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We have measured the maximum field for which vortices are completely expelled from a thin-film
superconducting strip. Niobium strips of width W were field cooled and imaged with a scanning Hall
probe microscope. Below a critical field Bm ≈ Φ0/W 2 all flux was expelled; above this field vortices
were observed with a density increasing approximately linearly with field. The small value of the
critical field, which is orders of magnitude less than in the bulk, implies that superconducting devices
should be designed with narrow wires to eliminate the generation of noise from vortex motion.
Contribution of NIST not subject to copyright.

A defining characteristic of superconductivity is the
Meissner effect, the complete expulsion of an external
magnetic field when a superconductor is cooled through
its transition temperature Tc. In general, however, super-
conductors rarely exhibit a complete field expulsion; grain
boundaries, normal inclusions, and other defects serve to
trap flux within the superconductor. This is particularly
true for type-II superconductors, where trapped flux ex-
ists in the form of quantized filaments of flux, or vortices.
Flux expulsion can be further impeded by sample geom-
etry, such as a flat plate in a perpendicular magnetic
field. Thus for actual experiments, the Meissner effect
is typically incomplete, inhomogeneous, and strongly de-
pendent on sample preparation and geometry.

The situation becomes remarkably simple, however, in
the technologically-important case of a thin-film type-II
superconducting strip of width W , in the limit where the
in-plane penetration depth is much greater than W . As
we discuss below, this limit is the experimentally-realized
one when a strip is field-cooled through Tc. In this letter,
we show that such a strip exhibits a complete Meissner
expulsion of vortices below a critical field Bm, essentially
independent of the details of pinning and material param-
eters such as the coherence length ξ and the penetration
depth λ. Furthermore, this expulsion has a universal
characteristic, with Bm ∼ Φ0/W 2, where Φ0 = h/2e is
the superconducting flux quantum.

We report the experimental confirmation of this criti-
cal field using the technique of scanning Hall probe mi-
croscopy (SHM) to image vortices in thin-film niobium
strips. Our data can distinguish between two theories
that give slightly different predictions [1–4]. Because the
strip geometry is common in superconducting applica-
tions, this problem also is of current technological rel-
evance. For instance, flux noise generated by the mo-
tion of vortices can limit the ultimate sensitivity of su-
perconducting quantum interference devices (SQUIDs),
and may produce decoherence in superconducting qubits.
Our work shows that vortices can be eliminated by de-
signing devices with leads narrow enough to expel the

ambient field [1, 2, 5], a simpler solution than other pro-
posed techniques [6–8].

Consider a strip field-cooled through Tc. Near Tc, the
in-plane penetration depth Λ = 2λ2/d is much greater
than W , leading to weak screening and a field that pene-
trates nearly uniformly through the strip. Vortices begin
to nucleate in the strip, and near Tc they are mobile and
can seek out configurations that lower the free energy of
the system. As the strip is cooled further pinning in-
creases rapidly, causing the vortices to freeze out at a
temperature Tf very close to Tc. As the temperature is
lowered further, the vortices remain pinned. Thus the
vortex configurations we image at low temperature are
properly described by a theory applicable to this high-
temperature regime where Λ > W .

Several authors [1–4] have investigated the theory of
vortex expulsion in this regime. The existence or expul-
sion of vortices is determined by two competing forces
[9–12]. First, a vortex is attracted towards the edges
of the strip by a force that can be thought of as aris-
ing from image antivortices outside the strip which en-
force the proper boundry conditions on the current. This
force tends to expel the vortex. Second, the vortex is at-
tracted to the center of the strip from interactions with
(weak) Meissner screening currents that flow parallel to
the strip’s edges. This second force is proportional to B,
and at high enough field overcomes the outward image
forces and creates a position of stable equilibrium along
a line centered on the strip.

The effect of these forces can be described by a Gibbs
free energy G(x) for a single vortex [1–4], where x is the
distance of the vortex to the center of the strip. In
Fig. 1(a) we plot G(x) for a 10-µm-wide niobium strip
at tf ≡ 1 − Tf/Tc = 0.0015, which, as we will discuss,
corresponds to the experimentally determined value of
the vortex freezing temperature. The free energy at low
applied fields (e.g., B = 10µT = 0.1 G) has a dome-
like shape that expels vortices. As the field is further
increased, a flat maximum (∂2G/∂x2 = 0) in G appears
at B0 = 16 µT. For B > B0, a local minimum appears at
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FIG. 1: The Gibbs free energy (Ref. 2) of a single vortex
located at position x at several values of the applied field B,
at a reduced temperature t = 1− T/Tc of 0.0015. The curve
at Bp = 36 µT includes schematically a pinning well of depth
Ep ≈ 50 kTc.

x = 0 in which vortices may be metastably trapped. As
B is further increased, this minimum become absolutely
stable at a field Bs = 39 µT; above this field the free
energy of the strip with one vortex is lower than the free
energy with no vortex.

