A Multiple Dimension Slotting Approach for Virtualized
Resour ce M anagement

Fernando Rodriguez, Felix Freitag, Leandro Navarro

Department of Computer Architecture
Technical University of Catalonia, Jordi Girona 1-3
08034 Barcelona, Spain

{frodrigu, felix, leandro}@ac.upc.edu

Abstract

Recent advances in virtualization technologies lsarapplied to
different research areas, such as virtualized resomanagement
in High Performance Computing (HPC) Grid. On the d¢rand,
the HPC Grid hides to users the complexity of thieual cluster
management, but on the other hand, the Virtual hash(VM)
are managed in the execution domain of the noés'surce man-
ager. Hence, local decisions must be done to rheettiality of
service required by each VM. Moreover, a user shael able to
define a Service Level Agreement (SLA) with stroagd soft
requirements for a given resource (CPU, disk, netwetc) with-
out detailed knowledge of the hardware configuratad each
node. In this work, we present a fine-grain apphofe virtual-
ized resource management in HPC nodes. Our appiogchves
the resource usage in nodes enabled with virtualizaby effi-
ciently partitioning and fine-grain management tigio multiple
dimension slotting. We show in preliminary resuthat the man-
agement of single physical resources gives accursdage infor-
mation to a local resource manager (LRM). The assant of
resources is improved by adding a virtual partitigriayer for the
subsets of physical resources. Relocating andimgs&ssigned
single resources in the LRM scope improves intemijration
mechanisms that could potentially reduce the o\atlod external
migrations.

Categories and Subject Descriptors D.3.3 C.2.4 Distributed
Systems]: Distributed applications; C.4.Pgrformance of Sys
tems]: Measurement techniques.

General Terms Management, Measurement, Performance, De-

sign, Experimentation.

Keywords Local resource manager, Virtualization.

1. Introduction

Recent advances in virtualization technologies laegl by the
efforts of projects like Xen [1][3], VMware[14], na VNET [13].
In virtualized nodes, the physical resources ardtiphexed
among Virtual Machines (VMs). The Virtual Machineokitor
(VMM) is the software that manages the physicalexdthus, the
guest-OS running inside the VM receives a slicehef physical
node. Research challenges for virtualization haged studied
for HPC [11] and Grid [4].

Today, nodes that act as resource providers sheevagene-
ous hardware with more than one resource of egoh (ZPU,
NICs attached to different networks, disks, etce @an see this
phenomenon as usual in these days with, for inetdaptops that

are bundled with dual core processors and two Ni@swireless

and wired networks). For this reasons we claim izl resource
managers should take advantage of a fine-grainoaphrto better
manage every single piece of hardware that canitbealized.

Rather than multiplexing a physical resource, weush choose
and assign subsets of single physical resourcesssign them to
one or more than one (by multiplexing) (VM).

Virtual machine monitors must offer primitives tes&gn sin-
gle resources to each VM according to demand. Thesgha-
nisms must be exposed to standardized interfacemugh a
pinning framework for managing resources in VM eorments.
Similar to the pinning mechanism of Xen to assigoacpssors in
Symmetric Multiprocessing (SMP) architectures to &Mddi-
tionally, the mechanism should be extended to etgg of re-
source that could be virtualized by VMM or othertwalization
approach.

A coarse-grain resource management of virtualizsdurces
could potentially have more drawbacks than beneftien shar-
ing an under-utilized physical node between VMst. Irgtance,
an inaccurate slotting mechanism could provide gpeu layers
incomplete or erroneous information resulting invaste of re-
sources. This could happen in nodes with SMP archites,
redundant NICs with different speed capacities (bOMIOOMb,
1Gb), and redundant storage capacity (IDE, SATASISEtc).

Another potential problem is the unbalance of tloekload. In
SMP nodes, for instance, Xen virtual machines aeated in a
round robin fashion assigning processors one by ®©has, we
could have applications with different behaviouur@i, batch,
parallel, intensive, etc.) running in these VMseifgring with
each others. One solution is to separate the Vielngironments
considering the application profiles and assigrs¢hprofiles to
different processors. The proposed fine-grain assent mecha-
nisms will help to balance the workload in VMs.

Moreover, we can take advance of the pinning mdshanto
reduce external migration of VMs. One way to datisi by re-
locating the assigned single physical resource ajdsting the
percent of share (an example of this is the mignafrom one
NIC of 100Mbs to 1Gbs). From now, we refer to tinischanism
as internal migration.

