
A Multiple Dimension Slotting Approach for Virtualized
Resource Management

Fernando Rodríguez, Felix Freitag, Leandro Navarro

Department of Computer Architecture
Technical University of Catalonia, Jordi Girona 1-3

08034 Barcelona, Spain
{frodrigu, felix, leandro}@ac.upc.edu

Abstract
Recent advances in virtualization technologies can be applied to
different research areas, such as virtualized resource management
in High Performance Computing (HPC) Grid. On the one hand,
the HPC Grid hides to users the complexity of the virtual cluster
management, but on the other hand, the Virtual Machines (VM)
are managed in the execution domain of the node’s resource man-
ager. Hence, local decisions must be done to meet the quality of
service required by each VM. Moreover, a user should be able to
define a Service Level Agreement (SLA) with strong and soft
requirements for a given resource (CPU, disk, network, etc) with-
out detailed knowledge of the hardware configuration of each
node. In this work, we present a fine-grain approach for virtual-
ized resource management in HPC nodes. Our approach improves
the resource usage in nodes enabled with virtualization by effi-
ciently partitioning and fine-grain management through multiple
dimension slotting. We show in preliminary results that the man-
agement of single physical resources gives accurate usage infor-
mation to a local resource manager (LRM). The assignment of
resources is improved by adding a virtual partitioning layer for the
subsets of physical resources. Relocating and resizing assigned
single resources in the LRM scope improves internal migration
mechanisms that could potentially reduce the overhead of external
migrations.

Categories and Subject Descriptors D.3.3 C.2.4 [Distributed
Systems]: Distributed applications; C.4. [Performance of Sys-
tems]: Measurement techniques.

General Terms Management, Measurement, Performance, De-
sign, Experimentation.

Keywords Local resource manager, Virtualization.

1. Introduction
Recent advances in virtualization technologies are lead by the
efforts of projects like Xen [1][3], VMware[14], and VNET [13].
In virtualized nodes, the physical resources are multiplexed
among Virtual Machines (VMs). The Virtual Machine Monitor
(VMM) is the software that manages the physical node. Thus, the
guest-OS running inside the VM receives a slice of the physical
node. Research challenges for virtualization have being studied
for HPC [11] and Grid [4].

Today, nodes that act as resource providers show heterogene-
ous hardware with more than one resource of each type (CPU,
NICs attached to different networks, disks, etc). We can see this
phenomenon as usual in these days with, for instance, laptops that

are bundled with dual core processors and two NICs (for wireless
and wired networks). For this reasons we claim that local resource
managers should take advantage of a fine-grain approach to better
manage every single piece of hardware that can be virtualized.
Rather than multiplexing a physical resource, we should choose
and assign subsets of single physical resources and assign them to
one or more than one (by multiplexing) (VM).

Virtual machine monitors must offer primitives to assign sin-
gle resources to each VM according to demand. These mecha-
nisms must be exposed to standardized interfaces through a
pinning framework for managing resources in VM environments.
Similar to the pinning mechanism of Xen to assign processors in
Symmetric Multiprocessing (SMP) architectures to VMs. Addi-
tionally, the mechanism should be extended to every type of re-
source that could be virtualized by VMM or other virtualization
approach.

A coarse-grain resource management of virtualized resources
could potentially have more drawbacks than benefits when shar-
ing an under-utilized physical node between VMs. For instance,
an inaccurate slotting mechanism could provide to upper layers
incomplete or erroneous information resulting in a waste of re-
sources. This could happen in nodes with SMP architectures,
redundant NICs with different speed capacities (10Mb, 100Mb,
1Gb), and redundant storage capacity (IDE, SATA, SCSI, etc).

Another potential problem is the unbalance of the workload. In
SMP nodes, for instance, Xen virtual machines are created in a
round robin fashion assigning processors one by one. Thus, we
could have applications with different behaviour (burst, batch,
parallel, intensive, etc.) running in these VMs interfering with
each others. One solution is to separate the virtual environments
considering the application profiles and assign these profiles to
different processors. The proposed fine-grain assignment mecha-
nisms will help to balance the workload in VMs.

Moreover, we can take advance of the pinning mechanisms to
reduce external migration of VMs. One way to do this is by re-
locating the assigned single physical resource and adjusting the
percent of share (an example of this is the migration from one
NIC of 100Mbs to 1Gbs). From now, we refer to this mechanism
as internal migration.

