
Unified Parallel C at LBNL/UCB

GASNet: A High-Performance, Portable
Communication System for Partitioned

Global Address Space Languages

Dan Bonachea

Kathy Yelick, Christian Bell,
Wei Chen, Jason Duell,

Paul Hargrove, Parry Husbands,
Costin Iancu, Mike Welcome

TranslatorUPC Code

Translator Generated C Code

Berkeley UPC Runtime System

GASNet Communication System

Network Hardware

Platform-
independent

Network-
independent

Compiler-
independent

Language-
independent

http://upc.lbl.gov

Unified Parallel C at LBNL/UCB

GASNet: High-Level Outline

• GASNet Design Overview and Implementation Status
• Firehose: A DMA Registration Strategy for Pinning-

Based Networks
- The "right way" to handle memory sharing for PGAS

languages on difficult but common NIC hardware
• GASNet vs ARMCI comparison

- what Firehose buys us
• GASNet Extensions for Non-Contiguous Remote

Access (Vector, Indexed and Strided)

Unified Parallel C at LBNL/UCB

GASNet Design Overview - Goals

• Language-independence: support multiple PGAS languages/compilers
- UPC, Titanium, Co-array Fortran, possibly others..
- Hide UPC- or compiler-specific details such as pointer-to-shared representation

• Hardware-independence: variety of parallel arch., OS's & networks
- SMP's, clusters of uniprocessors or SMPs
- Current networks:

- Native network conduits: Myrinet GM, Quadrics Elan, Infiniband VAPI, IBM LAPI
- Portable network conduits: MPI 1.1, Ethernet UDP
- Under development: Cray X-1, SGI/Cray Shmem, Dolphin SCI

- Current platforms:
- CPU: x86, Itanium, Opteron, Alpha, Power3/4, SPARC, PA-RISC, MIPS
- OS: Linux, Solaris, AIX, Tru64, Unicos, FreeBSD, IRIX, HPUX, Cygwin, MacOS

• Ease of implementation on new hardware
- Allow quick implementations
- Allow implementations to leverage performance characteristics of hardware
- Allow flexibility in message servicing paradigm (polling, interrupts, hybrids, etc)

• Want both portability & performance

Unified Parallel C at LBNL/UCB

GASNet Design Overview - System Architecture

• 2-Level architecture to ease implementation:
• Core API

- Most basic required primitives, as narrow and general
as possible

- Implemented directly on each network
- Based heavily on active messages paradigm

Compiler-generated code

Compiler-specific runtime system

GASNet Extended API

GASNet Core API

Network Hardware• Extended API
– Wider interface that includes more complicated operations
– We provide a reference implementation of the extended API in terms of

the core API
– Implementors can choose to directly implement any subset for

performance - leverage hardware support for higher-level operations
– Currently includes:

– blocking and non-blocking puts/gets (all contiguous), flexible
synchronization mechanisms, barriers

– Just recently added non-contiguous extensions (coming up later)

Unified Parallel C at LBNL/UCB

GASNet Performance Summary

GASNet Put/Get Roundtrip Latency (min over msg sz)

0
5

10
15

20
25

30
35

40
45

50
55

60
65

mpi elan mpi elan mpi gm mpi gm mpi lapi lapi-
poll

mpi gm mpi vapi

R
ou

nd
tri

p
La

te
nc

y
(m

ic
ro

se
co

nd
s) put_nb

get_nb

quadrics
opus
(IA64)

quadrics lemieux
(Alpha)

myrinet
alvarez
(x86)

Colony/GX
seaborg

(PowerPC)

infiniband
pcp

(x86 PCI-X)

myrinet
citris
(IA64)

myrinet
pcp

(x86 PCI-X)

Unified Parallel C at LBNL/UCB

GASNet Performance Summary

GASNet Put/Get Bulk Flood Bandwidth (max over msg sz)

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750

mpi elan mpi elan mpi gm mpi gm mpi lapi lapi-
poll

mpi gm mpi vapi

B
an

dw
id

th
 (M

B
/s

ec
)

put_nb_bulk
get_nb_bulk

quadrics
opus
(IA64)

quadrics lemieux
(Alpha)

myrinet
alvarez
(x86)