Thus there are two fields, B0 and Bs, which may be
identified as possible critical fields for complete vortex ex-
pulsion. Clem [1] and Maksimova [4] argue that the rel-
evant field is that for metastable equilibrium, B0, which
can be calculated as

B0 =
πΦ0

4W 2
. (1)

On the other hand, Likharev [3] claims that vortices can
only exist in the strip when they are absolutely stable,
that is, above the field Bs given by

Bs =
2Φ0

πW 2
ln

(
αW

ξ

)
. (2)

The constant α is related to calculating the vortex energy
when it comes within ∼ ξ of the edge, and was found to
be 1/4 by Likharev [3] and 2/π by Clem [2].

In our experiments, the strips are cooled to below Tc

at a fixed field B; this is also the usual case for SQUID
devices, where the SQUID might be cooled in the Earth’s
field. In this case, we argue on physical grounds that the
experimentally relevant critical field will be Bs, not B0.
Consider the strip of Fig. 1 at B = 27 µT, just above
B0. The energy barrier for escape from this shallow well
is fairly large (≈ 47 kTc). However, during field cooling
we will have passed through temperatures even nearer
to Tc where the barrier is much smaller. For instance,
when t = 1 − T/Tc = 0.0005 the escape barrier is only

(b) W = 100 µm(a) W = 10 µm

FIG. 2: (a) 10 µm strip after field-cooling in 85 µT. The
strips appear light because of the Meissner expulsion of the
field, but many vortices (darker spots) are visible. (b) 100 µm
strip after field-cooling in 5.3 µT. Both images are 140 µT full
scale, and about 145 µm wide.

≈ 18 kTc, while the barrier for re-entry is ≈ 42 kTc. This
situation makes it very likely that any such metastable
vortex would escape and not be able to return. If, how-
ever, the sample were cooled in a field just above Bs,
a vortex in the center would be absolutely stable at all
temperatures.

To test these ideas, we fabricated strips from sput-
tered niobium films of thickness d = 210 nm using pho-
tolithography and subsequent reactive ion etching. The
film studied had a transition temperature Tc of 8.848 K.
The strip lengths were 4 mm, and had nominal widths
of 1.6, 10, and 100 µm. The strips were imaged far from
their ends using a low-temperature scanning Hall probe
microscope (SHM) with a wide-field scanning head [13],
allowing us to image many vortices to get good counting
statistics. The probe had an active region of about 1.1
µm on a side and was scanned at a height between 1.0
and 1.5 µm from the surface. A magnetic shield enclosed
the entire cryostat and reduced the ambient field to less
than 1 µT.

We determined the vortex density by applying a field
B and then cooling the strips through Tc to 7 K where the
SHM images were taken. The images were independent
of the cooling rate near Tc down to 10mK/s. Represen-
tative images are shown in Fig. 2. Figure 2(a) shows an
image of 10 µm strips at B = 85 µT. Although the vor-
tices tend to lie along the center of the strip where their
energy is the lowest, some vortices are pinned away from
the center. In Fig. 2(b) we show a 100 µm strip in an ap-
plied field of 5.3 µT. The vortices have begun to spread
out over the strip, although at lower fields (not shown)
they again tend to lie near the center.

We determined the critical field for each strip by taking
images at many applied fields B and counting the number
of vortices N in each image. As plotted in Fig. 3, for each
width we find a field range centered about zero for which
all vortices are expelled from the strip. The data at high
field has a linear dependence of N given approximately
by N = (B −Bm)A/Φ0, where A is the total area of the
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FIG. 3: Number of vortices N in an image as a function of
applied field B for three different widths of strips. The arrows
indicate the values of Bm determined by extrapolation of the
linear regime (dotted lines), which have slopes of 0.85, 1.17,
and 0.99 (B − Bm)A/Φ0, for (a), (b), and (c) respectively,
where A is the total area of the strips visible in an image.

strips in the image. We have defined the maximum field
Bm for complete vortex expulsion by extrapolating this
linear dependence of N down to N = 0. The data from
Fig. 3 show that Bm changes rapidly with strip width.
We will discuss later the region of reduced slopes at fields
slightly less than Bm for the 1.6 µm and 10 µm strips.

In Fig. 4 we plot the experimentally-determined val-
ues of Bm and compare them with the two theoretical
predictions B0 [Eq. (1)] and Bs [Eq. (2)]. We observe
good agreement in the approximate magnitude of Bm as
well as its scaling as 1/W 2. To make a more quantita-
tive comparison, we must estimate ξ(T ) in Eq. (2) at the
temperature Tf at which the votices become pinned.

We measured Tf as follows. First, vortices were nucle-
ated in the 10 µm strip at a field 62 µT, slightly above
Bm. The strip was then cooled to well below Tc, freezing
in the vortices. After the field was lowered to slightly
below Bm, the strip was continually imaged as the tem-
perature was very slowly (0.1 mK/s) raised towards Tc.
We found that vortices first moved when t = 1 − T/Tc

= 0.0015, identifying the temperature Tf . This value is
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FIG. 4: Experimental and theoretical critical fields vs. strip
width W . Bm is the experimental data from this paper; Bs

and B0 are theoretical curves derived from criteria of absolute
(Bs) and relative (B0) stability.

consistent with previous measurements [9, 10]. At this
temperature we estimate ξ to be 320 nm, taking [14] ξ0

= 38.9 nm and a value of the Ginzberg-Landau param-
eter κ = 5.0, derived from the normal-state resistivity
of our films [14, 15]. We note that since ξ appears only
logarithmically in Eq. (2), Bs is not sensitive to our de-
termination of either Tf or ξ.