In this work, we present multiple dimension slaitiMuDiS),
an approach to improve the resource usage in regded with
virtualization. Rather than managing local resosiregtending
VMMs, our goal is to enable local resource managerbetter
manage single physical resources. We envisiorxiftestandard
API to assign atomic physical resources entitiegNts.

MuDiS has mainly two benefits. First, it allows HRE Grid
Global Resource Manager (GRM) to make better sdhmegdeci-
sions by receiving accurate information of the rin& usage in

every resource provider. And second, the providees able to
maximize the use of resources in a node. The Mudpifroach
will enable the implementation of autonomic or nefiguration
mechanisms to adapt physical hardware in a finexdeshion to
different type of applications.

Our approach dynamically optimizes the workloadabaé on
each resource. In consequence, we expect a reduattbe over-
head caused by external migration mechanisms. Aniteg
mechanism with heuristics could infer resource asaatterns of
running virtual workspace. This will enhance the MR since
profiles could be created which allow applicatiopesfic re-
source assignment. Additionally, it could be achikuhat the
interference between running applications becomésaed.

The rest of the paper is organized as follows.i8e@ reviews
the related work. Section 3 discuss the MuDiS aggiicand out-
lines the prototype. Section 4 shows and compdresdsults of
experiments with and without MuDiS. Finally, Sectid presents
our conclusions.

2. Related Work

In this section we present the work related toueilization-
enabled systems.

Lamia Youseff et al [16] investigate the efficienafyHPC ap-
plications in paravirtualized nodes. The experiraéntiude a set
of micro-benchmarks, macro-benchmarks, and real ldp@ica-
tions. The results show that Xen paravirtualizatiygtem poses
no statistically significant overhead over other @@&figurations.

K. Keahey et al [8] introduce the concept virtualrisspace
(VW), an approach which aims the provisioning afustomized
and controllable remote execution environment fod Gesource
isolation purposes. The underlying technology thatports the
prototype are virtual machines for the hardwarduelization
(Xen and VMware) and Globus Toolkit (GT). The irtetions of
resource provisioning follow VW descriptions. Thesdriptions
define the VM state (running, shutdown, paused) ata the
main properties that a required VM must complaichskRAM
size, disk size, network, etc. Currently, therenat discussion
about the performance impact of multiple VM runnatghe same
time and the consequence when SLAs are not fufille

Mark F. Mergen et al [11] discuss open issues odware vir-
tualization for HPC environments such as the agee¢ron the
appropriate minimal abstractions and services #hatypervisor
should implement, and the selection of the appad@rcore primi-
tives and capabilities that a hypervisor has topsupfor HPC,
among others research questions.

Nadyr Kiyanclar et al [9] present Maestro-VC, acksystem
software which uses virtualization (Xen) to mukipl the re-
sources of a computing cluster for client use. pravisioning of
resources is achieved by a scheduling mechanisrohwki split
into two levels. An upper level scheduler (GS) whimanages
VMs inside the virtual cluster, and an optimal ltavel scheduler
(LS) per VM. The purpose is to incorporate inforimatexchange
between virtualized and native environments to dimate re-
source assignment. The LS, however, is an optioralhanism
and if desired it must be explicitly supplied by tiser.

Wei Huang et al [6] present a VM based frameworkH&C.
The I/O virtualization overhead is reduced witleehnique called
VMM-bypass; this technique allows time-critical l/@perations
to be carried out directly in guest VMs without ahvement of the
VMM and/or a privileged VM. The results show thaP® appli-
cations can achieve almost the same performantt®as running
in a native, non-virtualized environment. Howevilre efficient
management is an open issue that needs to be sddres

David Irwin et al [7] present Shirako, a system dordemand
leasing of shared networked resources in federctesders. Shi-
rako uses an implementation of COD [2] for the ®usite man-
ager component and SHARP [5] for the leasing meshan
Leases are used as a mechanism for resource prowigi thus
intra LRM adaptation is not independent and onlggilde at long
terms.

