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GASNet: High-Level Outline

• GASNet Design Overview and Implementation Status
• Firehose: A DMA Registration Strategy for Pinning-

Based Networks
- The "right way" to handle memory sharing for PGAS 

languages on difficult but common NIC hardware
• GASNet vs ARMCI comparison

- what Firehose buys us
• GASNet Extensions for Non-Contiguous Remote 

Access (Vector, Indexed and Strided)
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GASNet Design Overview - Goals

• Language-independence: support multiple PGAS languages/compilers
- UPC, Titanium, Co-array Fortran, possibly others..
- Hide UPC- or compiler-specific details such as pointer-to-shared representation

• Hardware-independence: variety of parallel arch., OS's & networks
- SMP's, clusters of uniprocessors or SMPs
- Current networks: 

- Native network conduits: Myrinet GM, Quadrics Elan, Infiniband VAPI, IBM LAPI
- Portable network conduits: MPI 1.1, Ethernet UDP
- Under development: Cray X-1, SGI/Cray Shmem, Dolphin SCI

- Current platforms: 
- CPU: x86, Itanium, Opteron, Alpha, Power3/4, SPARC, PA-RISC, MIPS 
- OS: Linux, Solaris, AIX, Tru64, Unicos, FreeBSD, IRIX, HPUX, Cygwin, MacOS

• Ease of implementation on new hardware
- Allow quick implementations
- Allow implementations to leverage performance characteristics of hardware
- Allow flexibility in message servicing paradigm (polling, interrupts, hybrids, etc)

• Want both portability & performance
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GASNet Design Overview - System Architecture

• 2-Level architecture to ease implementation:
• Core API

- Most basic required primitives, as narrow and general 
as possible

- Implemented directly on each network
- Based heavily on active messages paradigm

Compiler-generated code

Compiler-specific runtime system

GASNet Extended API

GASNet Core API

Network Hardware• Extended API
– Wider interface that includes more complicated operations
– We provide a reference implementation of the extended API in terms of 

the core API
– Implementors can choose to directly implement any subset for 

performance - leverage hardware support for higher-level operations
– Currently includes:

– blocking and non-blocking puts/gets (all contiguous), flexible 
synchronization mechanisms, barriers

– Just recently added non-contiguous extensions (coming up later)
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GASNet Performance Summary

GASNet Put/Get Roundtrip Latency (min over msg sz)
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GASNet Performance Summary

GASNet Put/Get Bulk Flood Bandwidth (max over msg sz)
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GASNet vs. MPI on Infiniband
Roundtrip Latency of GASNet vapi-conduit and MVAPICH 0.9.1 MPI
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MPI semantics provide two-sided synchronization, whether you want it or not
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GASNet vs. MPI on Infiniband
Bandwidth of GASNet vapi-conduit and MVAPICH 0.9.1 MPI
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GASNet significantly outperforms MPI at mid-range sizes - the cost of MPI tag matching
Yellow line shows the cost of naïve bounce-buffer pipelining when local side not prepinned -
memory registration is an important issue
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Firehose: A Distributed DMA Registration 
Strategy for Pinning-Based High Performance 

Networks

Dan Bonachea (Design)
Christian Bell (GM)
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Rajesh Nishtala (GM-SMP)
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Problem Motivation: Client

• Partitioned Global-address space (PGAS) languages
- Large globally-shared memory areas w/language support for direct 

access to remote memory
- Total remotely accessible memory size limited only by VM space
- Working set of memory being touched likely to fit in physical mem

- App performance tends to be sensitive to the latency & CPU 
overhead for small operations

• Implications for communication layer (GASNet)
- Want low-latency and low-overhead for non-blocking small 

puts/gets (think ≤ 8 bytes)
- Want high-bandwidth, zero-copy msgs for large transfers

- zero-copy: get higher bandwidth AND avoid CPU overheads
- Ideally all communication should be fully one-sided

- one-sided: don't interrupt remote host CPU - hurts remote compute 
performance and increases round-trip latency
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Problem Motivation: Hardware

• Pinning-based NIC's (e.g. Myrinet, Infiniband, Dolphin)
- Provide one-sided RDMA transfer support, but…
- Memory must be explicitly registered ahead of time

- Requires explicit action by the host CPU on both sides
- Tell the OS to pin virtual memory page (kernel call)
- Register fixed virtual/physical mapping w/NIC (PCI transaction)

- Memory registration can be VERY expensive!
- Especially on Myrinet - average is 40 microsec to register one page, 