Colony/GX
seaborg

(PowerPC)

infiniband
pcp

(x86 PCI-X)

myrinet
citris
(IA64)

myrinet
pcp

(x86 PCI-X)

Unified Parallel C at LBNL/UCB

GASNet vs. MPI on Infiniband
Roundtrip Latency of GASNet vapi-conduit and MVAPICH 0.9.1 MPI

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128 256 512 1KB 2KB

Message Size (bytes)

R
ou

nd
tri

p
La

te
nc

y
(u

s)

MPI_Send/MPI_Recv ping-pong

gasnet_put_nb + sync

OSU MVAPICH widely regarded as the "best" MPI implementation on Infiniband
MVAPICH code based on the FTG project MVICH (MPI over VIA)

GASNet wins because fully one-sided, no tag matching or two-sided sync.overheads
MPI semantics provide two-sided synchronization, whether you want it or not

Unified Parallel C at LBNL/UCB

GASNet vs. MPI on Infiniband
Bandwidth of GASNet vapi-conduit and MVAPICH 0.9.1 MPI

0

100

200

300

400

500

600

700

800

1 2 4 8 16 32 64 128 256 512 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

Message Size (bytes)

Ba
nd

w
id

th
 (M

B/
se

c)

MVAPICH MPI

gasnet_put_nb_bulk (source pre-pinned)

gasnet_put_nb_bulk (source not pinned)

GASNet significantly outperforms MPI at mid-range sizes - the cost of MPI tag matching
Yellow line shows the cost of naïve bounce-buffer pipelining when local side not prepinned -
memory registration is an important issue

Unified Parallel C at LBNL/UCB

Firehose: A Distributed DMA Registration
Strategy for Pinning-Based High Performance

Networks

Dan Bonachea (Design)
Christian Bell (GM)

Paul Hargrove (Infiniband)
Rajesh Nishtala (GM-SMP)

Unified Parallel C at LBNL/UCB

Problem Motivation: Client

• Partitioned Global-address space (PGAS) languages
- Large globally-shared memory areas w/language support for direct

access to remote memory
- Total remotely accessible memory size limited only by VM space
- Working set of memory being touched likely to fit in physical mem

- App performance tends to be sensitive to the latency & CPU
overhead for small operations

• Implications for communication layer (GASNet)
- Want low-latency and low-overhead for non-blocking small

puts/gets (think ≤ 8 bytes)
- Want high-bandwidth, zero-copy msgs for large transfers

- zero-copy: get higher bandwidth AND avoid CPU overheads
- Ideally all communication should be fully one-sided

- one-sided: don't interrupt remote host CPU - hurts remote compute
performance and increases round-trip latency

Unified Parallel C at LBNL/UCB

Problem Motivation: Hardware

• Pinning-based NIC's (e.g. Myrinet, Infiniband, Dolphin)
- Provide one-sided RDMA transfer support, but…
- Memory must be explicitly registered ahead of time

- Requires explicit action by the host CPU on both sides
- Tell the OS to pin virtual memory page (kernel call)
- Register fixed virtual/physical mapping w/NIC (PCI transaction)

- Memory registration can be VERY expensive!
- Especially on Myrinet - average is 40 microsec to register one page,

6000 microseconds to deregister one page (cf. 12us round-trip RDMA time)
- Costs primarily due to preventing race conditions with pending messages

that could compromise system memory protection
- Want to reduce the frequency of registration operations and the need for

two-sided synchronization
- Reducing cost of a single registration operation is also important, but

orthogonal to this research

Unified Parallel C at LBNL/UCB

Memory Registration Approaches

NotesFull VM
avail

One-
sided

Zero-
copy

Approach

Common case: All the benefits of hardware-based
Uncommon case: Messaging overhead (metadata and
handshaking)

Firehose

Round-trip message to pin remote pages before each op
Registration costs paid on every operation

