adjacent surfaces be measured along a diametric
line parallel to two of the supports of each flat;

C\) C2; O'z=true contours, undistorted by bending,
of flats 1, 2, and 3;

a; b; c^measured sum of the contours of 1 on
3; 2 on 3; and 2 on 1, respectively;

±D=bending deflection of flat 3 (also of 4);
±A=bending deflection of flat l = ±3.07 D;
± A=bending deflection of flat 2= ±2.36 D;

S= shearing deflection of each plate;
+value=downward deflection;
—valuerupward deflection.

Then:
C1+D1+S+Cs-D-S=a

C2+D2+S+C*-D-S=b

and:

a—b+c

C2-O.71D=

a-\-b—c

Whereas C\ is obtained directly in terms of meas-
urable quantities a, b, c, values for C2 and (73 cannot
be determined from these measurements unless the
bending deflection D is known. Determinations that
require correction for D will be referred to as indirect
determinations.

Similarly, series 2, 3, and 4, figure 1, yield direct
values of C2, (73, and C4, respectively, and yield also
indirect values of Ci, Gz, and C4.
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FIGURE 2. Setup for the determinations of contour and bending.

2.2. Determination of Bending Deflection

Since the bending deflection (given by the first
term of eq (4) varies inversely as the thickness squared
the bending deflections Bx and D of flats 1 and 3,
respectively, may be determined from measurements
of the sum of the contours with flat 1 above and
beneath flat 3. If the measured values are a with
flat 1 above and a' with flat 3 above:

.07D=a;
( 5 )

(6)

a n d

C3+D+S+C1-'A.07D-S=af;

V mm eq (5) and (6),

4.UD=a-a'; 7J=0.242 (a—a'); A=0.743 (a—a').

Had a thinner flat, 0.75 in. thick, been available
for comparison with flat 3, the value (o—af), from
the measurements would equal 20.2 times the deflec-
tion of lint 3, thus increasing appreciably the accuracy
of the determinations of bending.

3. Procedure for Compar ing the Flats

One flat was supported, with its optical surface up,
by three l/N-in.-diameter paper disks spaced equidis-
tant from the center of the Hat and equidistant from
each o ther :>n the glass plate shown in figure 2. A
second flat, with, its optical surface down, was sup-
ported on the first flat by three similar disks directly
above the supports of the lower flat. The combina-
tion was placed on a movable carriage beneath a
Pulfrich viewing instrument [5]. By means of a
hand crank operating through reduction gears, the
combination could be moved slowly and smoothly
a c r o s s t h e f i e l d o f t h e v i e w i n g i n s t r u m e n t , w h i c h

FIGURE 3. Position of diametric line A-A relative to the points
of support, and of points P and Pj between which the measure-
ments were made.

served both as a source of monochromatic light and
as a means for measuring deviations of the resulting
fringes from a straight line, that is, the algebraic sum
of the contours of adjacent surfaces. Desired fringe
widths were obtained by selecting paper disks of
proper relative thickness. Widths corresponding to
300 divisions of the micrometer head of the viewing
instrument proved satisfactory in this work.

Measurements for each combination of flats were
made between points P and P,, figure .3, which are 5 in.
from the center and lie on a definite diametric line AA
that is parallel to supports R2and R:!. The sum of the
contours was determined for the inner 10-in. diam-
eter surface of the flats ra ther than for the entire
surface because of irregularities in the out ly ing area
that might affect the accuracy of measurements .

The deviation of a fringe from a straight line pass-
ing through the intersections of that fringe with the
circumference of the 10-in. surface was measured in
terms of divisions of the micrometer head of the
viewing instrument. The number of divisions thus
m e a s u r e d (g iven the p r o p e r s ign lo i n d i c a t e t h e d i -
r e c t i o n of c u r v a t u r e ) d i v i d e d by t h e d i v i s i o n s b e -
t w e e n success ive fringes is t h e a l g e b r a i c s u m of I h e
contours in terms of fringes. Determinations were
m a d e a t e l e v e n p o i n t s a l o n g t h e d i a m e t e r .

