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ABSTRACT

Theoretical investigations of doping of
several wide-gap materials suggest a number of
rather general, practical doping principles  that may
help guide experimental strategies of overcoming
doping bottlenecks.  This paper will be published as a
journal article in the future.

  Since the operation of carrier-transporting
heterojunction devices is predicated on ambipolar (p-
and -n type) doping, the failure to successfully dope
certain classes of materials is an important bottleneck
for the technological utilization of these materials in
electronic devices.  As the band gap of a material
increases (e.g., Si→GaAs→ZnSe→ZnO) it generally
becomes increasingly difficult to dope it in a
symmetric (n and p type) fashion.  For example,
whereas diamond can be doped p-type, its n-type
doping is rather difficult1; conversely, while ZnO2,3,4,5

and other main-group oxides6 can be readily doped n-
type, their p-type doping is problematic.  Striking
doping irregularities also appear in compounds
belonging to the same chemical class, e.g. AlN is
difficult to dope n-type, whereas GaN can be readily
doped n-type7; CuInSe2 exhibits n-type conduction
whereas CuGaSe2 exhibits only p-type8.  Doping
bottlenecks have attracted significant attention from
both experimentalists (see reviews in Refs. 1, 2) and
theorists4-17 who provided highly detailed studies on
individual cases.  Yet, this case-by-case focus has
sometimes detracted from observing general
regularities and formulating doping rules.   In this
work, I attempt to distill from recent theoretical
studies of individual hard-to-dope systems4-17 some
general, practical doping principles, loosely referred
to as doping rules.   Although such Pauling-esque
rules do not cover all cases, or identify all exceptions,
they might provide basic design guidelines for
systematically navigating in the complex parameter
space of experimental attempts to overcome doping
bottlenecks.  Detailed theoretical discussion is left
out of this paper; the interested reader is referred to
the original papers, e.g., Refs. 9-17.
  I will divide the practical doping rules into those
that emerge from (i) Fermi-level-induced
compensation effects (spontaneous generation of
killer defects ), (ii) the effects of adjusting the

chemical potentials of the different elements, and (iii)
local defect bonding effects.  These three effects are
encoded in the basic three-term formula that
describes the formation enthalpy of dopant D of
charge state q in host crystal H:

( )( ) ( ) bHDDFF
qD nq ∆Ε+−+Ε=Ε∆Η µµµ ,,    ,     (1)

where µD and µH are the chemical potentials of the
dopants and host, EF is the electro (chemical)
potential (Fermi energy), nD  is the number of
dopants, ∆Eb = E(host + defect)-E(host) is the excess
energy of the local chemical bonds around the dopant
and E is the total energy with respect to free-atoms.
The doping rules discussed here pertain to ways of (i)
avoiding Fermi-level-induced compensation effects
by spontaneous generation of native killer defects,
(ii) enhancing dopant solubility (i.e., lowering
∆H(D,q)) via control of chemical potentials.  Enhanced
solubility will (a) create sufficient dopants to
overcome any counter compensating defects, and (b)
broaden sufficiently the dopant energy level by
impurity-impurity interaction so this band becomes
close enough to the band edge, thus ionizable, (iii)
stabilizing the bonding of the dopant to its local
chemical environment so it does not diffuse away.
These three effects correspond to the three terms in
Eq. (1), respectively, as follows:
  (i) Doping rules pertaining to Fermi-level-induced
compensation effects:  When an electron-producing
donor α (charge q >0) is incorporated into a solid, it
donates electrons that join the free-carrier reservoir
whose energy is EF; thus, as Eq. (1) shows, the total
donor formation energy increases linearly with EF.
Similarly, formation of electron-capturing acceptors
(charge q <0) entails removing q electrons from the
Fermi reservoir, thus the acceptor formation energy
decreases linearly with EF.  These trends are depicted
schematically in Fig. 1a where the donor transition
energy E(0/+) is the value of the Fermi energy at
which the formation enthalpy of the neutral defect α0