In this work, we present multiple dimension slotting (MuDiS),
an approach to improve the resource usage in nodes enabled with
virtualization. Rather than managing local resources extending
VMMs, our goal is to enable local resource managers to better
manage single physical resources. We envision a flexible standard
API to assign atomic physical resources entities to VMs.

MuDiS has mainly two benefits. First, it allows HPC or Grid
Global Resource Manager (GRM) to make better scheduling deci-
sions by receiving accurate information of the internal usage in

every resource provider. And second, the providers are able to
maximize the use of resources in a node. The MuDiS approach
will enable the implementation of autonomic or reconfiguration
mechanisms to adapt physical hardware in a fine-grain fashion to
different type of applications.

Our approach dynamically optimizes the workload balance on
each resource. In consequence, we expect a reduction in the over-
head caused by external migration mechanisms. A learning
mechanism with heuristics could infer resource usage patterns of
running virtual workspace. This will enhance the LRMs since
profiles could be created which allow application specific re-
source assignment. Additionally, it could be achieved that the
interference between running applications becomes reduced.

The rest of the paper is organized as follows. Section 2 reviews
the related work. Section 3 discuss the MuDiS approach and out-
lines the prototype. Section 4 shows and compares the results of
experiments with and without MuDiS. Finally, Section 5 presents
our conclusions.

2. Related Work
In this section we present the work related to virtualization-
enabled systems.

Lamia Youseff et al [16] investigate the efficiency of HPC ap-
plications in paravirtualized nodes. The experiments include a set
of micro-benchmarks, macro-benchmarks, and real HPC applica-
tions. The results show that Xen paravirtualization system poses
no statistically significant overhead over other OS configurations.

K. Keahey et al [8] introduce the concept virtual workspace
(VW), an approach which aims the provisioning of a customized
and controllable remote execution environment for Grid resource
isolation purposes. The underlying technology that supports the
prototype are virtual machines for the hardware virtualization
(Xen and VMware) and Globus Toolkit (GT). The interactions of
resource provisioning follow VW descriptions. The descriptions
define the VM state (running, shutdown, paused, etc) and the
main properties that a required VM must complain such RAM
size, disk size, network, etc. Currently, there is not discussion
about the performance impact of multiple VM running at the same
time and the consequence when SLAs are not fulfilled.

Mark F. Mergen et al [11] discuss open issues of hardware vir-
tualization for HPC environments such as the agreement on the
appropriate minimal abstractions and services that a hypervisor
should implement, and the selection of the appropriate core primi-
tives and capabilities that a hypervisor has to support for HPC,
among others research questions.

Nadyr Kiyanclar et al [9] present Maestro-VC, a set of system
software which uses virtualization (Xen) to multiplex the re-
sources of a computing cluster for client use. The provisioning of
resources is achieved by a scheduling mechanism which is split
into two levels. An upper level scheduler (GS) which manages
VMs inside the virtual cluster, and an optimal low-level scheduler
(LS) per VM. The purpose is to incorporate information exchange
between virtualized and native environments to coordinate re-
source assignment. The LS, however, is an optional mechanism
and if desired it must be explicitly supplied by the user.

Wei Huang et al [6] present a VM based framework for HPC.
The I/O virtualization overhead is reduced with a technique called
VMM-bypass; this technique allows time-critical I/O operations
to be carried out directly in guest VMs without involvement of the
VMM and/or a privileged VM. The results show that HPC appli-
cations can achieve almost the same performance as those running
in a native, non-virtualized environment. However, the efficient
management is an open issue that needs to be addressed.

David Irwin et al [7] present Shirako, a system for on-demand
leasing of shared networked resources in federated clusters. Shi-
rako uses an implementation of COD [2] for the cluster site man-
ager component and SHARP [5] for the leasing mechanism.
Leases are used as a mechanism for resource provisioning, thus
intra LRM adaptation is not independent and only possible at long
terms.

Our work is in the direction of Dongyan Xu et al [15]. The au-
thors propose the support of autonomic adaptation of virtual dis-
tributed environments (VDE) with a prototype of adaptive
VIOLIN [12] based on Xen 3.0. They address challenges of live
adaptation mechanisms and adaptation decision making. Inter
LRMs adaptation is based on live cross-domain migration capa-
bility, and intra LRM adaptation by adjusting resources shares of
physical nodes according to VM usage. Our proposal differs in
that it attempts to improve the intra LRM mechanisms; for in-
stance, our approach uses low level management to assign physi-
cal processors to VMs.