6000 microseconds to deregister one page (cf. 12us round-trip RDMA time)
- Costs primarily due to preventing race conditions with pending messages 

that could compromise system memory protection
- Want to reduce the frequency of registration operations and the need for 

two-sided synchronization
- Reducing cost of a single registration operation is also important, but 

orthogonal to this research
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Memory Registration Approaches

NotesFull VM 
avail

One-
sided

Zero-
copy

Approach

Common case: All the benefits of hardware-based
Uncommon case: Messaging overhead (metadata and 
handshaking)

Firehose

Round-trip message to pin remote pages before each op
Registration costs paid on every operation

Rendezvous

Stream data through pre-pinned bufs on one/both sides
Mem copy costs (CPU consumption/overhead, prevents 
comm. overlap), Messaging overhead (metadata and 
handshaking)

Bounce 
Buffers

Pin all pages at startup or when allocated (collectively)
Total usage limited to physical memory, may require a 
custom allocator

Pin Everything

Hardware manages everything
No handshaking or bookkeeping in software
Hardware complexity and price, Kernel modifications

Hardware-
based 
(eg.Quadrics)

(common case)(common case)
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Firehose: Conceptual Diagram

• Runtime snapshot of two nodes (A and C) mapping their firehoses to a third node (B)

firehose bucket

• A and C can freely "pour" data 
through their firehoses using 
RDMA to/from anywhere in 
the buckets they map on B

• Refcounts used to track 
number of attached firehoses 
(or local pins)

• Support lazy deregistration for 
buckets w/ refcount = 0 using 
a victim FIFO to avoid re-
pinning costs

• For details, see Firehose paper on 
UPC publications page (CAC'03)
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Application Benchmarks

• Simple kernels written in Titanium - just want a realistic access pattern
- 2 nodes, Dual PIII-866MHz, 1GB RAM, Myrinet PCI64C, 33MHz/64bit PCI bus

• Firehose misses are rare, and even misses often hit in victim cache
- Firehose never needed to unpin anything in this case (total mem sz < phys mem)
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522 µs
33 µs
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(miss: 0.02%)
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(miss: 0.2%)
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Average Put 
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Performance Results: "Best-case" Bandwidth

• Peak bandwidth - puts to same location with increasing message sz
• Firehose beats Rendezvous no-unpin by eliminating round-trip handshaking msgs
• Firehose gets 100% hit rate - fully one-sided/zero-copy transfers



Unified Parallel C at LBNL/UCB

Performance Results: "Worst-case" Put Bandwidth

Rendezvous no-unpin 
exceeds physical 
memory and crashes at 
400MB

• 64 KB puts, uniform randomly distributed over increasing working set size
- worst-case temporal and spatial locality

• Note graceful degradation of Firehose beyond 400 MB working set 
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Current/Future Firehose Work

• Recent work on firehose
- Generalized Firehose for Infiniband/VAPI-GASNet (region-

based), prepared for use in Dolphin/GASNet
- Algorithmic improvements for better scaling when access 

pattern unbalanced (bucket "stealing") avoid unpin-repin
cost

• Current/Future work on Firehose:
- Improving pthread-safe implementation of Firehose

- implementing optimistic concurrency control between 
client threads, to maximize firehose resource utilization 

- Fixing a few tricky race conditions
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Firehose Conclusions

• Firehose algorithm is an ideal registration strategy for PGAS 
languages on pinning-based networks
- Performance of Pin-Everything (without the drawbacks) in 

the common case, degrades to Rendezvous-like behavior 
for the uncommon case

- Exposes one-sided, zero-copy RDMA as common case
- Amortizes cost of registration/synch over many ops, 

uses temporal/spatial locality to avoid cost of repinning 
- Cost of handshaking and registration negligible when 

working set fits in physical memory, degrades gracefully 
beyond
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GASNet/ARMCI Comparison
• ARMCI - Aggregate Remote Memory Copy Interface (PNNL) 

v1.1Beta (most recent avail as of May 5th, 2004)
- Used by Global Arrays, Rice CAF and GPSHMEM
- Portable platforms: SMP, MPI, PVM, TCP Sockets, 

SHMEM
- Native platforms: LAPI, GM, Elan, VAPI, Hitachi, Fujitsu

• GASNet
- Currently used by Titanium, Berkeley UPC, GCC/UPC
- Future clients: Rice CAF, MPICH
- Portable platforms: SMP, MPI, Ethernet UDP, SHMEM
- Native platforms: LAPI, GM, Elan, VAPI, Cray X-1, Altix
- In-progress: Dolphin
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GASNet/ARMCI Interface Issues

