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Abstract
The Niobrara Total Petroleum System (TPS) is a self-

sourced system that produces oil and natural gas from frac-
tured carbonate rock reservoirs in the Upper Cretaceous 
Niobrara Formation and equivalent rocks of the Southwestern 
Wyoming Province. The Niobrara TPS encompasses the 
area of eastern and southeastern Greater Green River Basin 
of southwestern Wyoming and northwestern Colorado. The 
Niobrara and equivalents were deposited during a major Late 
Cretaceous marine transgressive cycle that created conditions 
favorable for the deposition of fine-grained marine carbonate 
rocks and the preservation of organic matter. The Niobrara 
ranges in thickness from 900 to 1,800 feet and consists mainly 
of interbedded organic-rich shale, calcareous shale, and marl. 
The hydrocarbon source beds contain predominantly Type-II 
oil-prone organic matter with total organic carbon contents 
ranging from 0.85 to 2.75 weight percent. Thermal maturities 
range from less than 0.60 percent Ro (vitrinite reflectance) 
along the eastern and southern flanks of the basin to greater 
than 1.35 percent Ro in deeper parts of the basin. Because of 
the fine-grained nature of the Niobrara, petroleum production 
is dependant on fractures that develop in hard, brittle, carbon-
ate-rich zones. These brittle calcareous reservoirs are overlain, 
underlain, and (or) interbedded with soft, ductile marine shales 
that inhibit migration and seal the hydrocarbons within the 
fractured reservoir zones. Burial-history reconstructions and 
petroleum generation models show that the Niobrara entered 
the oil window between 72 and 67 million years ago. Along 
the shallow flanks of the basin the Niobrara remains in the oil 
window. With continued subsidence and burial in the deeper 
portions of the basin, the Niobrara reached thermal maturities 
sufficient to crack oil to gas.

The Niobrara TPS is subdivided into two assessment 
units based on thermal maturity:  a continuous oil assessment 
unit and  a continuous gas assessment unit. The assessment 
units are characterized as “continuous-type” accumulations 
because they have the following characteristics: (1) no down-
dip hydrocarbon/water contact, (2) little or no water produc-
tion, (3) abnormally pressured, and (4) production independent 
of structural closure. The continuous oil assessment unit is an 
established assessment unit located in the updip parts of the 

eastern and southern flanks of the basin where thermal maturi-
ties are less than 1.35 percent Ro and generally are considered 
to be within the oil window. The continuous gas assessment 
unit is hypothetical and is located in the deeper portions of the 
basin where thermal maturities are greater than 1.35 percent 
Ro. The mean volume estimate of undiscovered oil resource 
for the Niobrara continuous oil assessment unit is 103.6 mil-
lion barrels of oil. The hypothetical Niobrara continuous gas 
assessment unit was not quantitatively assessed because of a 
lack of production data and (or) a suitable analog. 

Introduction
The Southwestern Wyoming Province (SWWP) (5037) 

is a large sedimentary and structural basin that formed during 
the Laramide orogeny (Late Cretaceous through Eocene). The 
SWWP covers approximately 23,000 mi2 and occupies most of 
southwestern Wyoming, parts of northwestern Colorado, and a 
small area of northeastern Utah (fig. 1). The basin is structur-
ally bounded on the west by the Wyoming thrust belt, on the 
north by the Wind River and Granite Mountains uplifts, on the 
east by the Rawlins, Sierra Madre, and Park uplifts, and on 
the south by the Uinta Mountains and Axial Basin uplift. The 
Niobrara Total Petroleum System (TPS) (503703) produces 
primarily oil from fractured, calcareous-rich shales, shaley 
limestones, and marls from the Upper Cretaceous Niobrara 
Formation or equivalent rocks, in the eastern portions of the 
Greater Green River Basin (GRRB).
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Figure 1. Index map of southwestern Wyoming, northeastern Utah, and northwestern Colorado showing the location of the South-
western Wyoming Province, structural configuration, intrabasin uplifts, and subbasins.  Structure contours drawn on top of the 
Mesaverde Group. Contour interval = 1,000 feet.
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and petroleum-generation models; and P.G. Lillis and M.D. 
Lewan (USGS) for providing geochemical data and numerous 
discussions regarding organic geochemistry and source rocks. 
This manuscript was reviewed by R.M. Pollastro and M.J. 
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Structural and Tectonic Setting
The western margin of the SWWP is formed by the 

Wyoming thrust belt (fig. 1), an easterly bulging salient of 
the Sevier orogenic belt that began to form in latest Jurassic 
or earliest Cretaceous time and ended in the Eocene (Arm-
strong and Oriel, 1965). The western margin is an area that is 
characterized by imbricate, gently west-dipping, east-directed 
decollement-style (thin-skinned) thrust faults that involve 
only sedimentary rocks, and north-trending folds (Royse and 
others, 1975). A broad, asymmetric foreland basin developed 
east of the Sevier orogenic belt in response to tectonic and 
sediment loading (Jordan, 1981), and during much of the Cre-
taceous Period the foreland basin was partially to completely 
flooded by the Western Interior Seaway (fig. 2). The seaway 
formed in response to the presence of the subsiding foreland 
basin and periodic eustatic rise in sea level. By the close of 
the Cretaceous Period (Maastrichtian) the western shoreline of 
the seaway retreated eastward as the foreland basin gradually 
filled in with sediments derived from the eroding uplifts of the 
Sevier orogenic belt (fig. 2). The end of the Cretaceous also 
marks the onset of the Laramide orogeny, a period of crustal 
instability and compressional tectonics in the foreland basin 
that continued into the Eocene. During the Laramide orogeny, 
the foreland basin was fragmented into numerous smaller 
basins that were each flanked by rising basement-cored uplifts. 
The smaller basins, such as the Greater Green River Basin, 
subsided rapidly and were depocenters for the accumulation of 
thick lacustrine and continental sediments.

Present-day structure of the SWWP is largely a result 
of Laramide compressional deformation that is characterized 
by basement-involved thrust faults (thick-skinned), reverse 
faults, wrench faults, and strongly folded and faulted anti-
clines and synclines. The north, south, and eastern margins of 
the basin are formed by Precambrian basement-cored uplifts 
that in many places have overridden the sedimentary basin 
section along high-angle basement-involved (thick-skinned) 
thrust faults (Ryder, 1988). Several major intrabasin uplifts are 
present in the SWWP and include the Moxa arch, La Barge 
platform, Sandy Bend arch, Rock Springs uplift, Wamsutter 
arch, and Cherokee ridge (fig. 1). Several of these intraba-
sin uplifts subdivide the SWWP into smaller structural and 
topographic subbasins. The most prominent of these uplifts is 
the north-south-trending Rock Springs uplift, a doubly plung-
ing asymmetric anticline that divides the SWWP into nearly 
equal halves. West of the Rock Springs uplift, the northwest-
southeast-trending Sandy Bend arch extends from the La 

Barge platform to the west flank of the Rock Springs uplift 
and separates the Green River Basin (sometimes referred to as 
the Bridger Basin) on the south from the Hoback Basin to the 
north. East of the Rock Springs uplift, the east-west-trending 
Wamsutter arch extends from the eastern flank of the Rock 
Springs uplift to south of the Rawlins uplift and separates the 
Great Divide Basin in the northeast corner of the SWWP from 
the Washakie Basin. The Cherokee ridge roughly parallels 
the Colorado-Wyoming State line and separates the Washakie 
Basin on the north from the Sand Wash Basin on the south 
(fig. 1).