Rendezvous

Stream data through pre-pinned bufs on one/both sides
Mem copy costs (CPU consumption/overhead, prevents
comm. overlap), Messaging overhead (metadata and
handshaking)

Bounce
Buffers

Pin all pages at startup or when allocated (collectively)
Total usage limited to physical memory, may require a
custom allocator

Pin Everything

Hardware manages everything
No handshaking or bookkeeping in software
Hardware complexity and price, Kernel modifications

Hardware-
based
(eg.Quadrics)

(common case)(common case)

Unified Parallel C at LBNL/UCB

Firehose: Conceptual Diagram

• Runtime snapshot of two nodes (A and C) mapping their firehoses to a third node (B)

firehose bucket

• A and C can freely "pour" data
through their firehoses using
RDMA to/from anywhere in
the buckets they map on B

• Refcounts used to track
number of attached firehoses
(or local pins)

• Support lazy deregistration for
buckets w/ refcount = 0 using
a victim FIFO to avoid re-
pinning costs

• For details, see Firehose paper on
UPC publications page (CAC'03)

Unified Parallel C at LBNL/UCB

Application Benchmarks

• Simple kernels written in Titanium - just want a realistic access pattern
- 2 nodes, Dual PIII-866MHz, 1GB RAM, Myrinet PCI64C, 33MHz/64bit PCI bus

• Firehose misses are rare, and even misses often hit in victim cache
- Firehose never needed to unpin anything in this case (total mem sz < phys mem)

2.1 M

1.5 M

Total Puts

522 µs
33 µs
15 µs
54 µs

4740 s
289 s

255 s

Rendezvous with-unpin
Rendezvous no-unpin
Firehose (hit: 99.98%)

(miss: 0.02%)

Bitonic Sort

5141 µs
34 µs
14 µs
46 µs

5460 s
797 s

781 s

Rendezvous with-unpin
Rendezvous no-unpin
Firehose (hit: 99.8%)

(miss: 0.2%)

Cannon
Matrix

Multiply

Average Put
Latency

Total RuntimeRegistration StrategyApp Name

Unified Parallel C at LBNL/UCB

Performance Results: "Best-case" Bandwidth

• Peak bandwidth - puts to same location with increasing message sz
• Firehose beats Rendezvous no-unpin by eliminating round-trip handshaking msgs
• Firehose gets 100% hit rate - fully one-sided/zero-copy transfers

Unified Parallel C at LBNL/UCB

Performance Results: "Worst-case" Put Bandwidth

Rendezvous no-unpin
exceeds physical
memory and crashes at
400MB

• 64 KB puts, uniform randomly distributed over increasing working set size
- worst-case temporal and spatial locality

• Note graceful degradation of Firehose beyond 400 MB working set

Unified Parallel C at LBNL/UCB

Current/Future Firehose Work

• Recent work on firehose
- Generalized Firehose for Infiniband/VAPI-GASNet (region-

based), prepared for use in Dolphin/GASNet
- Algorithmic improvements for better scaling when access

pattern unbalanced (bucket "stealing") avoid unpin-repin
cost

• Current/Future work on Firehose:
- Improving pthread-safe implementation of Firehose

- implementing optimistic concurrency control between
client threads, to maximize firehose resource utilization

- Fixing a few tricky race conditions

Unified Parallel C at LBNL/UCB

Firehose Conclusions

• Firehose algorithm is an ideal registration strategy for PGAS
languages on pinning-based networks
- Performance of Pin-Everything (without the drawbacks) in

the common case, degrades to Rendezvous-like behavior
for the uncommon case

- Exposes one-sided, zero-copy RDMA as common case
- Amortizes cost of registration/synch over many ops,

uses temporal/spatial locality to avoid cost of repinning
- Cost of handshaking and registration negligible when

working set fits in physical memory, degrades gracefully
beyond

Unified Parallel C at LBNL/UCB

GASNet/ARMCI Comparison
• ARMCI - Aggregate Remote Memory Copy Interface (PNNL)

v1.1Beta (most recent avail as of May 5th, 2004)
- Used by Global Arrays, Rice CAF and GPSHMEM
- Portable platforms: SMP, MPI, PVM, TCP Sockets,