C o m p a r i s o n s w e r e m a d e in a t e m p e r a t u r e - e o n -
t ro l led r o o m w i t h (he Hals enc lo sed in a n i n s u l a t e d
c o n t a i n e r (no t s h o w n in fig. 2) covered i n s ide a n d
o u t s i d e w i t h a l u m i n u m - c o a l e d p a p e r . By u n c o v e r -
i ng a s m a l l o p e n i n g in t h e top of t h e c o n t a i n e r ,
fringes were observed and measured. The usual pro-
cedure w a s lo set u p t h e flats d u r i n g t h e f o r e n o o n ,
m e a s u r e I he c o m b i n a t i o n several t i m e s in (he a f t e r -
n o o n w h e n thermal c o n d i t i o n s w e r e s t a b i l i z e d , a n d
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repeat the observations the following morning, thus
completing one set of observations. The flats were
then reset and the procedure repeated. The final
values for the contours are based on an average of
five sets of observations for each combination of
flats. The maximum deviation of the individual
sets from the mean for a given combination in no
case exceeded 0.017 fringe for measurements at the
center; and the average deviation from the mean was
0.005 fringe.

4. Measurements and Results

4.1 True Contours

a. Direct Determinations

To test the validity of the methods described in
section 2.1 for determining the true contours of the
four standard flats, the differences a, b, c, d, e, /, g
(fig. 1, series 1, 2, 3, and 4) were determined by inter-
ferometric comparison when the flats were supported
at three points located as follows:

5.06 in. (0.95 X radius r) from the center

3.5 in. (0.66 X radius r) from the center.

From these measurements the true contours of the
flats were obtained from equations

a—b-\-c b — a-{-d

C! = J—r + a

Additional values were obtained with the flats, sup-
ported at 0.95r by substituting flat 2 for flat 1 in
series 3 and 4, and flat 4 for flat 3 in series 1 and 2.

The resulting determinations of the true contour of
flat 1 are given in table 1. The two determinations
at 0.95r, columns 2 and 3, differ by only a few units
in the third decimal place. Column 4 gives the
mean of the determinations at 0.95r. The contours
determined with supports at 0.66r are given in
column 5. Column 6 gives the difference between
the contours determined for the two conditions of
support, and indicates that true contours obtained
by this method are nearly the same whether deter-
mined with supports at 0.95r or at 0.66r. Column
7 gives the mean of the direct determinations of
true contour for these two supports.

The magnitude of the differences given in columns
4 and 6 for this flat are representative of those
similarly obtained for flats 2, 3, and 4.

b. Indirect determinations

Intercomparison of the various combinations in
section 2.1 for different positions of the supports
yields some equations that include terms 0.7LD,
1.36Z), or 2.07Z), where D is the bending deflection
of 2.5-in.-thick flats 3 or 4 at points between P
and Pi, figure 3, relative to the bending deflection
at points P, Pi. Values for D were obtained from
determinations described in section 4.2. The magni-
tude of D will depend upon the position of the sup-
ports and the place of measurement. By substi-
tuting the values thus determined for D in the
equations that include a term for the bending
deflection, additional values of the true contours of
the four flats were obtained.

TABLE 1. True contour (in fringes) of the central 10-in.-diameter surface of optical flat 1 by direct and indirect methods

+value=convexity; —value=concavity

"T)istanc6
fromP

1

Inches
0.0

. 5
1.5.
2.5
3.5

4.5
5.0
5.5
6.5
7.5

8.5
9.5

10.0

Direct determinations

Position of supports

0.95r

2

0.000
-.021
-.069
-.084
-.111

-.137
-.132
-.127
-.108
-.079

-.053
-.022

.000

3

0.000
-.019
-.065
-.081
-.112

-.135
-.128
-.127
-.110
-.077

-.053
-.021

.000

Mean
2 and 3

4

0.000
-.020
-.067
-.083
-.112

-.136
- . 130
-.127
-.109
-.078

-.053
-.022

.000

0.66r

5

0.000
-.021
-.061
-.079
-.104

-.133
-.129
-.125
-.108
-.072

-.055
-.024

.000

Differ-
ence
4-5

6

0.000
+.001
-.006
-.004
-.008

-.003
-.001
-.002
-.001
-.006

+.002
+.002

.000

Mean
4 and 5

7

0.000
-.021
-.064
-.081
- . 108

-.135
-.130
-.126
-.109
-.075

-.054
-.023

.000

Indirect determinations (corrected for bending term)

Position of supports

0.95r

For corresponding
bending terms—

(2.07D)

8

0.000
-.023
-.062
-.077
-.107

-.136
-.128
-.124
-.109
-.074

-.053
-.024

.000

(0.71D)

9

0.000
-.027
-.068
-.080
-.108

-.135
-.129
-.124
-.102
-.075

-.050
-.022

.000

(0.71D)