Depositional Setting
During Late Cretaceous time, a broad epicontinental 

seaway, the Western Interior Seaway, extended from the Arctic 
Ocean to the Gulf of Mexico. The seaway (fig. 2) inundated 
an asymmetric foreland basin that was bordered on the west 
by the tectonically active highlands of the Sevier orogenic 
belt that supplied sediment to eastward-flowing streams. The 
eastern shore was on the stable cratonic platform that sup-
plied little sediment (Molenaar and Rice, 1988; Williams and 
Stelck, 1975). During much of Late Cretaceous time, the sea 
advanced and retreated across the western part of the fore-
land basin, resulting in a complex pattern of intertonguing 
marine and nonmarine deposits. The nonmarine deposits are 
represented by eastward-thinning clastic wedges of sandstone, 
siltstone, shale, and coal. The marine deposits are represented 
by westward-thinning tongues of marine shale and siltstone 
(fig. 3). In the eastern and central sediment-starved parts of the 
seaway, clastic input was minimal, creating conditions favor-
able for carbonate deposition. In the eastern and southeastern 
portions of the SWWP, carbonate-rich sediments are repre-
sented by the Niobrara Formation and equivalent rocks in the 
lower parts of the Mancos and Steele Shales. 

Niobrara Formation
The Niobrara Formation and laterally equivalent rocks 

were deposited during a period of high eustatic sea level and 
crustal subsidence in the Western Interior Seaway, result-
ing in a major marine transgression and conditions favorable 
for carbonate deposition. In the eastern part of the seaway 
where clastic input was minimal, chalks and limestone are 
the principal lithologies of the Niobrara in the Denver Basin 
of eastern Colorado (Pollastro and Scholle, 1986). In the 
SWWP, the Niobrara and equivalent rocks reflect a gradual 
westward decrease in chalk and other carbonate components 
and an increase in siliciclastic sediments because of its closer 
proximity to the detrital source, the thrust belt to the west. 
In the SWWP, the Niobrara Formation and equivalent rocks 
consist of interbedded organic-rich shale, calcareous shale, 
and marl, with minor amounts of sandstone, siltstone, lime-
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Figure 2. Paleogeographic reconstruction of the Western Interior Seaway during Coniacian-Santonian time.  Modified from  
Roberts and Kirschbaum, 1995. Southwestern Wyoming Province is outlined in red.

Area of carbonate
deposition

Se
vie
r

O
ro
ge
ni
c

B
el
t

S
ta
bl
e

pl
at
fo
rm

C
oa
st
al

pl
ai
n

A
llu
vi
al

pl
ai
n

Highlands

Coastal
plain

Mires

Alluvial

plain

Offshore
marine

Volcanoes

W
estern

Interior

S
eaw

ay



  5Niobrara Total Petroleum System in the Southwestern Wyoming Province

Figure 3a,b. Generalized regional stratigraphic cross sections of restored Upper Cretaceous rocks.  A–A’ extends east-west 
across southern Wyoming, and B–B’ extends north-south from northern Wyoming to northwestern Colorado. Cross sections show 
the complex intertonguing relationship between marine and nonmarine deposits. Rocks of fluvial origin are shown in red; coastal 
plain, green; marine-shoreline, shelf, and slope sandstones and siltstones, yellow; marine shale, gray; calcareous-rich marine 
deposits are shown in blue. Modified from Roehler, 1990.

WY

UT CO

B

B'
0 25 MILES

APPROXIMATE SCALE

Teapot Ss.

Parkman Ss. Mbr.

Sussex Ss. M
br.

Shannon Ss. Mbr.

Fishtooth Ss.

Ss. Mb
r.Hatfield

Pine Ridge Ss.

Dad Ss. Mbr.

Deep Creek Ss. Mbr. Morapos Ss. Mbr.

Kremmling Ss. Mbr.
Tow Crk Ss. Mbr.

Trout Creek Ss. Mbr.

Twentymile Ss. Mbr.

Niobrara Fm.

Pierre Sh.

Lance Fm.

Lewis Sh.

Cody Sh.

Mesaverde Grp.

Fox Hills Ss.

Frontier Fm.

Steele Sh.

Lewis
Sh.

Allen R
idge F

m.

Almond Fm.

Hayst
ack M

ts. Fm
.

Niobrara Fm.

Mancos Sh.

Iles Fm.

Williams Fork Fm.

Lewis Sh.

Lance Fm.

M
aa
st
ric
ht
ia
n

C
am

pa
ni
an

S
an
to
n-

ia
n

C
on
ia
ci
an

Tu
ro
-

ni
an

B B'
STUDY AREA

WY

UT CO

B

B'
0 25 MILES

APPROXIMATE SCALE

Teapot Ss.

Parkman Ss. Mbr.

Sussex Ss. M
br.

Shannon Ss. Mbr.

Fishtooth Ss.

Ss. Mb
r.Hatfield

Pine Ridge Ss.

Dad Ss. Mbr.

Deep Creek Ss. Mbr. Morapos Ss. Mbr.

Kremmling Ss. Mbr.
Tow Crk Ss. Mbr.

Trout Creek Ss. Mbr.

Twentymile Ss. Mbr.

Niobrara Fm.

Pierre Sh.

Lance Fm.

Lewis Sh.

Cody Sh.

Mesaverde Grp.

Fox Hills Ss.

Frontier Fm.

Steele Sh.

Lewis
Sh.

Allen R
idge F

m.

Almond Fm.

Hayst
ack M

ts. Fm
.

Niobrara Fm.

Mancos Sh.

Iles Fm.

Williams Fork Fm.

Lewis Sh.

Lance Fm.

C
am

pa
ni
an

S
an
to
n-

ia
n

C
on
ia
ci
an

Tu
ro
-

ni
an

B B'
STUDY AREA

WY

UT CO

B

B'
0 25 MILES

APPROXIMATE SCALE

Teapot Ss.

Parkman Ss. Mbr.

Sussex Ss. M
br.

Shannon Ss. Mbr.

Fishtooth ss.

Ss. Mb
r.Hatfield

Pine Ridge Ss.

Dad Ss. Mbr.

Deep Creek Ss. Mbr. Morapos Ss. Mbr.

Kremmling Ss. Mbr.
Tow Crk Ss. Mbr.

Trout Creek Ss. Mbr.

Twentymile Ss. Mbr.

Niobrara Fm.

Pierre Sh.

Lance Fm.

Lewis Sh.

Cody Sh.

Mesaverde Grp.

Fox Hills Ss.

Frontier Fm.

Steele Sh.

Lewis
Sh.

Allen R
idge F

m.

Almond Fm.

Hayst
ack M

ts. Fm
.

Niobrara Fm.

Mancos Sh.

Iles Fm.
Williams Fork Fm.

Lewis Sh.

Lance Fm.

G
ill
et
te
,

W
yo
.

La
m
on
t,

W
yo
.

H
ay
de
n,

C
ol
o.

K
re
m
m
lin
g,

C
ol
o.