SHMEM
- Native platforms: LAPI, GM, Elan, VAPI, Hitachi, Fujitsu

• GASNet
- Currently used by Titanium, Berkeley UPC, GCC/UPC
- Future clients: Rice CAF, MPICH
- Portable platforms: SMP, MPI, Ethernet UDP, SHMEM
- Native platforms: LAPI, GM, Elan, VAPI, Cray X-1, Altix
- In-progress: Dolphin

Unified Parallel C at LBNL/UCB

GASNet/ARMCI Interface Issues

• GASNet:
- Provides AM for extensibility

- support pack/unpack, dist. memory alloc, dist monitors, dist GC, accumulate,
firehose

- Full job bootstrapping support
- Tailored specifically for the needs of parallel PGAS languages - hides the ugly details

- Very flexible/expressive non-blocking put/get and sync modes
- allows polling-based, interrupt-based or hybrid message handling

• ARMCI:
- no bootstrapping support (must use MPI)
- all remotely accessible memory must be collectively allocated and explicitly

pinned - but not guaranteed to be contiguous or aligned across nodes
- not pthread-safe, requires process-based client model
- Data server process often involved, using SysV shared memory

- Many of their communication paths are two-sided and two-copy
- context switch overheads, CPU cache pollution & cycle stealing (interrupt-based)
- Needs SysV kernel mods on some OS's, RDMA+SysV often buggy

- Accumulate and locking support, but no general client extensibility

Unified Parallel C at LBNL/UCB

GASNet vs ARMCI performance

• Test Machine:
- 4-node, Dual Intel P4 Xeon 2.8GHz, 512KB L1

cache, 4GB main memory
- Red Hat Linux 8.0, 2.4.18-14smp kernel, glibc

2.2.93-5
- GM: LANai 10 PCI-X D NIC, GM 2.0.6
- VAPI: Mellanox Cougar (InfiniHost-A1) PCI-X NIC,

firmware 3.0, software version 3.0.1, DivergeNet 8-
port InfiniBand 4X switch

- gcc 3.2.2, default compile options for each system
• Contiguous Put/Get Tests:

- ping-pong latency test and flood bandwidth tests
- vary whether either side was explicitly pre-pinned

Unified Parallel C at LBNL/UCB

ARMCI Caveats

• According to ARMCI docs:
- Their Infiniband port is still "initial"
- Their Myrinet port is "not fully optimized yet"

• Numbers are from modified version of their tester
- small changes to get an apples-to-apples comparison
- message sizes, MB=2^20, Put synchronization

• Some of the results differ from their published results
• Only testing contiguous put/get - ARMCI excels at non-

contiguous, which GASNet has just added
• Unable to get their newly added non-blocking support to work

- Have contacted them, working to resolve issues

Unified Parallel C at LBNL/UCB

GM: Local mem pinned (upc_memcpy)

Simple GM_Put/GM_Get, so all configs basically run at hardware speed

GASNet about 0.3 us faster -
less function call overhead, code path carefully tuned for low latency in small
operations

GM Roundtrip ping-pong latency (non-bulk) - local side pre-pinned

0

5

10

15

20

25

30

1 10 100 1000 10000

Message Size (bytes)

m
ic

ro
se

co
nd

s

ARMCI_Get

GASNet get_nbi

GASNet put_nbi

ARMCI_Put

Unified Parallel C at LBNL/UCB

GM: Local mem pinned (upc_memcpy)

GASNet saturates at 2KB, ARMCI at 256KB

Huge difference is due to ARMCI "pseudo-blocking" semantics

ARMCI recently added non-blocking, but the impl. on Myrinet doesn’t seem to work

GM Flood Bandwidth (bulk) - local side pre-pinned

0

50

100

150

200

250

10 100 1000 10000 100000 1000000 10000000

Message Size (bytes)

M
B

/s
ec

GASNet put_nbi_bulk

GASNet get_nbi_bulk

ARMCI_Put

ARMCI_Get

Unified Parallel C at LBNL/UCB

GM: Local mem not pinned (upc_memput/get)