The theoretical prediction for Bs is plotted in Fig. 4
for this value of ξ and α = 2/π. The prediction of B0

[which is independent of ξ, Eq. (1)] is consistently below
our data, whereas the the prediction for Bs matches the
data better, especially for the strip of intermediate width.
We note that the theoretical assumption ξ � W �
Λ is well satisfied only for this intermediate strip. For
the narrowest strip, ξ/W is about 0.2, causing the Lon-
don model used in the theoretical treatments to begin to
break down, and altering the calculations of the vortex-
image forces and free energy. For the widest strip at
t = 0.0015, we calculate that Λ = 24 µm, which is less
than W . When Λ � W , the critical field has been
calculated[3, 16] for the 100 µm strip to be lower than Bs

by a factor of about 3, consistent with our data. Since the
data for 10µm strip matches well the predictions for Bs

but not B0, we confirm that vortices are expelled unless
the free energy G is absolutely stable.

We now turn to understand the deviation in Fig. 3 of
the linear behavior of N vs. B, for B slightly less than
the critical field. This data can be explained by pinning,
which is represented schematically in Fig. 1 as a narrow
well of depth Ep in G(x). Since such wells lower the
free energy, they allow the first vortices to enter at a
lower field than they would with no pinning. In Fig. 1,
as the field is changed from Bp, where the first vortex
enters the pinning well, to Bs, where vortices would have
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first entered without pinning, the free energy changes by
∆G = Ep. Thus we have

∆B/Bs ≈ 1
Bs

∆G

∂G/∂B
≈ 1

Bs

Ep

∂G/∂B

=
8π2Λ

Φ2
0 ln(2W/πξ)

Ep. (3)

Here ∆B is the difference between the critical field (the
extrapolation of the linear regime to N = 0 in Fig. 3)
and Bp (where the first vortex enters), and we have used
the result [2]

∂G/∂B|x=0 =
Φ0W

2

16πΛ
.

Equation 3 predicts, within logarithmic accuracy, that
the fractional width ∆B/Bs of the pinning region is in-
dependent of width. Experimentally we find ∆B/Bm =
0.09 for the 1.6 µm strip, and 0.10 for the 10 µm strip,
confirming this prediction [17]. Taking ∆B/Bm = 0.1
and using Eq. 3, we estimate a pinning energy Ep ∼
51 kTc. This energy can be compared with Ep estimated
from the freeze-out temperature Tf . Since the vortex
motion is thermally activated and has a rate described
by a Boltzman factor, the rate becomes small—and the
vortices freeze out—when Ep ∼ 20 kTf , a value that is
reasonably close to Ep obtained above using Eq. 3.

Finally, we discuss the dependence of the vortex den-
sity on applied field, shown in Fig. 3. Ignoring the knee
region, N is nearly linear in B−Bm. This is quite differ-
ent from the situation in a bulk superconductor, where
there is a very sharp increase in the vortex density just
above Hc1, followed by a more gradual increase there-
after [14, 18]. This rapid increase is due to interactions
between vortices which are weak until the vortices come
within ∼λ of each other. In the strips, however, the in-
teractions have a long range (1/r) force, which implies a
more gradual increase in the vortex density with applied
field. Interestingly, the measured slope dN/dB is quite
close to the simple value of S0 ≡ A/Φ0, where A is the
total area of the strips visible in the image. This slope
corresponds to the number vortices expected if the total
flux through the strips above Tc nucleated into vortices.
It might have been expected, however, that because of
the small effective width available to the vortices at fields
just above Bm (e.g., Fig. 1, 50 µT), this slope would be
rather less than S0.

Maksimova [4] has calculated the free energy as a func-
tion of N near the metastable minimum B0, from which
it can be shown that N ≈ (B − B0)3/2 for small N . We
may extend her calculations to the region near Bs, and
find

N =
A

2Φ0
(B −Bs).

While linear, in agreement with the data, this expression
predicts a slope about one-half of the observed value.

We note that in Maksimova’s derivation it is assumed
that the vortex density is high enough to be taken as a
smooth continuum, and so her expressions should not be
expected to agree quantitatively with our results where
the vortices are quite discrete. Indeed, an analytic theory
in this low-N regime is likely to be difficult to formulate.
A more fruitful approach may be the use of computer
simulations of vortices, using analytically derived forces
and energies.

In conclusion, we have imaged vortices with a scanning
Hall-probe microscope and shown a well-defined maxi-
mum field Bm for vortex expulsion. Our data verifies the
theoretical prediction Bm ≈ Φ0/W 2. The magnitude of
Bm supports the criterion that vortices are observed in
the film when the free energy of a vortex at the center of
the strip is negative. The critical field, which is many or-
ders of magnitude less than the bulk value, implies that
superconducting devices should be designed with narrow
wires to eliminate trapped vortices and the generation of
noise from their motion.
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