• GASNet:
- Provides AM for extensibility 

- support pack/unpack, dist. memory alloc, dist monitors, dist GC, accumulate, 
firehose

- Full job bootstrapping support
- Tailored specifically for the needs of parallel PGAS languages - hides the ugly details

- Very flexible/expressive non-blocking put/get and sync modes
- allows polling-based, interrupt-based or hybrid message handling

• ARMCI:
- no bootstrapping support (must use MPI)
- all remotely accessible memory must be collectively allocated and explicitly 

pinned - but not guaranteed to be contiguous or aligned across nodes
- not pthread-safe, requires process-based client model
- Data server process often involved, using SysV shared memory

- Many of their communication paths are two-sided and two-copy
- context switch overheads, CPU cache pollution & cycle stealing (interrupt-based)
- Needs SysV kernel mods on some OS's, RDMA+SysV often buggy 

- Accumulate and locking support, but no general client extensibility
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GASNet vs ARMCI performance

• Test Machine:
- 4-node, Dual Intel P4 Xeon 2.8GHz, 512KB L1 

cache, 4GB main memory
- Red Hat Linux 8.0, 2.4.18-14smp kernel, glibc

2.2.93-5
- GM: LANai 10 PCI-X D NIC, GM 2.0.6
- VAPI: Mellanox Cougar (InfiniHost-A1) PCI-X NIC, 

firmware 3.0, software version 3.0.1, DivergeNet 8-
port InfiniBand 4X switch

- gcc 3.2.2, default compile options for each system
• Contiguous Put/Get Tests: 

- ping-pong latency test and flood bandwidth tests
- vary whether either side was explicitly pre-pinned
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ARMCI Caveats

• According to ARMCI docs:
- Their Infiniband port is still "initial"
- Their Myrinet port is "not fully optimized yet"

• Numbers are from modified version of their tester
- small changes to get an apples-to-apples comparison
- message sizes, MB=2^20, Put synchronization

• Some of the results differ from their published results
• Only testing contiguous put/get - ARMCI excels at non-

contiguous, which GASNet has just added
• Unable to get their newly added  non-blocking support to work

- Have contacted them, working to resolve issues
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GM: Local mem pinned (upc_memcpy)

Simple GM_Put/GM_Get, so all configs basically run at hardware speed

GASNet about 0.3 us faster -
less function call overhead, code path carefully tuned for low latency in small 
operations

GM Roundtrip ping-pong latency (non-bulk) - local side pre-pinned
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GM: Local mem pinned (upc_memcpy)

GASNet saturates at 2KB, ARMCI at 256KB 

Huge difference is due to ARMCI "pseudo-blocking" semantics

ARMCI recently added non-blocking, but the impl. on Myrinet doesn’t seem to work

GM Flood Bandwidth (bulk) - local side pre-pinned
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GM: Local mem not pinned (upc_memput/get)

GASNet uses firehose to dynamically pin the local pages

ARMCI falls back to a two?-copy message send scheme, pipelining through bounce 
buffers to a separate server process on the remote side - synchronization costs hurts 
small message latency

GM Roundtrip ping-pong latency (non-bulk) - local side not pre-pinned
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GM: Local mem not pinned (upc_memput/get)

GASNet bandwidth quickly saturates to the hardware max - dynamic pinning of local side pages 
to enable RDMA for large transfers, with lazy unpinning to amortize the pinning cost

ARMCI bounce buffer pipelining performs worse at small/medium sizes and reaches lower 
saturation bandwidth, especially for gets

GM Flood Bandwidth (bulk)  - local side not pre-pinned
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GM: Firehose vs. Pre-pinned

Firehose is well-tuned on GM - gives performance nearly identical to raw RDMA pre-pinned 
approach for access patterns with good temporal or spatial locality

Allows Put/Get to anywhere in the VM space, but avoids limitations of pre-pinned approach

ARMCI forbids the case where remote memory is not collectively pre-pinned

GASNet GM Roundtrip ping-pong latency (non-bulk) 
with data in various segment configurations
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GM: Firehose vs. Pre-pinned

GASNet GM Flood Bandwidth (bulk), 
with data in various segment configurations
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VAPI: Local mem pinned (upc_memcpy)

Simple RDMA Put/Get, so GASNet runs almost at hardware speed

Small firehose latency overhead (1us) for puts - needs more tuning

ARMCI Get has significantly worse latency - unclear why (performance bug?)