3. MULTIPLE DIMENSION SLOTTING
The Multiple Dimension Slotting approach aims to enhance the
multiplexing mechanisms offered by VMMs by managing re-
sources in a fine-grain fashion. At the same time, it allows that
LRMs to manage the pinning mechanisms according to user re-
quirements.

3.1 MuDiS Management Component

The Multiple Dimension Slotting management component runs in
the first domain, known as Domain0 (Dom0). Xen is a Type I
VMM –also known as 'hypervisor'– that runs directly on top of
the hardware and boots Dom0. This domain is a privileged host
OS that has access to the real hardware. The MuDiS carries out
the account usage of every single resource and groups single
physical resources into subsets. These subsets (which can be dy-
namically changed) are seen by the LRM as pseudo-physical ma-
chines with minimal interfering I/O interruptions. Thus, we isolate
physical resources with different characteristics that can be ex-
ploited by the LRM.

The subsets of resources can be assigned to VMs with differ-
ent application profiles (e.g. CPU-intensive, Network-intensive,
SMPs requirement, or I/O-intensive). This virtual division allows
VMs behaving according to the limitations of the assigned re-
sources, and hence the running applications.

Figure 1 show and example of the partitioning of physical re-
sources. We can see in Figure 1a the partition in 3 subsets, each
one with different characteristics. The subsets are exposed to the
LRM and each one can be sliced with traditional approaches (e.g.
VM1 and VM2 could have each one 50% of each resource of
subset 1 respectively). The MuDiS management component maps
the subset shares and assigns them to virtualized resources
through the VMM. In Figure 1b we can see an example for a new
configuration after time n. The observed applications behaviour
could have shown that some resources were under- or over-
utilized. Finally, the LRM regroups VMs to improve performance
and load balancing.

The major overhead during the internal migration of VMs oc-
curs when one VM needs to be moved to another physical disk.
The reassignment of processors or migration to better network
links is expected to be done in this context in considerably less
time. Since memory resource has homogeneous characteristics,
the management is done by increasing or decreasing the amount
assigned.

With our approach we gain in performance by adding an extra
layer of isolation. The services to manage and monitor subsets of

physical resources (and VMs associated) are exposed through a
standard API interface to the upper layers of the LRM.

3.2 Architecture

For evaluating the proposed approach we have developed some of
the components that are part of our GRM of LRMs enabled with
adaptive resource mechanisms for virtual workspaces. Our LRM
prototype aims to provide to the GRM with the infrastructure for
accessing virtualized resources in a transparent way. It exposes a
simple standard service interface for jobs execution by hiding the
complexity of the managed local resources. The implementation
of the proposed architecture leverages technologies that are cur-
rently in continuous development. Those technologies are virtual-
ization (which is based on Xen) and Tycoon [10], a market-based
system for managing compute resources in distributed clusters.

3.3 Prototype

The current organization of the global current architecture can be
seen in Figure 2. In the following the components and their inter-
relations are explained in detail.

The Local Resource Manager (LRM) component offers public
services via XML-RPC interfaces. Part of the actions that can be
performed by LRM are currently encapsulated in a TycoonAPI
component which interfaces with Tycoon. The current prototype
of the proposed architecture uses Tycoon for managing the crea-
tion, deletion, boot and shutdown of virtual machines, as well as
weighting the resources with its bidding mechanism.

TycoonAPI component is part of the LRM architecture. It has
been designed to allow migration to other high level VM resource
managers. Even though it is not intended to substitute Tycoon, the
development of a high level resource manager is an open issue.

The design of the LRM includes other components that inter-
faces directly with Xen to perform tasks such as monitoring and
CPU capacity management. The first is necessary to trace VMs
performance in order to compute costs, and the second which

implements the contributions of this paper achieves offering fine-
grain CPU specifications for VMs in SMP architectures.

CPU capacity management is part of the Multiple Dimension
Slotting Management (MuDiSM) and interfaces with the pinning
framework offered by the virtualization layer (Xen). The disk
capacity management and network capacity management are also
part of the MuDiSM and complement each other to abstract sub-
sets of physical resources.