Our work is in the direction of Dongyan Xu et abJ1The au-
thors propose the support of autonomic adaptatforirtwal dis-
tributed environments (VDE) with a prototype of ptiee
VIOLIN [12] based on Xen 3.0. They address chaleengf live
adaptation mechanisms and adaptataetision making Inter
LRMs adaptation is based on live cross-domain rigmacapa-
bility, and intra LRM adaptation by adjusting resmes shares of
physical nodes according to VM usage. Our propdgéérs in
that it attempts to improve the intra LRM mecharssrfor in-
stance, our approach uses low level managemersistgraphysi-
cal processors to VMs.

3. MULTIPLE DIMENSION SLOTTING

The Multiple Dimension Slotting approach aims tchamce the
multiplexing mechanisms offered by VMMs by managirey
sources in a fine-grain fashion. At the same tihallows that
LRMs to manage the pinning mechanisms accordingsgr re-
quirements.

3.1 MuDiS Management Component

The Multiple Dimension Slotting management compamans in

the first domain, known as DomainO (Dom0). Xen iype |

VMM -also known as 'hypervisor'— that runs direatly top of

the hardware and boots Dom0. This domain is alpged host
OS that has access to the real hardware. The Mo®ies out
the account usage of every single resource andpgraingle
physical resources into subsets. These subsetshiwhn be dy-
namically changed) are seen by the LRM as pseugsiqal ma-

chines with minimal interfering I/O interruptiorBhus, we isolate
physical resources with different characteristicattcan be ex-
ploited by the LRM.

The subsets of resources can be assigned to VNisdiifer-
ent application profiles (e.g. CPU-intensive, Netivimtensive,
SMPs requirement, or I/O-intensive). This virtualision allows
VMs behaving according to the limitations of thesigeed re-
sources, and hence the running applications.

Figure 1 show and example of the partitioning ofgital re-
sources. We can see in Figure la the partition snt&ets, each
one with different characteristics. The subsetsexfgsed to the
LRM and each one can be sliced with traditionalrapphes (e.g.
VM1 and VM2 could have each one 50% of each resowifc
subset 1 respectively). The MuDiS management coemtomaps
the subset shares and assigns them to virtualizsdurces
through the VMM. In Figure 1b we can see an exarfpl@ new
configuration after time n. The observed appligaidehaviour
could have shown that some resources were undeover-
utilized. Finally, the LRM regroups VMs to improperformance
and load balancing.

The major overhead during the internal migratio'Wis oc-
curs when one VM needs to be moved to another gdlydisk.
The reassignment of processors or migration toebetetwork
links is expected to be done in this context insiderably less
time. Since memory resource has homogeneous clascs,
the management is done by increasing or decredsengmount
assigned.

With our approach we gain in performance by addingxtra
layer of isolation. The services to manage and tmosubsets of

vmi| dvmz i [vm3l{vmal;

Nic-] — Nic1
100Mb] 10Mbs

e - Processor4
Processorl Processor3 Tk

(b) timet+1

VM1 | | VM4 VM3 [[VM2 VM5

S | ey
W 100Mbs

g [NIC1
| 'NIE8 . 10Mbs
B =

muttipte dimehd i S Gty manageient

Pinning frameworks
Virtualization :

Physical node
>) > Processorl
IDE Processor2
NIC1 NIC2 NIC3 Processor3
10Mbs | 100Mbs| 1Gbs
Processor4

Processorl
muttiptediménson s otting management

Pinning frameworks
Virtualization :

Physical node
) > Processorl
IDE Processor2
NIC1 NIC2 NIC3 Processor3
10Mbs | 100Mbs| 1Gbs
Processor4

Figure 1. Example of the assignment mechanism of single phlsésources at tintga), and after reconfiguring at tinel (b).

physical resources (and VMs associated) are expthsedgh a
standard API interface to the upper layers of tRML

3.2 Architecture

For evaluating the proposed approach we have deselsome of
the components that are part of our GRM of LRMsbéath with
adaptive resource mechanisms for virtual workspa®es LRM
prototype aims to provide to the GRM with the istracture for
accessing virtualized resources in a transparept Waxposes a
simple standard service interface for jobs exeautip hiding the
complexity of the managed local resources. The emghtation
of the proposed architecture leverages technolapissare cur-
rently in continuous development. Those technokgie virtual-
ization (which is based on Xen) and Tycoon [10Mmarket-based
system for managing compute resources in distribaligsters.

3.3 Prototype

The current organization of the global current dedture can be
seen in Figure 2. In the following the componemtd their inter-
relations are explained in detail.