VAPI Roundtrip ping-pong latency (non-bulk) - local side pre-pinned

0

5

10

15

20

25

30

1 10 100 1000 10000

Message Size (bytes)

m
ic

ro
se

co
nd

s

ARMCI_Get

GASNet get_nbi

GASNet put_nbi

ARMCI_Put



Unified Parallel C at LBNL/UCB

VAPI: Local mem pinned (upc_memcpy)

GASNet provides the raw hardware RDMA bandwidth - even beats the MVAPICH 
MPI-over-Infiniband (not shown here). Put/Get difference is a hardware characteristic.

ARMCI-VAPI appears to need more tuning 

VAPI Flood Bandwidth (bulk) - local side pre-pinned
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VAPI: Local mem not pinned (upc_memput/get)

GASNet one-sided pipelining through preallocated local-side bounce buffers - small 
memcpy overhead, then RDMA

ARMCI pipelining through bounce buffers appears to be involving the separate server 
process on the remote side - synchronization costs hurts small message latency

VAPI Roundtrip ping-pong latency (non-bulk) - local side not pre-pinned
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VAPI: Local mem not pinned (upc_memput/get)

GASNet bandwidth reduced when local side not pinned - pipelining through 4KB prepinned bounce 
buffers. Not using firehose dynamic pinning of local side pages, but probably should

ARMCI two-sided bounce buffer pipelining approach performs worse at all sizes and reaches lower 
saturation bandwidth, especially for gets

VAPI Flood Bandwidth (bulk)  - local side not pre-pinned
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VAPI: Firehose vs. Pre-pinned

Firehose small-message latency very close to pre-pinned approach - small 
bookkeeping overheads

ARMCI forbids the case where remote memory is not collectively pre-pinned

GASNet VAPI Roundtrip ping-pong latency (non-bulk) 
with data in various segment configurations
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VAPI: Firehose vs. Pre-pinned

"Put/Get with local not prepinned" currently using bounce buffer pipelining - should 
probably switch to firehose to get dynamic pinning of local pages

GASNet VAPI Flood Bandwidth (bulk), 
with data in various segment configurations
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GASNet vs ARMCI conclusions

• Both layers run on most HPC systems of interest
- Both natively target the major high-performance networks
- Both have portable MPI/Ethernet based ports 

• GASNet designed specifically for PGAS languages/compilers
- Provides exactly the semantics needed for PGAS
- Extensibility and bootstrapping features very important

• Preliminary performance comparisons very positive
- GASNet can meet or exceed ARMCI performance
- Hard work on Firehose gives us a significant advantage on pinning-

based networks (Myrinet, Infiniband, Dolphin)
• GASNet has well-tuned non-blocking contiguous put/get

- ARMCI has just added these
• ARMCI has well-tuned non-contiguous put/get

- GASNet has just added these
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GASNet Extensions for 
Non-Contiguous Remote Access

Vector (variable-length scatter/gather),
Indexed (fixed-length scatter/gather) & 

Strided (regular non-contiguous)
a.k.a. "VIS"
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Application Motivation for VIS

• Many applications have non-collective, non-contiguous (ie sparse) 
remote access patterns 
- irregular cases: SPMV, distributed graph data structures 
- regular cases: remote sub-array access (ghost value exchange)

• Most natural way to write these algorithms leads to a fine-grained comm.
- naïve translation to individual remote accesses performs poorly on 

modern networks
• Want communication aggregation optimizations

- Save by aggregating small messages into larger ones (ie
pack/unpack), possibly with help from hardware

- Allow sophisticated users to directly express aggregate 
non-contiguous communication

- Provide compilation target so optimizer can express automated 
aggregation (ie message coalescing)
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UPC Support for 
Non-Contiguous Remote Access

• Proposal for extending upc_mem{put,get,cpy} library 
(sent to UPC community list on Feb 10)
- Includes orthogonal non-blocking extensions
- New flavors of upc_mem{put,get,cpy}
- See full proposal on the UPC publications page

• Vector
- src and dst are each a list of variable-sized contiguous regions

• Indexed
- src and dst are each a list of fixed sized contiguous regions

• Strided
- src/dst are each a set of regularly sized and spaced regions
- sufficient for expressing arbitrary rectangular sections over dense N-d 

arrays
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Network Hardware Support for VIS

Hardware support for non-contiguous RMA varies widely:

YES

Strided

NOYESYESIBM LAPI

YESlocal-sidelocal-sideInfiniband

N/AYESCray X-1

YESYESMyrinet (MX)