10

0.000
-.025
-.064
-.077
-.109

-.133
-.125
-.125
-.105
-.073

-.049
-.021

.000

Mean
8,9 and

11

0.000
-.025
-.065
-.078
-.108

-.135
-.128
-.124
-.105
-.074

-.051
-.022

.000

0.66r

For correspond-
ing bending

terms—

(2.07D)

12

0.000
-.024
-.067
-.082
-.110

-.135
-.130
-.127
-.110
-.074

-.054
-.026

.000

(0.71D)

13

-

0.000
-.027
-.072
-.085
-.114

-.136
-.129
-.127
-.110
-.074

-.054
-.026

.000

Mean
12 and

14

0.000
-.026
-.070
-.084
-.112

-.136
-.130
-.127
-.110
-.074

-.054
-.026

.000

Differ-
ence

11-14

15

0.000
+.001 •
+.005
+.006
+.004
+.001
+.002
+.003
+.005

.000

+.003
+.004

.000

Mean
11 and

14

16

0.000
-.026
-.068
-.081
-.110

-.136
-.129
-.126
-.108
-.074

-.053
-.024

.000

Differ-
ence
7-16

17

0.000
-.005
+.004

.000
+.002
+.001
- .001

.000
-.001
-.001

-.000
+.001

.000

Con-
tour

(mean
7 and

16)

18

0.000
-.024
-.066
-.081
-.109

-.136
-.130
-.126
-.109
-.075

-.054
-.024

.000
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The indirect determinations for flat 1 with sup-
ports at 0.95r are given in table 1, columns 8, 9, 10,
and with supports at 0.66r, in columns 12, and 13.
Columns 11 and 14 give the means of determinations
at 0.95r and 0.66r, respectively. Column 15 gives
the difference between the mean values at 0.95r
and 0.66r. As with the direct determinations, the
individual indirect determinations differ from their
respective mean values in the third decimal place,
and likewise the differences in their mean values
are small notwithstanding the large differences in
bending term values applied in the equations.
Column 16 gives the mean of the indirect determina-
tions for the flats supported at 0.95r and at 0.66r.
The small differences between the direct values (col.
7) and the indirect vlaues (col. 16) shown in column
17 are attributed to experimental errors. Equally
small differences between direct and indirect values
were obtained for flats 2, 3, and 4. Column 18
gives the true contour of flat 1, and is taken as the
average of the direct and indirect determinations.
The true contours of the four standard flats are shown
in figure 4.

4.2 Bending of Flats

The bending deflection was determined from com-
parisons of flats 1 and 3 by the method described in
section 2.2.

These flats were supported as previously on 1/8-in.-
diameter paper disks at three points equidistant
from the center of the flat and equidistant from each
other. The deviation of a fringe from a straight line
was measured for the inner 10-in.-diameter surfaces
along a diametric line parallel to two of the supports
of each flat: first with flat 1 above; and second with
flat 3 above. The measured deviations were a and
a', respectively.

To determine the effect on bending when the flats
were supported at different distances from the cen-
ter, tests were made with supports at the following
distances: 1.0 in. (0.19r); 1.5 in. (0.28r); 2.5 in.
(0.47r);3.5in. (0.66r);4.25in. (0.80r); 5.06 in. (0.95r)

The bending deflection of flat 1 was calculated
from, equation Z?i = 0.743 (a—af), except for the 0.19r
support, for which no value of a' was determined.2
The deflection for this support was calculated from
I)i=lA8S[a—(Ci + C$)], using the values previously
determined for Cx and C3.

Figure 5 gives the bending curves for the inner
10-in. surface of flat 1 supported at different dis-
tances from the center. The bending deflection at
the center changed from a downward (+) deflection
of 0.143 fringe for supports at 0.95r to an upward

2 Support near the center appears to be a severe condition that might cause
permanent change in the flat, and therefore should, in general, be avoided. Pre-
vious tests of flats supported 0.5 in. from the center gave a pronounced peak dis-
tortion at the center. In the present instance, flats 1 and 3 were supported for
1 day at 0.19r. A month later, when the flats were supported at 0.95r and com-
pared, the measured values for a and a' differed from previous values by approxi-
mately —0.03 fringe, thus indicating either a permanent or temporary differential
change in the flats. During the following month, the flats were supported at
0.95r, that is, in a position in which the deflection is in a direction opposite to that
with supports near the center. At the end of the month measured values of a
and a' approached closely the original values, indicating that the change may
have been caused wholly or in part by plastic flow of the fused quartz. As a
subject for investigation, it appears important to determine, with flats other than
the Bureau's standard planes, the nature of the changes in contour that occur
when flats are supported in extreme positions.
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FIGURE 4. True contours of the four standard optical flats.
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FIGURE 5.—Bending curves for flat Number 1 supported at
different distances from its center.
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FIGURE 6.—Bending deflection at the center of Number 1 rela-
tive to points P, Pi 5 in. from the center, for
supports at different distances from the center.