C
am

pa
ni
an

S
an
to
n-

ia
n

C
on
ia
ci
an

Tu
ro
-

ni
an

B B'
STUDY AREA

(b)

WY

UT CO

A A'
0 25 MILES

APPROXIMATE SCALE

Chal
k Cre

ek M
br.

Coalvil
le Mbr.

Adaville Fm.

Allen Hollo
w Mbr.

Oyster Ridge Ss.
Mbr.

Grass Creek Mb
r.

Shurtliff Ss. Mbr.

Lazeart Ss. Mbr. Airport T.

Chimney Rock T.

Black Butte T.

McCourt T.

Trail Mbr.

Rusty zone

Canyon Creek Mbr. Pine Ridge Ss.

Tapers Ranch Ss. Mbr.

O'Brien Spring Ss. Mbr.

Deep Creek Ss. Mbr.

Hatfield Ss. Mbr.

Dad Ss. Mbr.

?Frontier Fm.

Mesaverde Group

MOXA
ARCH

Hilliard Sh.
Baxter Sh.

Blair Fm.Ro
ck
Sp
ring

s F
m.

STUDY AREA

Ericson Ss.

Lewis Sh.

Lance Fm.

Almond Fm.

Steele Sh.

Frontier Fm.

Ha
yst
ac
k M

ts.
Fm
.

Allen Ridge
Fm.

Medicine Bow Fm.
Fox Hills Ss.

Niobrara Fm.

M
aa
st
ric
ht
ia
n

C
am

pa
ni
an

S
an
to
ni
an

C
on
ia
ci
an

Tu
ro
-

ni
an

A A'

WY

UT CO

A A'
0 25 MILES

APPROXIMATE SCALE

Chal
k Cre

ek M
br.

Coalvil
le Mbr.

Adaville Fm.

Allen Hollo
w Mbr.

Oyster Ridge Ss.
Mbr.

Grass Creek Mb
r.

Shurtliff Ss. Mbr.

Lazeart Ss. Mbr. Airport Ss. Member

Chimney Rock T.

Black Butte T.

McCourt T.

Trail Mbr.

Rusty zone

Canyon Creek Mbr. Pine Ridge Ss.

Tapers Ranch Ss. Mbr.

OBrien Spring Ss. Mbr.

Deep Creek Ss. Mbr.

Hatfield Ss. Mbr.

Dad Ss. Mbr.

?Frontier Fm.

Mesaverde Group

K
em

m
er
er
,

W
yo
.

R
oc
k
S
pr
in
gs
,

W
yo
.

R
aw

lin
s,

W
yo
.

R
oc
k
R
iv
er
,

W
yo
.

MOXA
ARCH

Hilliard Sh.
Baxter Sh.

Blair Fm.Ro
ck
Sp
ring

s F
m.

STUDY AREA

Ericson Ss.

Lewis Sh.

Lance Fm.

Almond Fm.

Steele Sh.

Frontier Fm.

Ha
yst
ac
k M

ts.
Fm
.

Allen Ridge
Fm.

Medicine Bow Fm.
Fox Hills Ss.

Niobrara Fm.

C
am

pa
ni
an

S
an
to
ni
an

C
on
ia
ci
an

Tu
ro
-

ni
an

A A'

(a)



6  Petroleum Systems and Geologic Assessment of Oil and Gas in the Southwestern Wyoming Province, Wyoming, Colorado, and Utah

stone, and chalk (Vincelette and Foster, 1992; Longman and 
others, 1998). A 200- to 400-ft-thick zone directly overlying 
the Frontier Formation has been identified by Vincelette and 
Foster (1992) as the Carlile Shale (fig. 4a). This zone, identi-
fied on well logs by a lower resistivity response than adjacent 
units, consists of clay-rich, noncalcareous marine shale and is 
included with the Niobrara in this study. This conforms with 
usage by numerous authors including Haskett (1959) (fig. 4b), 
Kucera (1959), and Hale (1961). To the west and north, typical 
Niobrara facies grades into noncalcareous marine shale, sand-
stone, and siltstone of the Baxter Shale (fig. 3a; also Finn and 
Johnson, Chapter 14, this CD–ROM, their pl. 1). The west-
ern limit of this facies change occurs in the deeper, sparsely 
drilled portions of the Sand Wash, Washakie, and Great Divide 
Basins; however, the limits of the Niobrara calcareous facies 
of the Niobrara are not well mapped.

The Niobrara is underlain by the Frontier Formation 
and overlain by a thick sequence of marine shale. In the Sand 
Wash Basin in Colorado, the thick overlying marine section is 
named the Mancos Shale; in the Washakie and Great Divide 
Basins of Wyoming it is named the Steele Shale (fig. 5). The 
basal contact of the Niobrara is well defined and coincides 
with the uppermost sandstone of the underlying Frontier 
Formation. The upper contact is transitional with the overlying 
Mancos or Steele Shales and is not well defined in the sub-

surface but is identified by a distinctive high-resisitivity kick 
on electric well logs (fig. 4; also Finn and Johnson, Chapter 
14, this CD–ROM, their pl. 1). Regional studies by Longman 
and others (1998) show that the thickness of the Niobrara and 
equivalent rocks varies from less than 100 ft in South Dakota 
to more than 1,800 ft in west-central Wyoming, with a range 
of thickness in the eastern portions of the Southwestern Wyo-
ming Province of 900 to 1,800 ft (fig. 6). This prominent west-
ward thickening of the Niobrara is due to the large influx of 
siliciclastic sediments derived from actively eroding highlands 
of the thrust belt to the west.

The age of the Niobrara is considered to be Coniacian 
to Santonian (Hale, 1961), and Bader and others (1983) show 
that the upper part of the Niobrara corresponds to the ammo-
nite zone of Desmoscaphites bassleri. This species, which is 
late Santonian, also occurs in a marker bed several hundred 
feet below the top of the Airport Sandstone Member of the 
Baxter Shale in exposures on the Rock Springs uplift (Smith, 
1965). A similar age is reported by Smith (1961) for the basal 
part of the Lazeart Sandstone Member of the Adaville Forma-
tion in the thrust belt near Kemmerer, Wyoming. 

Figure 4. Type log (a) and subsurface cross section (b) of the Niobrara Formation in northwestern Colorado. Marine sandstones 
are shown in yellow, clay-rich marine shale in gray.  Calcareous-rich zones that are more prone to fracturing are highlighted in light 
blue.  Type log modified from Vincelette and Foster, 1992.  Subsurface cross section modified from Haskett, 1959.  Heavy vertical 
black bars indicate oil-producing zones. Location of type log and line of section are shown in figure 7.
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Figure 5. Generalized correlation chart of Cretaceous and lower Tertiary rocks in the Southwestern Wyoming Province.  The 
stratigraphic interval contained in the Niobrara Total Petroleum System is highlighted in light blue. Modified from Ryder, 1988.
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Figure 6. Isopach map showing the distribution and thickness of the Niobrara Formation in the Southwestern Wyoming province.  
Thickness in feet.  Contour interval = 300 feet. Modified from Longman and others, 1998.
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Niobrara Total Petroleum System 
(503703)