YESYESQuadrics 
Elan

RDMAIndexedVectorHardware

want the library/compiler VIS features to exploit the hardware 
support where available, without rewriting the compiler for each

platform
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New GASNet Interfaces for 
Non-Contiguous Remote Access

• Vector - src/dst are list of variable length contiguous regions:

• Source/Destination region counts and sizes may differ
- only total data sz must match

• Most general and flexible option - least hardware support
• Blocking and non-blocking variants (explicit & implicit handle)

addr len addr len addr len addr lensrc:

addr len addr lendst:

Useful for fetching 
bounding boxes, 
sparse array data
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New GASNet Interfaces for 
Non-Contiguous Remote Access

• Indexed - list of fixed-length contiguous regions:

• More restrictive than vector interface
- Less metadata due to fixed size
- Closer to most available network hardware support

• Also have non-blocking variants (explicit/implicit handle)

addrsrc: addr addr addr addrlen addr

addrdst: addr addrlen

Useful for fetching 
irregular set of 
array elements, 
inspector/executor
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New GASNet Interfaces for 
Non-Contiguous Remote Access

• Strided: regularly spaced/sized accesses 
• src/dst specify an arbitrary rectangular section on an N-d 

dense array, for any N

• Most restrictive access pattern - least metadata
- metadata size is linear in dimensionality (N)

• Also have non-blocking variants (explicit/implicit handle)

A B

 data copy

count[0]

count[1] count[2]

stride[0]

stride[1]
stridelevels=2

srcaddr
dstaddr

Useful for fetching any 
non-contiguous section 
of a dense array
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GASNet VIS Implementation Status

• Reference implementation underway
- In terms of existing put/get (RDMA) - done
- In terms of each other (eg strided over indexed) - done
- In terms of core API Active Messages - in progress
- Internally maintain many different algorithmic options to 

allow experimentation and tuning 
- Select algorithm based on hardware characteristics, 

transfer parameters (size, sparsity, etc) and current network 
status

• Completed GASNet VIS hook-up to runtime & UPC library 
source level
- Translator can generate VIS calls - message coalescing
- Berkeley UPC users can already call them as a library
- Still pushing for lang. acceptance of memcpy extensions
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GASNet VIS Future Work

• Network-specific implementations and hardware exploitation next
- Use the reference implementation as a starting point
- Directly leverage available hardware support to tune
- Starting with Quadrics/Elan4 (FY04)
- Move on to VIS support over Myrinet/MX, Infiniband/VAPI (local-side 

only), IBM/LAPI (software), Cray X1 (vector load/store)
• Hook up to Titanium array library
• Investigate compiler-generated VIS calls 

- message coalescing, inspector/executor
• Performance experimentation & tuning

- Microbenchmarks
- Application-level benchmarks

- Programmer-inserted calls to VIS functionality
- Compiler-generated VIS calls
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EXTRAS

EXTRA SLIDES
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VAPI: Full Data, both pre-pinned

VAPI Flood Bandwidth (bulk) - local side pre-pinned
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GM: Full Data, both pre-pinned

GM Flood Bandwidth (bulk) - local side pre-pinned
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GASNet/ARMCI Engineering Issues
• System size:

- ARMCI: 33426 LOC, 3371 lines of comments (10%)
- GASNet: 76081 LOC, 17590 lines of comments (23%)

• High-level design
- ARMCI: 

- Grown evolutionarily, no configure script (painful to install)
- code is messy - all the networks and platforms are interleaved in the 

same poorly commented files
- GASNet:

- Designed from scratch for low-latency/overhead for small put/gets 
and high bandwidth zero-copy for large put/gets, one-sided 
operation

- Layered design with clean, well-documented internal interfaces and 
a template conduit to streamline porting and conduit creation
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Lines of Code breakdown

ARMCI: 33426 LOC, 3371 lines of comments (10%)

GASNet: 76081 LOC, 17590 lines of comments (23%)

shared infrastructure: 14788

9438 (top) + 651 other + 4699 extended ref

firehose 6708

vapi 7439

lapi 5117

gm 8338

elan 5344

smp 1677

mpi 6497 = 1780 + AMMPI 4717

udp 10820 = 1761 + AMUDP 9059

template 1512

dolphin 4279

shmem/X1 3562
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Core API – Active Messages

• Super-Lightweight RPC
- Unordered, reliable delivery
- Matched request/reply serviced by "user"-provided lightweight 

handlers
- General enough to implement almost any communication pattern

• Request/reply messages
- 3 sizes: short (<=32 bytes),medium (<=512 bytes), long (DMA)

• Very general - provides extensibility
- Available for implementing compiler-specific operations
- scatter-gather or strided memory access, remote allocation, etc.