The Local Resource ManagétRM) component offers public
services via XML-RPC interfaces. Part of the actitimat can be
performed by LRM are currently encapsulated in @obynAPI
component which interfaces with Tycoon. The curnermtotype
of the proposed architecture uses Tycoon for magatiie crea-
tion, deletion, boot and shutdown of virtual maesinas well as
weighting the resources with its bidding mechanism.

TycoonAPIcomponent is part of the LRM architecture. It has

been designed to allow migration to other high &M resource
managers. Even though it is not intended to switstifycoon, the
development of a high level resource manager p@m issue.
The design of the LRM includes other components itftar-
faces directly with Xen to perform tasks suchnamnitoring and

CPU capacitymanagement. The first is necessary to trace VMs

performance in order to compute costs, and thenseechich

implements the contributions of this paper achsesféering fine-
grain CPU specifications for VMs in SMP architeetsir

CPU capacity managemeri#t part of theMultiple Dimension
Slotting Management (MuDiSM) and interfaces with the pinning
framework offered by the virtualization layer (Xenlhe disk
capacity managememindnetwork capacity managemeate also
part of the MuDiSM and complement each other tdrabssub-
sets of physical resources.

The current architecture hasbaLRM componentvhich is a
client that requests actions to LRMs. A LRM musgvpously be
located by thediscovery servicgor directory componeit This
service is part of th&lobal Resource ManaggGRM leverages
txtLRM functionality and eventually substitute ithiis component
is currently designed but not implemented.

A security componenis part of the architecture. It has the
functionality to authenticate txtLRM requests inMRvia creden-
tials and access lists. PKI subcomponergnables the infrastruc-
ture to offer secure connections. Its main purpss® upload
sensitive job information like data or applicatigource or bina-
ries) to the workspace.

In order to accomplish job management, the architechas a
schedulercomponent. Its functionality is to make a plan fer
quested job submissions satisfying user SLAs takitg acount
available resources. This component is part of &M. The
LRM also has §ob deployment componettt manage job execu-

tions in the workspace.
TxtLRM (GRM)

LRM LRM LRM
Tycoon Tycoon Tycoon
XEN XEN XEN

Figure 2. Baseline prototyr.

processor O

@idle
= fabric2
m DomO

%CPU

@ idle

fabric4
g fabric3
m DomO

%CPU

time(s)

Figure3. Three requests for VMs with 1GHz assigned without
MuDiS. One VM is assigned to processor 0, and twis\fo
processor :

Besides the standardized interfaces, another f&edtur the
GRM is auser interface componefur the final user. Its function
is to allow job management submission and monitpriso, a
register componenallows final client (users or agents) obtaining
credentials in order to perform requests to the GRM

The information relative to workspaces (fabricgtet users,
and executed jobs, among others must be managésisTtione
by the information management componeoit the LRM. The
GRM must also have a similar component for cliejais,submis-
sions, and registered LRMs (directory component).

Finally, part of the LRM is thénvoicing componentwhich
computes a cost-function for the executed job plakie have
selected a first formula for investigation; howewee do not have
a real justification for that choice. The curreesin includes the
calculation of the invoice by: Min(CPU consumed, WCRs-
signed) * basic price, CPU assigned * basic pricd €PU as-
signed * offered price (client budget).

The architecture is implemented in Python. It usSbd. mes-
sages to define actions and also to interchangeniation be-
tween LRM servers and txtLRM clients.

4. Experiments

In our experiments the hardware of the resourceigeo node is
a Pentium D 3.00GHz (two processors), 1GB of RAMe tard
disk (160GB, 7200 rpm, SATA), and one network ifgee card
(Broadcom NetXtreme Gigabit). The operating systerfredora
Core 4 and the system-level virtualization solutisrXen 3.0.2.
The Tycoon client and auctioneer are 0.4.1p13@+ssion.

The prototype implements multiple dimension slajtby cre-
ating subsets of processors. In our experiments stvbsets, each
one with one processor are created. The Xen sobredtusEDF
(scheduler Earliest Deadline First) which provigesghted CPU
sharing per virtual machine. We also u&mu-pinto restrict a
VM to be executed in a specific physical CPU.

We evaluate our approach with four experiments. fiist
three experiments using a SMP node, and the fausithg a uni-
processor node.

« In first experiment we allocate three VMs withoutiDiS.

* In second experiment we evaluate MuDiS through ten-
figurations.

« In third experiment we use MuDiS to allocate fouM¥.