The Niobrara Total Petroleum System (TPS) (503703) 
produces self-sourced oil and natural gas from low-permeabil-
ity, fractured, carbonate-rich rocks in the Upper Cretaceous 
Niobrara Formation and from its stratigraphic equivalents in 
the lower parts of the Mancos and Steele Shales. The Niobrara 
TPS encompasses the eastern one-third of the SWWP and 
covers approximately 8,400 mi2 of the Sand Wash, Washakie, 
and Great Divide Basins (fig. 7). The eastern and southeastern 
boundaries of the TPS are defined by the base of the outcrop 
of the Niobrara or equivalent rocks at the base of Mancos or 
Steele Shales. The southern boundary is the Axial Basin uplift 
(fig. 1). The western boundary is poorly defined because few 
wells have penetrated the Niobrara in the deeper portions 
of the Sand Wash, Washakie, and Great Divide Basins. The 
western boundary is defined here to coincide with subsurface 
mapping presented by Barlow and others (1994). Oil produc-
tion in this area appears to be restricted to the Niobrara, and 
geochemical data indicate no other reservoirs contain Niobrara 
sourced oil (P.G. Lillis, oral commun., 2002,). Thus, strati-
graphically, the Niobrara TPS is constrained to the Niobrara 
Formation and equivalent rocks (fig. 5).

Source Rocks
Regional studies by Landon and others (2001) and 

Meissner and others (1984) indicate that organic matter in 
the Niobrara Formation is Type-II, oil-prone kerogen. The 
sediments were deposited during a major marine trangressive 
cycle known as the Niobrara cyclothem (Kauffman, 1977) 
during which highstand conditions persisted. This resulted in 
basin deepening that produced anoxic conditions favorable to 
the preservation of organic matter. According to Landon and 
others (2001), the richest source rocks are in the Denver Basin 
with total organic carbon (TOC) contents ranging up to about 
8 weight percent in areas that were sediment-starved along 
the foreland basin. Westward into south-central Wyoming the 
TOC content decreases to 2.14 weight percent (Landon and 
others, 2001) because influx of siliciclastic sediments from the 
western area diluted the organic matter. Vincelette and Foster 
(1992) report that up to 700 ft of the Niobrara has source-rock 
potential in northwestern Colorado. 

Rock-Eval data for 28 Niobrara samples (U.S. Geological 
Survey Organic Geochemistry Database) from well cuttings 
from northwestern Colorado and south-central Wyoming 
were plotted on a modified van Krevelen diagram (Espit-
alie and others, 1977), a graph of S2 vs. %TOC (Langford 
and Blanc-Valleron, 1990), and a hydrogen index vs. Tmax 
diagram (Bordenave and others, 1993) (fig. 8). These plots 
indicate that the majority of the samples are Type-II, oil-
prone kerogen with some mixing from Type-III, gas-prone 

kerogen. The Type- III kerogen was most likely derived from 
terrestrial sources along the western shoreline, and (or) from 
cavings from the overlying Mancos Shale. TOC values for the 
same 28 Niobrara samples ranged from 0.85 to 2.75 weight 
percent (fig. 8a) with an average of 1.85 weight percent. For 
samples with Tmax values less than 435 (fig. 8a), TOC content 
increased and ranged from 1.1 to 2.75 weight percent with an 
average of 2.06 weight percent.

Reservoir Rocks
The lithology of the Niobrara Formation and equiva-

lent strata in the eastern part of the province is composed of 
interbedded calcareous shale, shaley limestone, and marls. The 
fine-grained nature of these lithologies results in little matrix 
porosity or permeability, therefore production is dependent on 
fractures. Vincelette and Foster (1992) have identified several 
discrete zones of calcareous shale, shaley limestone, or marl 
informally referred to as the Wolf Mountain, Tow Creek, and 
Buck Peak benches that account for the majority of Niobrara 
production (fig. 4). These benches have greater carbonate 
content than adjacent, more shaley beds and form hard, brittle 
zones that promote fracturing and produce good reservoirs. 
Reservoir zones typically range from 50 to 200 ft in thickness, 
but in some wells may be as much as about 400 ft thick.

Detailed fracture studies from surface and subsurface 
rocks in northwest Colorado show that the fractures in the 
Niobrara are mineralized and contain either calcite, quartz, or 
gypsum (Vincelette and Foster, 1992; Saterdal, 1955). These 
vein-filling minerals may partially line or completely plug 
fracture systems and reduce permeability. Vincelette and Fos-
ter (1992) found that many fractures associated with Laramide 
structures were completely filled by calcite, which resulted in 
poor reservoir performance. In contrast, the best production 
is from reservoirs with fractures associated with Neogene-age 
extensional features where calcite cements line, rather than 
plug, fractures within productive reservoirs (Vincelette and 
Foster, 1992). Vincelette and Foster also found that many of 
the productive fractures associated with Laramide structures 
that were initially plugged with calcite vein material were 
reopened by later Neogene extension, particularly in areas 
where preexisting fractures were oriented with structures 
formed by post-Laramide extension. In these cases, fractures 
were reopened along preexisting zones of weakness and lined, 
but not completely filled, by calcite.

Seal Rocks
A thick section (up to several thousand feet) of soft, 

noncalcareous Mancos or Steele Shale provides a good qual-
ity regional seal over the Niobrara Formation within the TPS 
(Finn and Johnson, Chapter 14, this CD–ROM, their plate 1). 
In addition, hard, brittle reservoir zones within the Niobrara 
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Figure 7. Map of the Southwestern Wyoming Province showing the extent of the Niobrara Total Petroleum System, major 
structural elements, location of type log and cross section, and location of wells used in burial reconstructions.  Contours 
represent the approximate depth in feet to the base of the Niobrara Formation (modified from Kirschbaum and Roberts, Chapter 
5, this CD–ROM).  Contour interval = 2,000 feet. 
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are overlain, underlain, and (or) interbedded with relatively 
ductile, clay-rich marine shales that are lower in carbon-
ate content than the adjacent reservoirs (fig. 5). These soft, 
plastic zones are not as prone to fracturing and tend to seal the 
hydrocarbons within the fractured reservoirs (Mallory, 1977; 
Pollastro, 1992).

Traps

Most Niobrara production is from fractured reservoirs 
associated with Laramide-age folding (fig. 9) and, according to 

Vincelette and Foster (1992), fracture production occurs along 
the crestal parts of anticlines as well as down both the steep 
and gentle flanks where production is independent of structural 
closure. These fractures formed in response to folding and 
faulting of brittle reservoir rocks during Laramide compres-
sional tectonics. Additional production comes from fractures 
or fracture swarms that are associated with faults and fault sys-
tems formed during post-Laramide Neogene extension (Vince-
lette and Foster, 1992); the best producing wells intersect or 
are in close proximity to normal faults. According to Hansen 
(1986) post-Laramide extension began early in the Miocene 
and continued into the Quaternary at a diminishing rate.