• AM previously implemented on a number of interconnects 
- MPI, LAPI, UDP/Ethernet, Via, Myrinet, and others

• Includes mechanism for explicit atomicity control in handlers
- Even in the presence of interrupts & multithreading
- Handler-safe locks & no-interrupt sections



Unified Parallel C at LBNL/UCB

Extended API – Remote memory operations

• Orthogonal, expressive, high-performance interface
- Gets & Puts for Scalars and Bulk contiguous data 
- Blocking and non-blocking (returns a handle)
- Also have a non-blocking form where the handle is implicit

• Non-blocking synchronization
- Sync on a particular operation (using a handle)
- Sync on a list of handles (some or all)
- Sync on all pending reads, writes or both (for implicit handles)
- Sync on operations initiated in a given interval
- Allow polling (trysync) or blocking (waitsync)

• Useful for experimenting with a variety of parallel compiler 
optimization techniques
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Extended API – Remote memory operations

• API for remote gets/puts:
void   get (void *dest, int node, void *src, int numbytes)

handle get_nb (void *dest, int node, void *src, int numbytes)

void   get_nbi(void *dest, int node, void *src, int numbytes)

void   put (int node, void *src, void *dest, int numbytes)

handle put_nb (int node, void *src, void *dest, int numbytes)

void   put_nbi(int node, void *src, void *dest, int numbytes)

• "nb"/"nbi" = non-blocking with explicit/implicit handle
• Also have "value" forms that are register-memory, and "bulk" forms optimized for large 

memory transfers
• Extensibility of core API allows easily adding other more complicated access patterns 

(scatter/gather, strided, etc)
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Extended API – Remote memory operations

• API for get/put synchronization:
• Non-blocking sync with explicit handles:

int  try_syncnb(handle)

void wait_syncnb(handle)

int  try_syncnb_some(handle *, int numhandles)

void wait_syncnb_some(handle *, int numhandles)

int  try_syncnb_all(handle *, int numhandles)

void wait_syncnb_all(handle *, int numhandles)

• Non-blocking sync with implicit handles:
int  try_syncnbi_gets()

void wait_syncnbi_gets()

int  try_syncnbi_puts()

void wait_syncnbi_puts()

int  try_syncnbi_all()  // gets & puts

void wait_syncnbi_all()
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Network Hardware Support for Non-
Contiguous Remote Access

• Cray X-1
- fixed-size indexed load/stores

• Quadrics libelan
- recently added fixed-size indexed put-get RDMA

• Infiniband
- local-side gather sends and scatter recvs

• Myrinet 
- planned support for variable-sized vector put-get RDMA in new MX 

interface
• IBM LAPI

- variable-size vector put/get/am and strided put/get (not RDMA)

want the library/compiler VIS features to exploit the hardware support where 
available, without rewriting the compiler for each platform
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Basic Idea: A Hybrid Approach

• Firehose - A distributed strategy for handling registration
- Get the benefits of Pin-Everything in the common case
- Revert to Rendezvous-like behavior for the uncommon case

• Allow remote nodes to control and cache registration operations
- Each node sets aside M bytes of physical memory for registration

purposes (some reasonable fraction of phys mem)
- Guarantee F =                             physical pages to every remote node, 

which has control over where they're mapped in virtual mem
- When a remote page is already mapped, can freely use one-sided 

RDMA on it (a hit) - exploits temporal and physical locality
- Send Rendezvous-like synchronization messages to change mappings 

when a needed remote page not mapped (a miss)
- Also cache local memory registration to amortize pinning costs

M
pagesize*(nodes-1)
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Firehose: Implementation Details
• Implemented on Myrinet/GM as part of a GASNet impl.

- Fully non-blocking (even for firehose misses) and supports multi-
threaded clients - also need refcounts on firehoses to prevent races

- Use active messages to perform remote Firehose operations
- Currently only one-sided for puts, because GM lacks RDMA gets

- For now, gets implemented as an active message and a firehose put
- Physical memory consumption never exceeds M+MAXVICTIM (both tunable 

parameters) - may be much less, based on access pattern
• Data structures used:

- Local bucket table: bucket virtual addr => bucket ref count
- Bucket Victim FIFO: links buckets w/ refcount = 0
- Firehose table: 

(remote node id, bucket virtual addr) => firehose ref count
• All bookkeeping operations are O(1)

- Overhead for all metadata lookups/modifications for a put < 1µs
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Performance Results: "Worst-case" Roundtrip Put Latency