* In fourth experiment we allocate one VM in a unigessor
node.

In first and fourth experiment we allocate fouruesgts for the
creation of virtual workspaces. The required preitespower of
each VM is 1GHz, 1GHz, 1GHz, and 3GHz, respectivilie
evaluate MuDiS in the second experiment, but witfent con-
figurations.

In each experiment we launch an application tecssttee CPU
by repeating a task formed by four sets of differ@athematical
operations. We measure the start and end timeabf gt of op-
erations and report it as time consumed per tréiosadn each
experiment we run the benchmark during 60 secomd®arh
virtual workspace. The output file reports the kditme, the num-
ber of tasks, and the number of transactions.

In the first experiment we offer processor poweaaghole re-
porting the capacity of the node as 3Ghz. In tlijzeement we
instruct LRM to allocate three VMs that request ZGihd then 1
VM that requests 3GHz. Using the Xen mechanismb &4d is
created with equal share by weighting each one tféhof the
total share.

Figure 3 shows the CPU usage of each virtual waspn
the first experiment. Additionally, we report idbeocessor. Table
1 shows mean values of tasks, time, and transacpen second
(tp9); it also shows the standard deviationtpd Tables in this
work are obtained for 15 runs of each experiment. Miserved
that VMs of 1 GHz are assigned, however the folfth with
requirement of 3GHz could not be allocated.

Table 1. Transactions per second achieved in each VM, all
with equal share

VM Tasks Time tps c
fabric2 137.53 60.20 9.14 0.26
fabric3 70.40 60.29 467 | 012
fabric4 70.60 60.28 468 | 010

Session Edit View Bookmarks Settings Help

LEM Client Beta 0.1 : connected to 147.83.30.245

Menu :

Processor VM(ID) share Free Owner Status Price
4] fabricl 0.5 False True running 1.485
0 fabric2 0.5 True False inexistent 1.4895
3 fabric3 0.5 True False inexistent 1.4895
1 fabric4 0.5 True False inexistent 1.485

Fiaure4. Example of partitionina throuah LRM client irrface

In the experiment one, the clients and GRM woulgeex
equal performance in each VM, but the numbetpeshows (Ta-
ble 1) that fabric2 VM outperforms the rest. Intfaall of them
receive more resources than the original requirésnae can
argue that Xen is fair enough (in architecturehwito proces-
sors) when we have an even number of VMs, butmaehe case
of an odd number as shown above. Neverthelessawenat be
tempted to generalize this approach when we needrate in-
formation about the expected performance.

processor O

g idle
o] .
o = fabric4
Q & fabric2
S
B m Dom0
2 -
o @ idle
@] m Dom0
X

10 20 30 40 50 60

time(s)

Figure5. LRM allocates two requests for VMs of 1.5Ghz with
MuDiS. Both VMs (fabric2, fabric4) are assignedptrocessor 0.
Processor 1 has no assignir

processor O

TR N S
> 60 —7\— —%— —%— — [wie
O o fabric2
Siiin
time(s)
processor 1
o m Y D 7
60 - / / Didle
il
20 | % % /%

B

20 30 40

(o2
o

60
time(s)

Figure6. LRM allocates two requests for VMs of 3Ghz with
MuDiS. First VM (fabric2) is assigned to proces8pand the
second VM (fabric4) is assigned to process

As we pointed out, the main problem is how to opteriocal
resources by allocating the maximum possible nunadievMs
with different constraints (CPU intensive, net imdive, or disk
intensive).

Figure 4 shows a screenshot of the LRM client fater, as an
example for partitioning the capacity of the nodevier. Notice
that we can manage the percent of share assigneattoVM by
processor. Our current LRM prototype slices nodéicstlly, that
is why the “Status” column shows VMs as “inexisteritVe ex-
pect to offer dynamic slicing in a future prototype

In the second experiment, instead of offering pseoe power
as a whole, we offer it in terms of subsets of C&dihg the
MuDiS we propose. We set two configurations: a) agl the
LRM for the creation of two virtual workspaces aexecute the
benchmark, each one requesting 1.5GHz of procepsiwgr, and
b), we ask the LRM for the creation of two virtuabrkspaces,
each one requesting 3Ghz of processing power (geees).

In the first case, our LRM creates both VMs in mssor 0 as
shown in Figure 5 and leaves room for future alioce in proc-
essor 1.