Figure 8. Plots of data from 
Rock-Eval analysis of kerogen of 
28 Niobrara Formation samples, 
USGS Organic Geochemistry 
Database.  The samples are 
from well cuttings from north-
western Colorado and south-
central Wyoming (the samples 
from northwestern Colorado 
are from the Sand Wash Basin 
and the northern part of the 
Piceance Basin), (a) S2 vs. total 
organic carbon, (b) hydrogen 
index vs. Tmax, and (c) modified 
van Krevelen diagram. Majority 
of samples indicate a Type-II 
oil-prone kerogen with some 
Type-III. Black dots represent 
samples with a Tmax < 435, red 
dots represent samples with a 
Tmax ≥ 435. 
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Thermal Maturity
Thermal maturity mapping of the Niobrara from vitrin-

ite reflectance (Ro) data shows a general increase in maturity 
westward into deeper parts of the basin. Ro values range from 
less than 0.60 percent along the flanks of the basin, to greater 
than 1.35 percent  in the deeper portions of the Sand Wash, 
Washakie, and Great Divide Basins (fig. 10). Thermal matu-
rity generally reflects the structural configuration of the basin 
and indicates that thermal maturation trends are related to the 
structural development of the basin. The 0.60 percent Ro con-
tour is the lower limit of oil generation from Type-II organic 
matter and geographically defines the pod of mature source 
rock. Areas that are less than 0.60 percent Ro are considered 
thermally immature, and the generation of oil or thermogenic 
gas is not expected. The “oil window” for Type-II organic mat-
ter is commonly considered to be in the range of 0.60 to  
1.35 percent Ro (Hunt, 1996). Thus, Niobrara oil accumula-
tions are predicted for those areas where the Ro is between 
0.60 and 1.35 percent. The level of thermal maturity needed 

to initiate the thermal cracking of oil to gas is not well known 
but is generally considered to be greater than 1.35 percent 
Ro (Law, 2002); therefore, Niobrara gas accumulations are 
predicted for those areas where the Ro is greater than 1.35 per-
cent. Direct measurements of thermal maturity were unavail-
able for Niobrara samples; therefore, Ro data were collected 
from the overlying coal-bearing Mesaverde Group and Lance 
and Fort Union Formations (Law, 1984; Pawlewicz and others, 
1986; Merewether and others, 1987; and Pawlewicz and Finn, 
2002). These data were plotted on a Ro versus depth graph and 
a visual best-fit line was drawn through the points and extrapo-
lated to the Niobrara horizon (fig. 10).

Hydrocarbon Generation
Burial-history curves using PetroMod1D Express (ver-

sion 1.1) (see Roberts and others, Chapter 3, this CD–ROM, 
for detailed discussion of petroleum generation models, and 
parameters used to generate burial and thermal histories) 

Figure 9. Structure contour map on the Dakota Sandstone in the southern part of the Sand Wash Basin showing the relationship of 
Niobrara Formation production to fold axes and faults. Heavy red line is the Southwestern Wyoming Province boundary. Sources of 
structural data are Tweto (1976, 1979) and Barlow and Haun, Inc. (1997) Abbreviation S.L., sea level.
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Figure 10. Eastern part of the Southwestern Wyoming Province showing variations in levels of thermal maturity based on 
vitrinite reflectance (Ro) for the Niobrara Formation and equivalent rocks.
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were generated for three wells to model petroleum-generation 
history of Niobrara source rocks. The Texas Pacific #1 Bear, 
located along the shallow southeastern flank of the Sand Wash 
Basin (fig. 7), is located in sec. 26, T. 7 N., R. 89 W. The Koch 
Exploration #1 Adobe Town unit, located in the deep central 
part of the Washakie Basin (fig. 7), is in sec. 20, T. 15 N., R. 
97 W. The Southland Royalty #1 Eagles Nest, located in the 
deep northern part of the Great Divide Basin (fig. 7), is located 
in sec. 29, T. 25 N., R. 91 W. Two types of modeling were 
performed on these wells to predict timing and type of hydro-
carbon generation. They are (1) time-temperature modeling 
based on vitrinite reflectance and (2) kinetic modeling based 
on time-temperature integrated with the results of hydrous-
pyrolysis experiments.

Time-temperature modeling predicts critical levels of 
thermal maturity based on vitrinite reflectance by integrating 
burial and thermal history and time (fig. 11). The burial- 
history curve for the #1 Bear well (fig. 11a) indicates that the 
base of the Niobrara was buried to a depth of approximately 
7,500 ft and entered the oil window at about 72 Ma. The top 
of the Niobrara passed through the oil window at maximum 
burial of 12,500 ft and entered the oil cracking phase, which 
ended when regional uplift and cooling occurred at about  
5 Ma. The burial-history curve for the #1 Adobe Town well 
(fig. 11b) shows that the Niobrara was buried to a depth of 
about 9,000 ft when entering the oil window at 71 Ma. With 
continued subsidence and the accumulation of about 6,500 ft 
of additional sediment along the deep axis of the Washakie 
Basin, the Niobrara passed through the oil window at 57 
Ma and reached an Ro of 1.35 percent, the level of thermal 
maturity generally considered sufficient to crack oil to gas. 
The burial-history curve for the #1 Eagles Nest well (fig. 
11c) shows a burial history similar to the #1 Adobe Town 
well. In this well the Niobrara was buried to about 11,000 ft 
and entered the oil window at about 67 Ma. With additional 
accumulation of 7,500 ft of sediments in the deep trough of 
the Great Divide Basin, the Niobrara passed through the oil 
window by 56 Ma, when the thermal cracking of oil to gas was 
then initiated.

Kinetic models were also generated for these same wells 
and used to reconstruct the maturation history of Type-II 
oil-prone kerogen (fig. 12). Kinetic modeling by Roberts and 
others (Chapter 3, this CD–ROM) uses time and temperature 
integrated with results of laboratory hydrous-pyrolysis experi-
ments to predict timing and type of hydrocarbon genera-
tion. Modeling by Roberts and others (this CD–ROM) using 
hydrous-pyrolysis kinetic parameters of Lewan and Ruble 
(2002) suggests that oil generation for Type-II kerogen begins 
at an Ro of 0.68–0.69 percent, peaks at around 0.92 percent, 
and ends at an Ro of 1.13 to 1.17 percent. The bottom of the 
oil window occurs at a transformation ratio of 0.99, meaning 
there is essentially no kerogen left to convert to oil.

The level of thermal maturity at which oil is cracked to 
gas is uncertain but is generally thought to be greater than 
an Ro of about 1.35 percent (Law, 2002); however, hydrous- 
pyrolysis experiments by Tsuzuki and others (1999) indicate 

that oil is stable at higher maturities. The results of model-
ing by Roberts and others (Chapter 3, this CD–ROM) using 
hydrous-pyrolysis kinetic parameters of Tsuzuki and others 
(1999) indicate that oil cracking begins at an Ro of about  
1.72 percent, gas generation peaks at around 2.39 percent and 
ends around 2.79 percent. The end of the gas-generation phase 
occurs at a transformation ratio of 0.99, meaning there is virtu-
ally a 100-percent reaction and almost no oil left to transform 
to gas.

Based on the hydrous-pyrolysis kinetic models, timing 
of oil generation in the #1 Bear (fig. 12a) well shows that the 
Niobrara began generating oil at about 70 Ma, remained in 
the oil window until about 43 Ma, but did not reach thermal 
maturities sufficient to crack oil to gas. Oil generation began 
in the 1 Adobe Town well (fig. 12b) around 68 Ma and ended 
by 60 Ma. Continued burial in the deeper part of the Washakie 
Basin elevated maturities to a level sufficient to crack oil to 
gas at around 54 Ma, and with additional burial the Niobrara 
passed through the gas window by 48 Ma. Oil generation in 
the #1 Eagles Nest well (fig. 12c) began at 66 Ma and ended 
by 59 Ma. Gas generation from thermal cracking of oil began 
around 54 Ma and continued until about 24 Ma.