Rendezvous no-unpin 
exceeds physical 
memory and crashes at 
400MB

Rendezvous with-unpin 
not shown (6000 microsec)

• 8-byte puts, uniform randomly distributed over increasing working set size
- worst-case temporal and spatial locality

• Firehose degrades to match Rendezvous with-unpin performance once 
physical memory exhausted and unpins are required
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Memory Registration Approaches

• Hardware-Based (e.g. Quadrics)
- Zero-copy, One-sided, Full memory space accessible, No handshaking or bookkeeping in 

software
- Hardware complexity and price, Kernel modifications

• Pin Everything - pin pages at startup or when allocated
- Zero-copy, One-sided (no handshaking)
- Total usage limited physical memory, may require a custom allocator

• Bounce Buffers - stream data through pre-pinned bufs on one or both sides
- No registration cost at runtime, Full memory space accessible 
- Often Two-sided, mem copy costs (CPU consumption - increases CPU overhead, prevents 

comm. overlap), Messaging overhead (metadata and handshaking)
• Rendezvous - round-trip message to pin remote pages

- Zero-copy, Full memory space accessible, Only handshaking synchronous
- Two-sided, Registration costs paid on every operation (very bad on Myrinet)

• Firehose - our algorithm
- Zero-copy, One-sided (common case), Full memory space accessible, Only handshaking is 

synchronous, Registration costs amortized
- Messaging overhead (metadata and handshaking) on miss (uncommon case)
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Code Generation Tradeoffs
• Blocking vs. Non-blocking puts/gets
• Put/Get variety: non-bulk vs. bulk

- optimized for small scalars vs large zero-copy
- difference in semantics - put src, alignment

• Put/Get synchronization mechanism
- expressiveness/complexity tradeoffs
- explicit handle vs. implicit handle, access regions

• Work remains to explore these tradeoffs in the 
context of code generation
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Titanium Language Support for Non-
Contiguous Remote Access

• Titanium N-d Array Library
- Powerful and flexible language support for directly expressing many 

high-level array operations on array descriptors
- Many regular N-d operations lead to non-contiguous access:

- Restrict, Slice, Permute (transpose)
• Recent irregular extensions to array library

- Sparse array copy - over irregular Domains and Point lists
- Scatter/Gather copy - to/from 1-D contiguous buffers

• Implementation status: 
- Fully implemented on Active Messages and contiguous RDMA
- Want to take advantage of available hardware support for non-

contiguous remote access, to improve performance
• Work on automated aggregation optimizations underway
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GASNet Vector Interface

• Vector - list of variable length contiguous regions:
typedef struct { 

void *addr;

size_t len;

} gasnet_memvec_t;

void gasnet_putv_bulk(gasnet_node_t dstnode,

size_t dstcount, gasnet_memvec_t const dstlist[], 

size_t srccount, gasnet_memvec_t const srclist[]);

void gasnet_getv_bulk(size_t dstcount, gasnet_memvec_t const dstlist[], 

gasnet_node_t srcnode,

size_t srccount, gasnet_memvec_t const srclist[]);

• Also have non-blocking variants (explicit & implicit handle)
• Source/Dest region sizes may differ - only total data sz must 

match
• Most general and flexible option - least hardware support
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GASNet Indexed Interface

• Indexed - list of fixed-length contiguous regions:

void gasnet_puti_bulk(gasnet_node_t dstnode,

size_t dstcount, void * const dstlist[], size_t dstlen,

size_t srccount, void * const srclist[], size_t srclen); 

void gasnet_geti_bulk(

size_t dstcount, void * const dstlist[], size_t dstlen,

gasnet_node_t srcnode, 

size_t srccount, void * const srclist[], size_t srclen);

• More restrictive than vector interface
- Less metadata due to fixed size
- Closer to most available network hardware support

• Also have non-blocking variants (explicit/implicit handle)
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GASNet Strided Interface

• Strided: regularly spaced/sized accesses 
void gasnet_puts_bulk(gasnet_node_t dstnode,

void *dstaddr, const size_t dststrides[], 

void *srcaddr, const size_t srcstrides[], 

const size_t count[], size_t stridelevels); 

void gasnet_gets_bulk(void *dstaddr, const size_t dststrides[], 

gasnet_node_t dstnode,

void *srcaddr, const size_t srcstrides[], 

const size_t count[], size_t stridelevels); 