The current architecture has a txtLRM component which is a
client that requests actions to LRMs. A LRM must previously be
located by the discovery service (or directory component). This
service is part of the Global Resource Manager (GRM leverages
txtLRM functionality and eventually substitute it); this component
is currently designed but not implemented.

A security component is part of the architecture. It has the
functionality to authenticate txtLRM requests in LRM via creden-
tials and access lists. A PKI subcomponent enables the infrastruc-
ture to offer secure connections. Its main purpose is to upload
sensitive job information like data or application (source or bina-
ries) to the workspace.

In order to accomplish job management, the architecture has a
scheduler component. Its functionality is to make a plan for re-
quested job submissions satisfying user SLAs taking into acount
available resources. This component is part of the GRM. The
LRM also has a job deployment component to manage job execu-
tions in the workspace.

Figure 1. Example of the assignment mechanism of single physical resources at time t (a), and after reconfiguring at time t+1 (b).

Physical node

NIC1
10Mbs

NIC2
100Mbs

NIC3
1Gbs

Processor4

Processor3

Processor1

Processor2 IDE SATA SCSI

Virtualization

multiple dimension slotting management

LRM

Pinning frameworks

NIC1
10Mbs

NIC2
100Mbs

NIC3
1Gbs

Processor4
Processor3 Processor1
Processor2

IDE
SATA SCSI

VM1 VM2 VM3 VM4 VM5

Physical node

NIC1
10Mbs

NIC2
100Mbs

NIC3
1Gbs

Processor4

Processor3

Processor1

Processor2 IDE SATA SCSI

Virtualization

multiple dimension slotting management

LRM

Pinning frameworks

NIC1
10Mbs

NIC2
100Mbs

NIC3
1Gbs

Processor4
Processor3 Processor1
Processor2

IDE
SATA SCSI

VM1 VM2 VM3 VM4 VM5

(a) time t

(b) time t+1

XEN

LRM
Tycoon

XEN

LRM
Tycoon

XEN

LRM
Tycoon

TxtLRM (GRM)

Figure 2. Baseline prototype.

Besides the standardized interfaces, another feature for the
GRM is a user interface component for the final user. Its function
is to allow job management submission and monitoring. Also, a
register component allows final client (users or agents) obtaining
credentials in order to perform requests to the GRM.

The information relative to workspaces (fabrics) state, users,
and executed jobs, among others must be managed. This is done
by the information management component of the LRM. The
GRM must also have a similar component for clients, job submis-
sions, and registered LRMs (directory component).

Finally, part of the LRM is the invoicing component, which
computes a cost-function for the executed job plans. We have
selected a first formula for investigation; however, we do not have
a real justification for that choice. The current design includes the
calculation of the invoice by: Min(CPU consumed, CPU as-
signed) * basic price, CPU assigned * basic price and CPU as-
signed * offered price (client budget).

The architecture is implemented in Python. It uses XML mes-
sages to define actions and also to interchange information be-
tween LRM servers and txtLRM clients.

4. Experiments
In our experiments the hardware of the resource provider node is
a Pentium D 3.00GHz (two processors), 1GB of RAM, one hard
disk (160GB, 7200 rpm, SATA), and one network interface card
(Broadcom NetXtreme Gigabit). The operating system is Fedora
Core 4 and the system-level virtualization solution is Xen 3.0.2.
The Tycoon client and auctioneer are 0.4.1p133-1 version.

The prototype implements multiple dimension slotting by cre-
ating subsets of processors. In our experiments, two subsets, each
one with one processor are created. The Xen scheduler is sEDF
(scheduler Earliest Deadline First) which provides weighted CPU
sharing per virtual machine. We also use vcpu-pin to restrict a
VM to be executed in a specific physical CPU.

We evaluate our approach with four experiments. The first
three experiments using a SMP node, and the fourth using a uni-
processor node.
• In first experiment we allocate three VMs without MuDiS.
• In second experiment we evaluate MuDiS through two con-

figurations.
• In third experiment we use MuDiS to allocate four VMs.
• In fourth experiment we allocate one VM in a uniprocessor

node.

In first and fourth experiment we allocate four requests for the
creation of virtual workspaces. The required processing power of
each VM is 1GHz, 1GHz, 1GHz, and 3GHz, respectively. We
evaluate MuDiS in the second experiment, but with different con-
figurations.