Migration Summary
Landon and others (2001) believe that given the fine-

grained lithology, low matrix porosity and permeability of the 
Niobrara, and the integrity of the overlying and interbedded 
seals, hydrocarbons have not migrated far from where they 
were generated. Figure 10 shows that most of the oil produc-
tion from the Niobrara in the SWWP is in areas where the 
Niobrara is thermally mature with respect to oil generation 
(0.60 percent to 1.35 percent Ro), with few wells producing 
in areas where the Niobrara is immature or marginally mature 
(Ro<0.60 percent). This relationship of thermal maturity and 
hydrocarbon production also indicates that most of the oil 
that has been produced was generated in place and has not 
migrated great distances into less mature reservoirs. 

Events Chart
The events chart (fig. 13) summarizes the essential ele-

ments of source rock, reservoir rock, seal rock, and overburden 
rock and the processes of generation, migration, accumulation, 
and trap formation that are essential to form petroleum accu-
mulations. Deposition of source, reservoir, and intra- 
formational seal rocks of the Niobrara Formation in the 
SWWP occurred during Late Cretaceous time (88–84 Ma). 
This was followed by deposition of several thousand feet 
of Mancos Shale, and equivalent Steele Shale, forming a 
thick, overlying regional seal. Based on burial-history and 
petroleum-generation curves, the amount of overburden rock 
required to reach thermal maturation levels sufficient to gener-
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Figure 11. Burial-history curves showing levels of thermal maturity based on vitrinite reflectance for the (a) Texas Pacific #1 Bear, 
(b) Koch Exploration #1 Adobe Town, and (c) Southland Royalty #1 Eagles Nest. Location of wells is shown in figure 7. Burial-history 
curves were constructed using the program PetroMod1D Express (version 1.1).
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Figure 12. Burial-history curves showing maturation history of Type-II kerogen based on hydrous-pyrolysis kinetic models for 
the (a) Texas Pacific #1 Bear, (b) Koch Exploration #1 Adobe Town, and (c) Southland Royalty #1 Eagles Nest. Location of wells is 
shown in figure 7. Burial-history curves were constructed using the program PetroMod1D Express (version 1.1). Green represents 
the oil window.  Red represents the gas-generation phase from the thermal cracking of oil.
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ate oil occurred at about 72 Ma. Critical overburden deposition 
was from the Mancos Shale and equivalent rocks and several 
thousand feet of the Mesaverde Group. Along the shallow 
flanks of the basin, the Niobrara remained in the oil window 
until about 10–5 Ma when regional uplift and erosion occurred 
(preservation time). With continued subsidence and the addi-
tional accumulation of 6,500 to 7,500 ft of sediments of the 
Lewis Shale, Lance Formation, and the Fort Union Formation 
in the deeper parts of the basin, the Niobrara passed through 
the oil window at approximately 59 Ma, reaching thermal 
maturities greater than 1.35 percent Ro and initiating thermal 
cracking of oil to gas (critical moment). Because mainly oil is 
produced from Niobrara reservoirs that are thermally mature 
with respect to oil (Ro 0.60 to 1.35 percent) and Niobrara-
sourced oil is not found in other reservoir rocks, it appears 
that little or no migration has taken place. Fractures that form 
the reservoirs in brittle, calcareous-rich zones of the Niobrara 
developed as a result of Laramide compressional tectonics, 
and during post-Laramide Neogene extension. These fractured 
carbonate-rock reservoirs are associated with anticlinal, syn-
clinal, and monoclinal folds, and fault zones. 

Assessment Units in the Niobrara Total 
Petroleum System (503703)

An assessment unit (AU) is a mappable volume of rock 
within a Total Petroleum System that contains known or pos-
tulated oil and gas accumulations that share similar geologic 
characteristics (Klett and others, 2000). The Niobrara Total 
Petroleum System (503703) is subdivided into two AUs based 
on levels of thermal maturity: (1) a continuous oil assessment 
unit (AU 50370361), and (2) a continuous gas assessment unit 
(AU 50370362). 

Niobrara Continuous Oil Assessment Unit  
(AU 50370361)

The Niobrara Continuous Oil Assessment Unit (AU 
50370361) is an established AU that produces mainly oil from 
self-sourced, organic-rich fractured carbonate-rock reservoirs. 
It encompasses approximately 4,600 mi2 and occupies the 
southern and eastern flanks of the Sand Wash Basin in Colo-
rado and the eastern flanks of the Washakie and Great Divide 
Basins in Wyoming (fig. 14). The eastern boundary of the 

Figure 13. Events chart showing the relationship of essential geological elements and processes for the Niobrara Total Petroleum 
System and assessment units. Kn, Niobrara Formation; Km, Mancos or Steele Shale; Kmv, Mesaverde Group; Kle, Lewis Shale; 
Kl, Lance Formation; Tfu, Fort Union Formation; Twgr, Wasatch and Green River Formations; undiff., undifferentiated Oligocene or 
Miocene deposits.
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Figure 14. Southwestern Wyoming Province showing the areal extent of the Niobrara Continuous Oil Assessment Unit (AU 
50370361) and location of producing wells. Contours show approximate depth to the base of the Niobrara Formation (modified from 
Kirschbaum and Roberts, Chapter 5, this CD–ROM). Contour interval = 2,000 feet.
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Continuous Oil AU, coinciding with the TPS boundary, is the 
base of the outcrop of the Niobrara Formation or stratigraphic 
equivalent strata at the base of the Mancos or Steele Shales; 
the southern boundary is the Axial Basin uplift (fig. 1). The 
western boundary is defined by the 1.35 percent Ro contour, 
which is generally considered the bottom of the oil window 
and the level of thermal maturity at which oil cracks to gas 
(Law, 2002; Hunt, 1996). This AU is restricted stratigraphi-
cally to the Niobrara and equivalent rocks because there is no 
geochemical evidence of Niobrara-type oils being produced 
from other reservoir rocks, indicating little or no migration 
has taken place. This is due to the presence of overlying and 
interbedded thick plastic shales that seal fractured Niobrara 
reservoirs and provide a barrier to migration.

The oil accumulations in the Niobrara and equivalent 
strata are of the continuous type (unconventional) using the 
criteria established by Schmoker (1996) and have the follow-
ing characteristics:

1. Lack of downdip water contacts (Vincelette and Foster, 
1992; Mallory, 1977).

2. Little or no water production (Vincelette and Foster, 
1992; Cummings, 1961).

3. Production extending downdip off structure into  
synclinal areas (Vincelette and Foster, 1992).

4. Abnormally pressured (either high or low). Vincelette 
and Foster (1992) report a pressure gradient for the 
Buck Peak field of 0.285 psi/ft calculated from drill-
stem tests. Unpublished pressure data reports pressure 
gradients for fields in the Sand Wash Basin range from 
0.25 to nearly 0.40 pounds per square inch per foot 
(P.H. Nelson and J. Kibler, U.S. Geological Survey, 
oral commun., 2003).