A B

 data copy

count[0]

count[1] count[2]

stride[0]

stride[1]
stridelevels=2

srcaddr
dstaddr

• Also have non-blocking variants 
(explicit/implicit handle)
• Most restrictive access pattern -
minimal metadata
• Sufficient to express src/dst regions 
which are an arbitrary rectangular 
section on an N-d dense array
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UPC Vector Interface
typedef struct {

void *addr;
size_t len;

} upc_pmemvec_t;
typedef struct {

shared void *addr; // treated as a (shared [] char *) - ie. no wrapping
size_t len;

} upc_smemvec_t;

void upc_memcpy_list(size_t dstcount, upc_smemvec_t const dstlist[],
size_t srccount, upc_smemvec_t const srclist[]);

void upc_memput_list(size_t dstcount, upc_smemvec_t const dstlist[],
size_t srccount, upc_pmemvec_t const srclist[]);

void upc_memget_list(size_t dstcount, upc_pmemvec_t const dstlist[],
size_t srccount, upc_smemvec_t const srclist[]);



Unified Parallel C at LBNL/UCB

UPC Vector Example

#define BLKSZ 100
shared [BLKSZ] double A[BLKSZ*THREADS]; /* assume THREADS >= 3 */
upc_smemvec_t srclist[] = {

{ &(A[14]), sizeof(double) }, /* element 14 (from thread 0) */
{ &(A[20]), sizeof(double) }, /* element 20 (from thread 0) */
{ &(A[100]), 50*sizeof(double) }, /* elements 100..149 (from thread 1) */
{ &(A[2*BLKSZ]), BLKSZ*sizeof(double) } /* entire block (from thread 2) */

};
double mybuf[52+BLKSZ];
upc_pmemvec_t dstlist[] = { { mybuf, sizeof(mybuf) } };
upc_memget_list(1, dstlist, 4, srclist);
/* compute on contents of mybuf */



Unified Parallel C at LBNL/UCB

UPC Indexed Interface
void upc_memcpy_list(size_t dstcount, shared void * const dstlist[], size_t dstlen,

size_t srccount, shared const void * const srclist[], size_t srclen);
void upc_memput_list(size_t dstcount, shared void * const dstlist[], size_t dstlen,

size_t srccount, const void * const srclist[], size_t srclen);
void upc_memget_list(size_t dstcount, void * const dstlist[], size_t dstlen,

size_t srccount, shared const void * const srclist[], size_t srclen);

#define BLKSZ 100
shared [BLKSZ] double A[BLKSZ*THREADS]; /* assume THREADS >= 2 */
shared void * srclist[] = {

&(A[14]), &(A[15]), &(A[16]), /* element 14..16 (from thread 0) */
&(A[100]), &(A[110]) /* element 100 and 110 (from thread 1) */

};
double mybuf[5];
void * dstlist[] = { &mybuf };
upc_memget_list(1, dstlist, 5*sizeof(double), 5, srclist, sizeof(double));
/* compute on contents of mybuf */
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UPC Strided Interface

void upc_memcpy_strided(shared void *dstaddr, const size_t dststrides[],
shared const void *srcaddr, const size_t srcstrides[],
const size_t count[], size_t stridelevels);

void upc_memput_strided(shared void *dstaddr, const size_t dststrides[],
const void *srcaddr, const size_t srcstrides[],
const size_t count[], size_t stridelevels);

void upc_memget_strided( void *dstaddr, const size_t dststrides[],
shared const void *srcaddr, const size_t srcstrides[],
const size_t count[], size_t stridelevels);
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UPC Strided Example

Example: To put a 3-d block of data, shaped 2x3x4, 
starting at location (5, 6, 7) in A to B in location (8, 9, 10):

double A[11][12][13]; /* local array */
shared [] double B[14][15][16]; /* remote array */

srcaddr = &(A[5][6][7]);
srcstrides[0] = 13 * sizeof(double); /* stride in bytes for the rightmost dimension */
srcstrides[1] = 12 * 13 * sizeof(double); /* stride in bytes for the middle dimension */
dstaddr = &(B[8][9][10]);
dststrides[0] = 16 * sizeof(double); /* stride in bytes for the rightmost dimension */
dststrides[1] = 15 * 16 * sizeof(double); /* stride in bytes for the middle dimension */
count[0] = 4 * sizeof(double); /* bytes of contig data (width in rightmost dimension) */
count[1] = 3; /* width in middle dimension */
count[2] = 2; /* width in leftmost dimension */
stridelevels = 2;
upc_memput_strided(srcaddr, dststrides, dstaddr, srcstrides, count, stridelevels);

A B

 data copy
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A B

 data copy
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UPC Strided Example