(—) deflection of 0.278 fringe for supports at 0.19r.
Inspection of the curves indicated that the bending
deflection of a flat supported at 0.70r would be quite
small. Determinations were then made for this con-
dition. The results, which are shown with the other
curves in figure 5, indicate that the bending along
the diametric line does not exceed 0.01 fringe for
flat 1. The bending of thicker flats 3 and 4 when
supported at 0.70r could be considered negligible.

The bending deflections at the center of the sur-
face of flat 1 when plotted for the different supports
appear to fall approximately on a straight line, figure
6. By projecting the line to intersect the circumfer-
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ence of this 10.66-in.-diameter flat, the bending de-
flection that would result, if the flat were supported
at its edge, is obtained. The best value for the
bending deflection, WE, at the center of flat 1 with
respect to points on the diametric line 5 in. from the
center (that is, for the inner 10-in. surface) when the
flat is supported at its edge appears to be

WE=0.177 fringe=2.05X10"6 in.

The data given in figures 5 and 6 may have appli-
cation when very accurate comparisons of a standard
flat and a test flat of less diameter are required. The
test flat in this case may rest on supports at 0.70 of
its radius to give minimum bending, and the sup-
ports for the standard may be placed in vertical
alignment with these. The true contour of the
standard may then be corrected by the bending data
to give its contour in the position of test.

5. Comparison of Theoretical and Experi-
mental Values for Bending Deflection

Figure 7 is the theoretical curve for the bending
deflection at the center of a 10-in. diameter inner
surface of flat 1 along AA with respect to a plane
defined by the three symmetrically spaced points of
support BBB of a uniformly loaded fused-quartz
plate.

Constants for flat I:8 a=5.33 in.; h=lA2S in.;
P = 10.18 lb; #=10.15 X106 psi; ?=0.14.

From figure 7, w(Eh?/Pa2) at the center of flat 1
(r/a=0) with respect to a plane through the points
oi support is 0.424; or

w=4.15X10-6in. (7)

.9 1.0

FIGURE 7. Bending deflection of uniformly loaded plate sup-
ported at three equally spaced points on circum-
ference BBB.

E, Modulus of elasticity; P, weight of plate; a, radius of plate; h, thickness of
plate; r, distance from center; v, 0.14, Poisson's ratio for fused quartz; w, deflec-
tion along A-A relative to BBB.

3 Values for E and v are those considered by Sosman [
used quartz.

] as the best values for

Similarly, w(Ehz/Pa2) at a point along AA 5 in. from
the center (r/a=0.94) is 0.195; or

w1=1.91X10-6in. (8)

The difference between (7) and (8), or wT is the
bending deflection at the center of flat 1 with respect
to points P and Pi on AA that are 5 in. from the
center; or wr=2.24X10~6 in. The corresponding
deflection wE determined experimentally (section 4.2)
is w^=2.05X10~6 in.; that is, the theoretical value
is between 9 and 10 percent greater than that deter-
mined experimentally.

In order to determine the relative shapes of theo-
retical and experimental bending curves for compa-
rable conditions of support, the deflections given in
figure 5 for the bending curve of flat 1 supported at
0.95r were increased by the ratio 177/143 (see section
4.2) to approximate the condition of edge support for
which the theory applies.

Figure 8 shows that the theoretical and the experi-
mental bending curves are similar in shape but differ
in magnitude of the deflections. The values derived
by theory average about 11 percent greater than those
obtained by the method used in this investigation.