5. Production independent of structural closure (Vince-
lette and Foster, 1992; Mallory, 1977).

6. Reservoirs in close association with source rocks.

The Niobrara Continuous Oil Assessment Unit is lightly 
explored with the first oil discovery at Tow Creek in 1924 
(Ogle, 1961). Since then, according to the IHS Energy Group 
(2001) production database, 337 wells have penetrated the 
Niobrara section, with approximately 150 producing from the 
Niobrara. Producing intervals range in depth from 1,200 to 
nearly 10,000 ft. According to Vincelette and Foster (1992), 
most production to date is associated with the Laramide-age 
anticlinal and monoclinal folds (fig. 9), and many of these 
accumulations (“sweet spots”) were discovered while drilling 
known structures for deeper conventional reservoir horizons. 
Due to the underpressured nature of the Niobrara reservoirs, 
it is suggested that many potential producers were bypassed 
because conventional drilling muds may have caused forma-
tion damage or masked shows in the Niobrara. Potential for 

future discoveries in this oil AU would most likely be “sweet 
spots” formed by fractures associated with Laramide com-
pressional features, including faults, anticlinal and synclinal 
trends, regional lineament features, and faulting associated 
with post-Laramide Neogene extension.

Niobrara Continuous Gas Assessment Unit  
(AU 50370362)

The Niobrara Continuous Gas Assessment Unit (AU 
50370362) is a hypothetical assessment unit that is believed 
to have the potential to produce natural gas from fractured 
carbonate-rich reservoirs in the Niobrara Formation and 
equivalent rocks. The gas is self-sourced and believed to 
have originated from the thermal cracking of self-sourced 
oil within the Niobrara Formation. The gas AU encompasses 
approximately 3,800 mi2 of the western half of the Niobrara 
TPS and is located in the deeper downdip parts of the Sand 
Wash, Washakie, and Great Divide Basins (fig. 15). The 
eastern boundary of the gas AU is defined by the 1.35 percent 
Ro contour, the level of thermal maturity that is commonly 
believed to be the bottom of the oil window and the level at 
which oil begins to thermally crack to gas (Law, 2002; Hunt, 
1996). The southern boundary of the gas AU is defined by the 
Axial Basin uplift (fig. 1). The western boundary of the AU 
is the western limit of the Niobrara facies in the subsurface as 
mapped by Barlow and others (1994) and coincides with the 
western boundary of the Niobrara TPS. Good-quality top seals 
are provided by the soft plastic shales of the overlying Mancos 
and Steele Shales that act as a barrier for vertical migration; 
thus, the gas AU is restricted stratigraphically to the Niobrara 
interval.

The Niobrara Continuous Gas Assessment Unit (AU 
50370362) is characterized as a continuous-type (unconven-
tional) accumulation with the characteristics of an indirect 
basin-centered gas system (BCGS) as defined by Law (2000, 
2002). Some of the characteristics of the Niobrara Continuous 
Gas Assessment unit that are attributes of an indirect BCGS 
include: 

1. Oil-prone source rock.

2. Pressure mechanism – oil cracking.

3. Top of BCGS greater than 1.3–1.4 percent Ro.

4. Abnormally pressured. Reservoir pressures reported 
for the Twin Buttes field in the northern part of the 
Great Divide Basin indicate a pressure gradient for the 
Niobrara reservoir of 0.28 psi/ft (Kendell, 1979). 

5. Good quality top seal.

Little exploration has taken place within this gas AU 
because throughout most of the AU the top of the Niobrara 
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Figure 15. Southwestern Wyoming Province showing the areal extent of the Niobrara Continuous Gas Assessment Unit (AU 
5037062) and location of producing wells. Contours show approximate depth to the base of the Niobrara Formation (modified from 
Kirschbaum and Roberts, Chapter 5, this CD–ROM). Contour interval = 2,000 feet.
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occurs at depths ranging from 12,000 to greater than  
22,000 ft in the deep troughs of the Sand Wash, Washakie, and 
Great Divide Basins (fig. 15). According to IHS Energy Group 
(2001) database, only two fields produce or have produced 
natural gas from single wells in the Niobrara or equivalent 
strata: (1) the Twin Buttes field located in the northern part of 
the Great Divide Basin, and (2) the Shell Creek field located 
along the southern flank of the Cherokee ridge (fig. 15). 
During the late 1970s, the Twin Buttes field produced natural 
gas from what is now a single shut-in well in the Niobrara at 
depths greater than 13,000 ft. Cumulative production in this 
well was nearly 11 MMCF with no oil or water production 
reported. The Shell Creek field currently produces natural 
gas from a single well in the Niobrara at depths greater than 
15,000 ft, with a cumulative production through 1999 of 
approximately 226 MMCF, 3,694 barrels of water, and no oil. 
Potential for future discoveries in this AU would most likely 
be “sweet spots” associated with fracture development located 
along major structural elements such as the Cherokee ridge 
and the Wamsutter arch.

Assessment Results of Undiscovered 
Resources

Niobrara Continuous Oil Assessment Unit  
(AU 50370361)

The Niobrara Continuous Oil Assessment Unit (AU 
50370361) covers approximately 4,600 mi2 in the eastern por-
tion of the SWWP (fig. 14). Input data for the assessment are 
shown on the FORSPAN ASSESSMENT MODEL FORM in 
the Appendix. The minimum, median, and maximum areas, 
in acres, for the AU are 2,622,000, 2,914,000, and 3,205,000 
acres, respectively. The reason for the uncertainty is because 
the position of the 1.35-percent Ro isotherm, the western 
boundary of the AU, is based on sparse Ro data. The AU is 
mostly untested with only 337 wells penetrating the Niobrara 
section for a median percentage of 2 percent of the total AU 
area tested. Of the 337 tested cells, 133 were identified as pro-
ducers for a historical success ratio of 40 percent. This success 
ratio might have possibly been higher, but due to the under-
pressured nature of the Niobrara reservoirs it is believed that 
many potential producers were bypassed because conventional 
drilling muds may have caused formation damage or masked 
shows in the Niobrara.

The minimum, median, and maximum percentages of the 
untested AU area that has potential for additions to reserves 
in the next 30 years are 2, 5, and 8 percent, respectively (see 
Appendix). The median area represents potential fracture 
(“sweet spots”) development associated with known anticlinal 

and synclinal trends, faults and fault zones, and plunges of 
folds, identified from published geologic and structure maps 
(Love and Christiansen 1985; Tweto, 1976, 1979; Barlow and 
Haun, Inc., 1997). These areas would most likely occur in 
areas where thermal maturities range from 0.60 to 1.35 percent 
Ro. The maximum area would include additional unidenti-
fied subtle structures and regional lineaments (Maughan and 
Perry, 1986; Thomas, 1971). The minimum area accounts for 
fractures that contain vein-filling minerals, thus resulting in a 
loss of permeability and nonproductive reservoirs (Vincelette 
and Foster, 1992).