equals the formation energy of the positive defect α+.
There is a parallel definition for the acceptor
transition energy E(0/-).  It follows from the linear
dependencies on EF that when we deliberately dope
materials n-type (via donors), (thus shifting its EF

towards the conduction band), the formation energy

of native acceptors, such as cation vacancies −
CV  or

DX centers will decrease to a point that such
electron-killers  will form spontaneously.
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Fig. 1:  (a) Schematic depiction of the dependence of
the formation enthalpy of defect α in charge states q
= +, 0 and — on the Fermi energy.  The solid dots
denote the donor (0/+) and acceptor (0/-) transition
energies.  (b) Schematic depiction of the formation
enthalpy of some intrinsic donors (anion vacancy VA,
cation interstitial Ci) and intrinsic acceptors (cation
vacancy VC and anion interstitial Ai) on the chemical
potential.

For example15, n-type doping of GaAs:Si is limited
by the formation of VGa, whereas n-type doping of
Si:As is limited16 by the formation of VSi.  At this

value of EF, called n-type pinning energy  
( )n
FΕ , no

further progress in n-doping can be made, since the
spontaneously generated electron killers  will
negate the deliberately introduced donors.  Similarly,
deliberate p-doping by acceptors (shifting EF towards
the valence band) will instigate at some point

( )p
FΕ called p-type pinning energy  the spontaneous

formation of native hole killers  such as anion

vacancy +
AV or cation interstitial +

iC at which point p-

type doping stops.   Figure 2 shows the approximate

positions of ( )n
FΕ and 

( )p
FΕ in a number of group III-V

and II-VI semiconductors, as obtained from first-
principles calculations10 and independently from
measured carrier densities9,11.

Fig. 2:  The n-type pinning energy )(n
Fε  and p-type

pinning energy )( p
FE  are shown relative to the

absolute band-edge energies (from Ref. 18) of III-V
and II-VI semiconductors.

  In this figure the valence band maxima were aligned
according to the calculated (unstrained) band offsets,
collected in Ref. 18 for most compound
semiconductors, whereas the band gap values are
taken from low-temperature experimental data.
There is an approximate alignment of the pinning
levels (horizontal lines) within given chemical groups
of compounds.  The positions of the pining levels
with respect to the host crystal band edges determine
dopability.  For example, in ZnO or ZnS the

( )p
FΕ level is considerably above the VBM.  Thus, the

downwards-moving EF in deliberate p-type doping

will encounter 
( )p
FΕ  before encountering the VBM.

At this point the system will generate spontaneous
hole-killers (e.g., Zni or VO) before any significant
doping commences.  In contrast, in Tellurides or

Antimonides 
( )p
FΕ is at or below the VBM, so a

considerable amount of holes can be generated before
the pinning energy is encountered and killer defects
form.  Corresponding rules refer to electron-doping
and its pinning by spontaneous formation of electron
killers  (Fig. 3 summarizes all doping rules).  The
relevant doping rules are:
  Rule 1:  n-type doping is facilitated by materials
whose conduction band minima (CBM) are far from
the vacuum level, i.e., materials with large bulk-
intrinsic electron affinities χ.  Conversely, n-type
doping tends to be compensated in materials with
small bulk-intrinsic electron affinities.   This rule
reflects the difficulty in n-type doping of AlN (Ref.
7) or diamond1 (χ≅0), the ease of n-type doping InAs
and ZnO (very large χ).  This rule further suggests
that lowering the CBM via selective alloying (e.g.,
adding nitrogen to III-V s which leads to huge
downwards CBM bowing) will enhance n-type
doping.19  Any creative chemical modification that
lowers the CBM may also facilitate n-type doping.
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  Rule 2:   p-type doping is facilitated by materials
whose valence band maximum (VBM) is close to the
vacuum level, i.e., small bulk-intrinsic ionization
potential Φ.  Conversely, p-type doping tends to be
compensated in materials with large bulk-intrinsic
ionization energies.   This rule reflects the ease of p-
type doping of antimonides and tellurides (small Φ),
and the difficulty in p-type doping of the more
electronegative oxides and sulphides (large Φ).  The
rule suggests that enhanced p-type doping can be
facilitated by alloying an element that leads to
upward-bowing of the VBM, e.g., an active d-
electron metal that repels upwards the VBM (viz. the
p-typeness of CuAlO2