This agreement between the theoretical and the
experimental values for bending appears satisfactory
in view of the many factors that might influence
either result. The experimental values would be
affected by small differences in setting the flats,
errors of measurement, insufficient number of
measurements taken to integrate small local varia-
tions in optical surfaces as noted by Saunders [7],
and the use of supports of finite size rather than
point supports. Likewise, the theoretical values
would be different were other values used for E and v.
The values determined for these elastic constants of
fused quartz by different observers vary appreciably
as shown in a summary by Sosman [6]. He states,
"A study of the assemblage as a whole will show there

2.4

2.0

1.6

1.2

0.8

0.4

0 1 2 3 4 5 6 7
DISTANCE FROM P, INCHES

FIGURE 8.— Theoretical and experimental bending curves of flat
Number 1 supported at three equally spaced points on its
circumference. The curves give the difference in the bending
deflection at points along a diametric line that is parallel to
two of the supports and the deflection at points on the same
line that are 5 in. from the center of the flat. Bending deflec-
tions relative to the points of support may be obtained by
increasing the theoretical values 1.91XW~& in. and by in-
creasing the experimental values 1.7Xl0~Q in.
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is not much consistency, either in the theory or ex-
periment among the various values. Part of the
reason, I feel sure, is that the usual specimen of
vitreous silica is not structurally isotropic, as we have
been assuming, but is to a greater or less degree
aeolotropic." From this consideration alone, the
values of v and E used to calculate the theoretical
bending may not apply to the standard flats.

Substitution of the theoretical value for bending
for the experimental value would change the true
contour at the center of flat 1, as given in table 1
for supports at 0.95r, by 0.01 fringe in those cases
where corrections of 2.07D are applied, and would
vitiate to some extent the excellent agreement of
direct and indirect determinations of contour. The
determined bending deflection values may, therefore,
be more applicable to the present flats and their
conditions of test than the theoretical ones.

6. Effect of Supports of Finite Size

When flats supported on balls are compared, a
series of interference fringes concentric about the
point of contact of support and surface is visible,
indicating an appreciable deformation of the surface
concentrated at the point of contact. The reason
for using 1/8-in-diameter paper supports in the
present work was to distribute the load over a larger
area and thereby avoid damage to the flats. Local
distortion of the surface surrounding the disks for
about 3/32 in. beyond the supports was evident
when viewing the fringes. At the edge of a disk, the
surface of the flat was depressed about 0.3 fringe.
It is quite reasonable that the deflection may be
somewhat less when flats are supported on the disks
rather than points, thus giving a lower value than
that required by theory. To test this, from con-
sideration of contour, bending, shear, local deforma-
tion at the supports, and thickness of the flats, the
following equation was derived, in which contour,
shear, and the effect of the supports are eliminated.

An. 1
2
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'-b
-tx

a'
ty

tx

— a
—tx

+tz
tl

in which Z?ln. is the bending deflection of a plate 1 in.
thick and tx, tv, tz=thickness of plates X, Y, Z,
and Dinjtl is the bending deflection of X. From
comparisons of X and Y: a is the deviation of a
fringe from a straight line, with X above, and a' is
the deviation of a fringe from a straight line, with Y
above. From comparisons of X and Z: b is the
measured deviation, with X above, and b' is the
measured deviation, with Z above.

The difference between the values for bending pre-
viously determined and those by this method was

less than the experimental error of this method. No
effect of local deformation on the bending deflection
was therefore indicated by these experiments.

The excellent agreement between contours ob-
tained with support at 0.95r and at 0.66r, table 1,
indicates that local deformation near the supports
had negligible effect on the contour measurements.

7. Conclusion
Precise calibration of optical flats requires that

account be taken of the surface distortion that results
when the flats are supported in their position of test.
For a 10 5/8-in.-diameter, 1 7/16-in.-thick fused-
quartz optical flat supported at three equally spaced
points at its edge, the gravitational bending deflection
at the center of the flat with respect to its points of
support will be approximately 4 X 10~6 in. To reduce
this to 1 X 10~6 in. (0.1 fringe) would require a thick-
ness of 2.9 in. on the basis of theoretical computa-
tions, which agree quite closely with experimental
determinations. The bending deflection will increase
appreciably for larger flats because it varies directly
as the fourth power of the radius. For three-point
support, bending is small and at a minimum when
the supports lie on the circumference of a circle hav-
ing a radius 0.7 that of the flat.

Whenever two flats of the same material and diam-
eter but of different thicknesses are available and can
be similarly supported during comparison, the bend-
ing deflection of each flat may be determined by the
described methods. Likewise, if three flats of the
same material and diameter are available, very
precise determinations of the true contours, undis-
torted by bending of their surfaces, may be deter-
mined.

The author expresses his deep appreciation to
Samuel Levy of the Engineering Mechanics Section of
the Bureau for his cooperation in the theoretical de-
terminations of the deflection of plates that were used
in this investigation and for his many helpful
suggestions.
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