In the second case we can see that with this apipithe LRM
can provide to clients (users or agents) detaiéatination about
free resources and also meet the requested SLAgrfoal work-

spaces. Table 2 and Table 3 summarizetpldor the two con-

figurations.

Table 2. Benchmark results allocatin

1.5GHzin each VM.

VM Tasks Time tps c
fabric2 69.47 60.41 4.60 0.13
fabric4 68.93 60.34 457 011

Table 3. Benchmark results allocating 3.0GHz in each VM.

VM Tasks Time tps c
fabric2 135.80 60.22 9.02 0.20
fabric4 138.87 60.22 922 | 026

Following the same approach, we conducted a thimk-
ment which consists of requesting to the LRM tHecaition of
four VMs meeting the requirements of 1GHz, 1GHzHkGand
3GHz (like in the first experiment). Figure 7 shoive CPU utili-
zation for each VMs. We can see in the graphsttieabenchmark
application launched in each VM achieves the ftiliaation of
assigned CPU shares.

In Table 4 we can see that the transactions penseachieved
in third experiment are consistent with requestedsS We can
see that the fine grain LRM has been able to aiotae 4 re-
quested VMs, different to the baseline system ugethe first
experiment.

Table4. Benchmark resultsfor third experiment.

VM Tasks Time tps c
fabricl 133.93 60.20 8.90 0.42
fabric2 45.13 60.57 298 | 014
fabric3 45.00 60.47 298 | 016
fabric4 44.93 60.54 297 | 013

Finally, in a fourth experiment we deploy for comgdave pur-
poses our prototype in a laptop with one PentiunM\3.06GHz
processor and ask the LRM to create a VM with 3GFable 5
shows the measuregsresults from running same benchmark.

In the uniprocessor architecture we do not segrafwiant dif-
ference in the number dps compared with the results of our
former SMP architecture testbed. However, we calithin a
small deviation caused by two factors: by the ima¢mprocessor
architecture and second because of the overheadaged by the
privileged Xen domain-0 which runs on only one @s8or. Nev-
ertheless, it reports and meets the expected paafure when
running our benchmark.

Table 5. Benchmark results allocating 3.0GHz in a uniproces-
sor node.

VM Tasks Time tps c

fabricl 136.67 60.18 9.08 0.12

From the second experiment we observe that MuDi@&val
accurate assignment of requested CPU. In both gunafiions of

the second experiment the SLAs are meet. Moredwdts first
configuration only one processor is used for the tw5GHz
VMs, leaving the second processor for future aliocs. Com-
paring the allocation in the first and third expsent we observe
that MuDiS gives us a better assignment of VMsrtcpssors by
performing the creation, assignment and monitodhthe VMs.
The advantage of the LRMs and interest to GRM &t tine
MuDiS is able to better map SLAs to resources whéging the
capacity to adapt resource assignment to the edjpierformance
of the user application.

5. Outlook and conclusions

We have presented a multiple dimension slottingraggh for
local resource managers (LRMs) to manage in a diraén way
the virtualized resources.

The approach adds another layer for the manageohefirtu-
alized resources. We target three different featuesst responses,
light footprint and no overhead. The implementegbethms to
adjust subsets, re-locate resources (or VMs) andstaghares
must not compromise the global performance of ttéeenode.
The algorithms must not interfere with the hostedsvand its
applications. The multiple dimension slotting mus precise
when managing the share assigned to each VM onreaohrce.

processor O

& idle
g fabricl
m DomO0

%CPU

0 20 30 40 50 60
time(s)

processor 1

O idle

= fabric4
fabric3
8 fabric2
® DomO

%CPU

time(s)

Figure7. LRM allocating one VM in processor 0 and three \

in processor.

The LRM has been implemented taking advantage of Wie
tualization and Tycoon. Our preliminary results abed from
experiments showed that the local physical reseuwere prop-
erly assigned, such that the performance measuoredrisactions
per second was accurate and corresponded to a§tessl We
made four experiments running an application thedtalves as a
CPU intensive job. In the first experiment whiclpnesents the
baseline system, we used a coarse-grain approdetingf re-
sources with the global share mechanism. In thergkand third
experiment we used the proposed MuDiS managemeuartition
resources in their singles entities. We observatlttie fine grain
approach implemented in the MuDiS-LRM achieved tebello-
cation of resources compared with the original eystOur ap-
proach could be further enhanced by dynamic adaptabf
assigned resources to application behaviour.