Graphs showing the estimated ultimate recovery (EUR) 
distribution for Niobrara wells are shown in figure 16. Figure 
16a shows the distribution for all wells, and figure 16b shows 
the distribution by discovery thirds. The number of wells in 
each discovery third is the same, but the time span represented 
for each third may be different. The median EUR for all wells 
is 55,000 barrels of oil (BO) with a maximum of 1,600,000 
BO. Median EURs for the first, second and third discov-
ery thirds are 150,000, 60,000, and 20,000 BO (Appendix), 
respectively. Lower EURs for the second and third thirds most 
likely reflects interference among infill wells drilled at closer 
than optimal spacing.

The minimum, median, and maximum total recovery 
per cell for untested cells having potential for additions to 
reserves over the next 30 years is 1,000 BO, 80,000 BO, and 
1,600,000 BO, respectively (Appendix). The median of 80,000 
BO is lower than that of the historical first third of 150,000 
BO because we suggest that many of the best locations were 
drilled early, but is higher than the median for the second and 
third discovery thirds because we believe that if new wells are 
drilled outside areas of established production,they will not 
experience interference problems.

The minimum, median, and maximum area per cell of 
untested cells having the potential for additions to reserves 
in the next 30 years is 40, 160, and 400 acres, respectively. 
This wide range in drainage areas reflects the variable produc-
tion that can be typical of many fractured reservoirs. Variable 
production in these wells is due to the rapid lateral changes 
in fracture intensity caused by lithologic variations, fault inten-
sity, and tectonic setting (Vincelette and Foster, 1992).       

Tabulated results for the Niobrara Continuous Oil Assess-
ment Unit for undiscovered oil, gas, and natural gas liquids 
that have potential for additions to reserves in the next 30 
years are summarized in table 1.

Niobrara Continuous Gas Assessment Unit (AU 
50370362)

 The Niobrara Continuous Gas Assessment Unit (AU 
50370362) was not quantitatively assessed because of the lack 
of production data or a suitable analog. 
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Figure 16. Estimated ultimate recovery (EUR) for wells in the Niobrara Continuous Oil Assessment Unit (AU 50370361): (a) EUR 
distribution for all wells, (b) EUR distribution by discovery thirds. Discovery thirds refers to the division into three equal parts of the 
number of wells drilled in the AU.  The wells were ordered by completion date and then divided into three equal or nearly equal num-
bers of wells in order to investigate how the EURs have changed with time. The 2.5 and 5.5 MMBBL points indicated by a (?) on the 
curve for the 1st discovery third are most likely multiple wells listed under a single lease name and probably do not represent EURs 
for a single well.
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Appendix A. Data form used for evaluating the Niobrara Continuous Oil Assessment Unit, Niobrara Total Petroleum System, 
Southwestern Wyoming Province, Wyoming, Colorado, and Utah.

Assessment Geologist:… T.M. Finn and R.C. Johnson Date: 8/26/2002
Region:…………………… North America Number: 5
Province:…………………. Southwestern Wyoming Number: 5037
Total Petroleum System:. Niobrara Number: 503703
Assessment Unit:………. Niobrara Continuous Oil Number: 50370361
Based on Data as of:…… IHS Energy Group, 2001, NRG 2001 (data current through 1999), Wyoming Oil and Gas

Conservation Commission

Notes from Assessor…..

Assessment-Unit type: Oil (<20,000 cfg/bo) or Gas (>20,000 cfg/bo) Oil
What is the minimum total recovery per cell?… 0.001 (mmbo for oil A.U.; bcfg for gas A.U.)
Number of tested cells:.………… 337
Number of tested cells with total recovery per cell > minimum: ……... 133
Established (>24 cells > min.) X Frontier (1-24 cells) Hypothetical (no cells)
Median total recovery per cell (for cells > min.): (mmbo for oil A.U.; bcfg for gas A.U.)

1st 3rd discovered 0.15 2nd 3rd 0.06 3rd 3rd 0.02

Assessment-Unit Probabilities:
Attribute Probability of occurrence (0-1.0)

1. CHARGE: Adequate petroleum charge for an untested cell with total recovery > minimum …… 1.0
2. ROCKS: Adequate reservoirs, traps, seals for an untested cell with total recovery > minimum. 1.0
3. TIMING: Favorable geologic timing for an untested cell with total recovery > minimum……….. 1.0

Assessment-Unit GEOLOGIC Probability (Product of 1, 2, and 3):………........……. 1.0

4. ACCESS: Adequate location for necessary petroleum-related activities for an untested cell
with total recovery> minimum ……………………………………………………………… 1.0

1. Total assessment-unit area (acres): (uncertainty of a fixed value)
minimum 2,622,000 median 2,914,000 maximum 3,205,000

2. Area per cell of untested cells having potential for additions to reserves in next 30 years (acres):
(values are inherently variable)

calculated mean 173 minimum 40 median 160 maximum 400

3. Percentage of total assessment-unit area that is untested (%): (uncertainty of a fixed value)
minimum 97 median 98 maximum 99

4. Percentage of untested assessment-unit area that has potential for additions to reserves in
next 30 years (%): ( a necessary criterion is that total recovery per cell > minimum)
(uncertainty of a fixed value) minimum 2 median 5 maximum 8

IDENTIFICATION INFORMATION

FORSPAN ASSESSMENT MODEL FOR CONTINUOUS
ACCUMULATIONS--BASIC INPUT DATA FORM (NOGA, Version 7, 6-30-00)

NO. OF UNTESTED CELLS WITH POTENTIAL FOR ADDITIONS TO RESERVES IN THE NEXT 30 YEARS

CHARACTERISTICS OF ASSESSMENT UNIT
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Appendix A. Data form used for evaluating the Niobrara Continuous Oil Assessment Unit, Niobrara Total Petroleum System, 
Southwestern Wyoming Province, Wyoming, Colorado, and Utah.—Continued

Volume Title Page

Assessment Unit (name, no.)
Niobrara Continuous Oil, Assessment Unit 50370361

Total recovery per cell for untested cells having potential for additions to reserves in next 30 years:
(values are inherently variable)
(mmbo for oil A.U.; bcfg for gas A.U.) minimum 0.001 median 0.08 maximum 1.6

Oil assessment unit: minimum median maximum
   Gas/oil ratio (cfg/bo)………………………...……. 300 600 900
   NGL/gas ratio (bngl/mmcfg)………………….…. 30 60 90

Gas assessment unit:
   Liquids/gas ratio (bliq/mmcfg)….…………..……

Oil assessment unit: minimum median maximum
   API gravity of oil (degrees)…………….…………. 35 39 45
   Sulfur content of oil (%)………………………...… 0.02 0.1 0.5
   Drilling depth (m) ……………...…………….…… 610 1500 2750
   Depth (m) of water (if applicable)……………….

Gas assessment unit:
   Inert-gas content (%)……………………….....…..
   CO2 content (%)………………………………..…..
   Hydrogen-sulfide content (%)……………...…….
   Drilling depth (m)………………………………….
   Depth (m) of water (if applicable)……………….

Success ratios: calculated mean minimum median maximum
Future success ratio (%).. 60 50 60 70

Historical success ratio, tested cells (%) 40

SELECTED ANCILLARY DATA FOR UNTESTED CELLS

AVERAGE COPRODUCT RATIOS FOR UNTESTED CELLS, TO ASSESS COPRODUCTS

TOTAL RECOVERY PER CELL

(uncertainty of fixed but unknown values)

(values are inherently variable)
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