In each experiment we launch an application to stress the CPU
by repeating a task formed by four sets of different mathematical
operations. We measure the start and end time of each set of op-
erations and report it as time consumed per transaction. In each
experiment we run the benchmark during 60 seconds on each
virtual workspace. The output file reports the total time, the num-
ber of tasks, and the number of transactions.

In the first experiment we offer processor power as a whole re-
porting the capacity of the node as 3Ghz. In this experiment we
instruct LRM to allocate three VMs that request 1GHz and then 1
VM that requests 3GHz. Using the Xen mechanisms each VM is
created with equal share by weighting each one with 1/3 of the
total share.

Figure 3 shows the CPU usage of each virtual workspace in
the first experiment. Additionally, we report idle processor. Table
1 shows mean values of tasks, time, and transactions per second
(tps); it also shows the standard deviation of tps. Tables in this
work are obtained for 15 runs of each experiment. We observed
that VMs of 1 GHz are assigned, however the fourth VM with
requirement of 3GHz could not be allocated.

Table 1. Transactions per second achieved in each VM, all
with equal share

VM Tasks Time tps σ

fabric2 137.53 60.20 9.14 0.26

fabric3 70.40 60.29 4.67 0.12

fabric4 70.60 60.28 4.68 0.10

processor 0

0

20

40

60

80

100

10 20 30 40 50 60

time(s)

%
C

P
U idle

fabric2

Dom0

processor 1

0

20

40

60

80

100

10 20 30 40 50 60

time(s)

%
C

P
U

idle

fabric4

fabric3

Dom0

Figure 3. Three requests for VMs with 1GHz assigned without
MuDiS. One VM is assigned to processor 0, and two VMs to

processor 1.

processor 0

0

20

40

60

80

100

10 20 30 40 50 60

time(s)

%
C

P
U

idle

fabric4

fabric2

Dom0

processor 1

0

20

40

60

80

100

10 20 30 40 50 60

time(s)

%
C

P
U

idle

Dom0

Figure 5. LRM allocates two requests for VMs of 1.5Ghz with
MuDiS. Both VMs (fabric2, fabric4) are assigned to processor 0.

Processor 1 has no assignment.

Figure 4. Example of partitioning through LRM client interface.

In the experiment one, the clients and GRM would expect
equal performance in each VM, but the number of tps shows (Ta-
ble 1) that fabric2 VM outperforms the rest. In fact, all of them
receive more resources than the original requirements. We can
argue that Xen is fair enough (in architectures with two proces-
sors) when we have an even number of VMs, but not in the case
of an odd number as shown above. Nevertheless, we can not be
tempted to generalize this approach when we need accurate in-
formation about the expected performance.

As we pointed out, the main problem is how to optimize local

resources by allocating the maximum possible number of VMs
with different constraints (CPU intensive, net intensive, or disk
intensive).

Figure 4 shows a screenshot of the LRM client interface, as an
example for partitioning the capacity of the node provider. Notice
that we can manage the percent of share assigned to each VM by
processor. Our current LRM prototype slices node statically, that
is why the “Status” column shows VMs as “inexistent” . We ex-
pect to offer dynamic slicing in a future prototype.

In the second experiment, instead of offering processor power
as a whole, we offer it in terms of subsets of CPU using the
MuDiS we propose. We set two configurations: a) we ask the
LRM for the creation of two virtual workspaces and execute the
benchmark, each one requesting 1.5GHz of processing power, and
b), we ask the LRM for the creation of two virtual workspaces,
each one requesting 3Ghz of processing power (see Figure 6).

In the first case, our LRM creates both VMs in processor 0 as
shown in Figure 5 and leaves room for future allocations in proc-
essor 1.

In the second case we can see that with this approach the LRM
can provide to clients (users or agents) detailed information about
free resources and also meet the requested SLAs for virtual work-

processor 0

0

20

40

60

80

100

10 20 30 40 50 60

time(s)

%
C

P
U idle

fabric2

Dom0

processor 1

0

20

40

60

80

100

10 20 30 40 50 60

time(s)

%
C

P
U idle

fabric4

Dom0

Figure 6. LRM allocates two requests for VMs of 3Ghz with
MuDiS. First VM (fabric2) is assigned to processor 0, and the

second VM (fabric4) is assigned to processor 1.

spaces. Table 2 and Table 3 summarize the tps for the two con-
figurations.