Acknowledgments

This work was supported in part by the Europeanobninder
Contract SORMA EU IST-FP6-034286, the Ministry adu€a-
tion and Science of Spain under Contract TIN200645603-01,
and the Mexican Ministry of Education under progr@dROMEP
(PROgrama de MEjoramiento del Profesorado). We khie
review committee for their time and insightful coemts.

References

[1] Barham, P. Dragovic, B. Fraser, K. Hand, S.ridarT. Ho, A.
Neugebauer, R. Pratt, I. and Warfield A., "Xen #imel art of virtual-
ization," in Proceedings of the 19th ACM SymposiamOperating
Systems Principles, pp. 164-177, October 2003.

[2] Chase, J. Irwin, D. Grit, L. Moore, J. and Spkle, S. Dynamic
Virtual Clusters in a Grid Site Manager. TwelfthBIE Symposium
on High Performance Distributed Computing (HPDG)ne) 2003,
Seattle, Washington.

[3] Clark, C. Fraser, K. Hand, S. Hansen, J. G.BuLimpach, C. Pratt,
I. and Warfield. A. “Live Migration of Virtual Madnes”. In Pro-
ceedings of the 2nd ACM/USENIX Symposium on NetvedhSys-
tems Design and Implementation (NSDI), Boston, Nfay 2005.

[4] Figueiredo, R.J. Dinda, P.A. Fortes, J.A.B. ¢ase for grid comput-
ing on virtual machines”. In Proceedings of Int.n€m®n Distributed
Computing Systems (ICDCS), 2003.

[5] Fu, Y. Chase, J. Chun, B. Schwab, S. and VahdatSHARP: An
Architecture for Secure Resource Peering”. In Redogys of the
19th ACM Symposium on Operating System Principl@stober
2003

[6] Huang, W. Liu, J. Abali., B. and Panda, D.. @ase for High Per-
formance Computing with Virtual Machines”. The 2B&M Inter-
national Conference on Supercomputing (ICS '06)ynSaQueen-
sland, Australia, June 2006

[7] Irwin, D. Chase, J. Grit, L. Yumerefendi, Becker, D. and
Yocum, K. “Sharing Networked Resources with Brokleteases”,
USENIX Annual Technical Conference (USENIX), Jurd®@, Bos-
ton, Massachusetts.

[8] Keahey, K. Foster, I. Freeman, T. Zhang, X.rGal D. “Virtual
Workspaces in the Grid”, Europar 2005, Lisbon, &gat, Septem-
ber, 2005.

[9] Kiyanclar, N. Koenig, G.A. and Yurcik, W. “Mags-VC: On-
Demand Secure Cluster Computing Using Virtualizatia/’th LCI
International Conference on Linux Clusters, May €00

[10] Lai, K. Rasmusson, L. Adar, E. Sorkin, S. @palL. and Huberman,
B. "Tycoon: an Implementation of a Distributed MetBased Re-
source Allocation System", HP Technical Report, éheber 8, 2004

[11] Mergen, M. F., Uhlig, V., Krieger, O., and Xdis, J. 2006. Virtual-
ization for high-performance computing. SIGOPS O33rst. Rev.
40, 2 (Apr. 2006), 8-11.

[12] Ruth, P. Rhee, J. Xu, D. Kennell, R. and Goasg S. “Autonomic
Live Adaptation of Virtual Computational Environnterin a Multi-
Domain Infrastructure”. IEEE Int’l Conf. on Auton@enComputing
(ICAC’06), June 2006

[13] Sundararaj, A. and Dinda, P. A. “Towards VatuNetworks for
Virtual Machine Grid Computing”. 3rd USENIX VirtuaWlachine
Research and Technology Symp., May 2004.

[14] VMware. http://www.vmware.com.

[15] Xu, D. Ruth, P. Rhee, J. Kennell, R. Goasgug."Short Paper:
Autonomic Adaptation of Virtual Distributed Envirorents in a
Multi-Domain Infrastructure", Proceedings of Theti3EEE Inter-
national Symposium on High Performance Distribu@amputing
(HPDC'06), Paris, France, June 2006

[16] Youseff, L. Wolski, R. Gorda, B. Krintz, C. &Pavirtualization for
HPC Systems”. ISPA Workshops 2006: 474-486