 (Ref. 20) relative to oxides
such as MgO or ZnO that lack shallow d-states).  Any
creative chemical modification that raises the VBM
may also facilitate p-type doping.
  Rules 1 and 2 explain why diamond is difficult to
dope n-type1 (χ only < 0.2 eV) but it is easier to dope
diamond p-type (Φ as low as ~5 eV), whereas the
other form of carbon21 C60 is easy to dope n-type (χ
as big as 2.7 eV), but difficult to dope p-type (Φ as
big as 7.6 eV).  Also, Rules 1 and 2, taken together
imply that ambipolar doping requires, in general, a
small minimum (not optical) gap (large χ and small
Φ, where Eg = Φ-χ), a well-known result.  But these
rules clarify that the origin of doping asymmetry in
different materials depends on χ and Φ separately.
  The next rules refer to ways of eliminating the
particular pinning centers ( kill the killer ).
  Rule 3:  Since n-type doping is inhibited by
electron-killers such as the cation vacancy −

CV , this

can be overcome by designing growth conditions
which destabilize cation vacancies ( kill the killer ),
e.g., the use of cation-rich growth conditions.
Naturally, the extent of attainable cation-richness is
limited by the requirement of not precipitating
competing cation phases such as elemental cation
metals or cation-dopant compounds.
  Rule 4:   Since p-type doping is inhibited by hole-

killers such as anion vacancy +
AV  and cation

interstitials +
iC , this can be overcome by designing

growth conditions which destabilize these defects
( kill the killer ), e.g., the use of anion-rich growth
conditions, or agents that form complexes with cation
interstitials.   Naturally, the extent of attainable
anion-richness is limited by the requirement of not
precipitating competing anion phases such as
elemental anion metal or anion-dopant complexes.
This rule suggests, for example, that p-type doping of
oxides can be facilitated by creating internal oxygen
precipitates that eliminate oxygen vacancies, e.g.,
using NO or NO2 sources3,5 for nitrogen-doping of

ZnO, or Li2O sources for Li-doping of MgO (Ref.
22).
  (ii) Doping rules pertaining to chemical potential
effects:  It is well known23 that the solubility of two
solids A and B can be enhanced via epitaxy-induced
solubility.   That is, if A and B are bulk-immiscible
solids because of a significant size-mismatch,
growing them coherently on a substrate that is
mismatched with A and B, but more closely matched
with their alloy A1-xBx will lower the A+B→A1-xBx

mixing-enthalpy, thus enhance solubility.  This effect
results23 from a strain-destabilization of A-on-
substrate + B-on-substrate, not from stabilizing the
A1-xB alloy itself.  Examples include23 the epitaxial
solubility of GaP+InP or GaAs+GaN on a GaAs
substrate.  The same principle of lowering ∆H by
destabilizing the reactants can be applied to
epitaxially enhance dopant solubility, e.g., growth of
the host crystal on a strained substrate can enhance
dopant solubility.17  The competing phase (e.g.,
dopant-host compound) will be destabilized, thus
enhancing dopant solubility.  A similar idea — that of
obtaining the required solubility by destabilization of
the reactants — can also be used to enhance
dopability, namely impinging on the growing surface
high-energy, relatively chemically unstable dopant
sources3,5 (e.g., NO, NO2 for N-doping) rather than
low-energy stable sources (e.g., N2) to lower the
enthalpy of doping.
  In general, the second term of Eq. (1) shows how
∆H for formation of anionic or cationic dopants can
be regulated via control of the chemical potentials
during growth (Fig. 1b).  This figure illustrates the
fact that the enthalpy of forming anion vacancies
decreases under cation-rich conditions, whereas the
enthalpy of forming cation vacancies decreases under
anion-rich conditions.
  Rule 5:  Anion-substituting dopants will be more
soluble under host anion poor (=host cation rich)
growth conditions.   This rule reflects the fact that
defects that donate host anions to the chemical