Table 2. Benchmark results allocating 1.5GHz in each VM.

VM Tasks Time tps σ

fabric2 69.47 60.41 4.60 0.13

fabric4 68.93 60.34 4.57 0.11

Table 3. Benchmark results allocating 3.0GHz in each VM.

VM Tasks Time tps σ

fabric2 135.80 60.22 9.02 0.20

fabric4 138.87 60.22 9.22 0.26

Following the same approach, we conducted a third experi-
ment which consists of requesting to the LRM the allocation of
four VMs meeting the requirements of 1GHz, 1GHz, 1GHz, and
3GHz (like in the first experiment). Figure 7 shows the CPU utili-
zation for each VMs. We can see in the graphs that the benchmark
application launched in each VM achieves the full utilization of
assigned CPU shares.

In Table 4 we can see that the transactions per second achieved
in third experiment are consistent with requested SLAs. We can
see that the fine grain LRM has been able to allocate the 4 re-
quested VMs, different to the baseline system used in the first
experiment.

Table 4. Benchmark results for third experiment.

VM Tasks Time tps σ

fabric1 133.93 60.20 8.90 0.42

fabric2 45.13 60.57 2.98 0.14

fabric3 45.00 60.47 2.98 0.16

fabric4 44.93 60.54 2.97 0.13

Finally, in a fourth experiment we deploy for comparative pur-
poses our prototype in a laptop with one Pentium IV M 3.06GHz
processor and ask the LRM to create a VM with 3GHz. Table 5
shows the measured tps results from running same benchmark.

In the uniprocessor architecture we do not see a significant dif-
ference in the number of tps compared with the results of our
former SMP architecture testbed. However, we could obtain a
small deviation caused by two factors: by the internal processor
architecture and second because of the overhead generated by the
privileged Xen domain-0 which runs on only one processor. Nev-
ertheless, it reports and meets the expected performance when
running our benchmark.

Table 5. Benchmark results allocating 3.0GHz in a uniproces-
sor node.

VM Tasks Time tps σ

fabric1 136.67 60.18 9.08 0.12

From the second experiment we observe that MuDiS allows

accurate assignment of requested CPU. In both configurations of

the second experiment the SLAs are meet. Moreover, in its first
configuration only one processor is used for the two 1.5GHz
VMs, leaving the second processor for future allocations. Com-
paring the allocation in the first and third experiment we observe
that MuDiS gives us a better assignment of VMs to processors by
performing the creation, assignment and monitoring of the VMs.
The advantage of the LRMs and interest to GRM is that the
MuDiS is able to better map SLAs to resources while having the
capacity to adapt resource assignment to the required performance
of the user application.

5. Outlook and conclusions
We have presented a multiple dimension slotting approach for
local resource managers (LRMs) to manage in a fine grain way
the virtualized resources.

The approach adds another layer for the management of virtu-
alized resources. We target three different features: fast responses,
light footprint and no overhead. The implemented algorithms to
adjust subsets, re-locate resources (or VMs) and adjust shares
must not compromise the global performance of the entire node.
The algorithms must not interfere with the hosted VMs and its
applications. The multiple dimension slotting must be precise
when managing the share assigned to each VM on each resource.

processor 1

0

20

40

60

80

100

10 20 30 40 50 60

time(s)

%
C

P
U

idle

fabric4

fabric3

fabric2

Dom0

Figure 7. LRM allocating one VM in processor 0 and three VMs
in processor 1.

processor 0

0

20

40

60

80

100

10 20 30 40 50 60

time(s)

%
C

P
U idle

fabric1

Dom0

The LRM has been implemented taking advantage of Xen vir-
tualization and Tycoon. Our preliminary results obtained from
experiments showed that the local physical resources were prop-
erly assigned, such that the performance measured in transactions
per second was accurate and corresponded to agreed SLAs. We
made four experiments running an application that behaves as a
CPU intensive job. In the first experiment which represents the
baseline system, we used a coarse-grain approach offering re-
sources with the global share mechanism. In the second and third
experiment we used the proposed MuDiS management to partition
resources in their singles entities. We observed that the fine grain
approach implemented in the MuDiS-LRM achieved a better allo-
cation of resources compared with the original system. Our ap-
proach could be further enhanced by dynamic adaptation of
assigned resources to application behaviour.