reservoir (e.g., anion vacancy +
AV or cation antisite

+
AC ) are easier to form if this reservoir has low anion

chemical potential µA (i.e., anion-poor).  Thus, p-type
ZnO:N or n-type ZnO:F are best grown under Zn-rich
conditions24 and p-type GaAs:C is best grown under
Ga-rich conditions.  n-type doping via anion
substitutions (using anion-poor conditions) satisfies
simultaneously rules 3 and 5, e.g., n-type ZnO:F.
  Rule 6:   Cation-substituting dopants will be more
soluble under host-cation poor (=host anion rich)
growth conditions.   This rule reflects the fact that
defects which donate host cations to the chemical

reservoir (e.g., −
CV or anion interstitial −

iA ) are easier
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to form if this reservoir has low cation chemical
energy µC (cation poor).  Indeed, p-type GaAs:Zn or
GaAs:Mn are best grown under As-rich conditions
(low-temperature growth).  P-type doping via cation
substitution (using cation-poor conditions) satisfies
simultaneously rules 4 and 6, e.g., p-type GaAs:Zn.
  If one desires to attempt n-type doping via cation
substitution, by Rule 6 one needs cation-poor
conditions.  However, by Rule 3 this could enhance
the formation of electron killer VC.  One then needs to
defeat the spontaneous formation of cation vacancy
electron-killers.  Similarly, if one desires to attempt
p-type doping via anion substitution, by Rule 5 one
needs anion-poor conditions.  However, by Rule 4
this could enhance the formation of hole killer VA.
Then, one needs somehow to defeat the spontaneous
formation of anion vacancy hole-killers.  Thus, it
may prove easier to do p-type doping via cation-site
substitution using anion-rich conditions, whereas n-
type doping can be done via anion-site substitution
using cation-rich conditions.  These points are
illustrated in Fig. 3.

Fig. 3:  Summary of the doping rules.

  (iii) Doping rules pertaining to local defect bonding
effects:  Even if one enhances the dopant solubility
via epitaxy, use of highly-reactive source materials,
or doping rules 5 and 6, there is no guarantee that the
dopant will remain stable on its desired lattice site,
for its local chemical bonds might be weak.  For
example, although large concentration of N can now
be introduced into3 ZnO, the desired p-type doping is
often unstable over time, since the nitrogen bond to
Zn is not as stable as the original Zn-O bond (∆Eb>0
in Eq. 1).  This limitation might be overcome via
cluster doping 14:

  Rule 7:  The local chemical bonding energy
around the dopant could be enhanced via decorating
the dopant by strongly-bonding ligands which do not

disrupt the host bonds.   For example, whereas the
four Zn-N bonds formed when N dopes the O site in
ZnO are weak, addition of Al in a Al-to-N ratio of
4:1 creates four very strong Al-N bonds around AlZn,
followed by twelve weak Zn-N bonds around each of
the four N sites.  Since AlN is extremely stable,
∆Eb=4EAl-N+12EZn-N<0.  Such cluster doping ideas
could facilitate stable local dopant bonding and
enhanced solubility.  Many chemical combinations
can be explored, e.g., p-type doping of II-VI crystal
by replacing the VI-atom and its four II-atom
neighbors by the cluster of V-III4.  Interestingly, this
cluster-doping  is predicted to be stabler than co-

doping. 25

  The seven practical doping rules  described here
could provide guidelines for creative, educated
experimentations with various doping strategies for
difficult-to-dope wide-gap materials.
   This work was supported by the U.S. D.O.E.
through EERE, Contract DEAC36-98-GO10337.
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