Acknowledgments
This work was supported in part by the European Union under
Contract SORMA EU IST-FP6-034286, the Ministry of Educa-
tion and Science of Spain under Contract TIN2006-5614-C03-01,
and the Mexican Ministry of Education under program PROMEP
(PROgrama de MEjoramiento del Profesorado). We thank the
review committee for their time and insightful comments.

References
[1] Barham, P. Dragovic, B. Fraser, K. Hand, S. Harris, T. Ho, A.

Neugebauer, R. Pratt, I. and Warfield A., "Xen and the art of virtual-
ization," in Proceedings of the 19th ACM Symposium on Operating
Systems Principles, pp. 164–177, October 2003.

[2] Chase, J. Irwin, D. Grit, L. Moore, J. and Sprenkle, S. Dynamic
Virtual Clusters in a Grid Site Manager. Twelfth IEEE Symposium
on High Performance Distributed Computing (HPDC), June 2003,
Seattle, Washington.

[3] Clark, C. Fraser, K. Hand, S. Hansen, J. G. Jul, E. Limpach, C. Pratt,
I. and Warfield. A. “Live Migration of Virtual Machines”. In Pro-
ceedings of the 2nd ACM/USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI), Boston, MA, May 2005.

[4] Figueiredo, R.J. Dinda, P.A. Fortes, J.A.B. “A case for grid comput-
ing on virtual machines”. In Proceedings of Int. Conf. on Distributed
Computing Systems (ICDCS), 2003.

[5] Fu, Y. Chase, J. Chun, B. Schwab, S. and Vahdat, A. “SHARP: An
Architecture for Secure Resource Peering”. In Proceedings of the
19th ACM Symposium on Operating System Principles, October
2003

[6] Huang, W. Liu, J. Abali., B. and Panda, D.. “A Case for High Per-
formance Computing with Virtual Machines”. The 20th ACM Inter-
national Conference on Supercomputing (ICS '06), Cairns, Queen-
sland, Australia, June 2006

[7] Irwin, D. Chase, J. Grit, L. Yumerefendi, A. Becker, D. and
Yocum, K. “Sharing Networked Resources with Brokered Leases”,
USENIX Annual Technical Conference (USENIX), June 2006, Bos-
ton, Massachusetts.

[8] Keahey, K. Foster, I. Freeman, T. Zhang, X. Galron, D. “Virtual
Workspaces in the Grid”, Europar 2005, Lisbon, Portugal, Septem-
ber, 2005.

[9] Kiyanclar, N. Koenig, G.A. and Yurcik, W. “Maestro-VC: On-
Demand Secure Cluster Computing Using Virtualization”. 7th LCI
International Conference on Linux Clusters, May 2006.

[10] Lai, K. Rasmusson, L. Adar, E. Sorkin, S. Zhang, L. and Huberman,
B. "Tycoon: an Implementation of a Distributed Market-Based Re-
source Allocation System", HP Technical Report, December 8, 2004

[11] Mergen, M. F., Uhlig, V., Krieger, O., and Xenidis, J. 2006. Virtual-
ization for high-performance computing. SIGOPS Oper. Syst. Rev.
40, 2 (Apr. 2006), 8-11.

[12] Ruth, P. Rhee, J. Xu, D. Kennell, R. and Goasguen, S. “Autonomic
Live Adaptation of Virtual Computational Environments in a Multi-
Domain Infrastructure”. IEEE Int’l Conf. on Autonomic Computing
(ICAC’06), June 2006

[13] Sundararaj, A. and Dinda, P. A. “Towards Virtual Networks for
Virtual Machine Grid Computing”. 3rd USENIX Virtual Machine
Research and Technology Symp., May 2004.

[14] VMware. http://www.vmware.com.

[15] Xu, D. Ruth, P. Rhee, J. Kennell, R. Goasguen, S."Short Paper:
Autonomic Adaptation of Virtual Distributed Environments in a
Multi-Domain Infrastructure", Proceedings of The 15th IEEE Inter-
national Symposium on High Performance Distributed Computing
(HPDC'06), Paris, France, June 2006

[16] Youseff, L. Wolski, R. Gorda, B. Krintz, C. “Paravirtualization for
HPC Systems”. ISPA Workshops 2006: 474-486