GASNet uses firehose to dynamically pin the local pages

ARMCI falls back to a two?-copy message send scheme, pipelining through bounce
buffers to a separate server process on the remote side - synchronization costs hurts
small message latency

GM Roundtrip ping-pong latency (non-bulk) - local side not pre-pinned

0

5

10

15

20

25

30

35

40

45

1 10 100 1000 10000

Message Size (bytes)

m
ic

ro
se

co
nd

s

ARMCI_Put

ARMCI_Get

GASNet get_nbi

GASNet put_nbi

Unified Parallel C at LBNL/UCB

GM: Local mem not pinned (upc_memput/get)

GASNet bandwidth quickly saturates to the hardware max - dynamic pinning of local side pages
to enable RDMA for large transfers, with lazy unpinning to amortize the pinning cost

ARMCI bounce buffer pipelining performs worse at small/medium sizes and reaches lower
saturation bandwidth, especially for gets

GM Flood Bandwidth (bulk) - local side not pre-pinned

0

50

100

150

200

250

10 100 1000 10000 100000 1000000 10000000
Message Size (bytes)

M
B

/s
ec

GASNet put_nbi_bulk
GASNet get_nbi_bulk
ARMCI_Put
ARMCI_Get

Unified Parallel C at LBNL/UCB

GM: Firehose vs. Pre-pinned

Firehose is well-tuned on GM - gives performance nearly identical to raw RDMA pre-pinned
approach for access patterns with good temporal or spatial locality

Allows Put/Get to anywhere in the VM space, but avoids limitations of pre-pinned approach

ARMCI forbids the case where remote memory is not collectively pre-pinned

GASNet GM Roundtrip ping-pong latency (non-bulk)
with data in various segment configurations

0

5

10

15

20

25

30

1 10 100 1000 10000

Message Size (bytes)

m
ic

ro
se

co
nd

s

get_nb: both pre-pinned
get_nb: remote pre-pinned
get_nb: neither pre-pinned
put_nb: both pre-pinned
put_nb: remote prepinned
put_nb: neither pre-pinned

Unified Parallel C at LBNL/UCB

GM: Firehose vs. Pre-pinned

GASNet GM Flood Bandwidth (bulk),
with data in various segment configurations

0

50

100

150

200

250

10 100 1000 10000 100000 1000000 10000000
Message Size (bytes)

M
B

/s
ec

put_nb_bulk: neither pre-pinned
get_nb_bulk: neither pre-pinned
put_nb_bulk: both pre-pinned
get_nb_bulk: both pre-pinned
put_nb_bulk: remote prepinned
get_nb_bulk: remote pre-pinned

Unified Parallel C at LBNL/UCB

VAPI: Local mem pinned (upc_memcpy)

Simple RDMA Put/Get, so GASNet runs almost at hardware speed

Small firehose latency overhead (1us) for puts - needs more tuning

ARMCI Get has significantly worse latency - unclear why (performance bug?)

VAPI Roundtrip ping-pong latency (non-bulk) - local side pre-pinned

0

5

10

15

20

25

30

1 10 100 1000 10000

Message Size (bytes)

m
ic

ro
se

co
nd

s

ARMCI_Get

GASNet get_nbi

GASNet put_nbi

ARMCI_Put

Unified Parallel C at LBNL/UCB

VAPI: Local mem pinned (upc_memcpy)

GASNet provides the raw hardware RDMA bandwidth - even beats the MVAPICH
MPI-over-Infiniband (not shown here). Put/Get difference is a hardware characteristic.

ARMCI-VAPI appears to need more tuning

VAPI Flood Bandwidth (bulk) - local side pre-pinned

0

100

200

300

400

500

600

700

800

10 100 1000 10000 100000 1000000 10000000

Message Size (bytes)

M
B

/s
ec

GASNet put_nbi_bulk

GASNet get_nbi_bulk

ARMCI_Put

ARMCI_Get

Unified Parallel C at LBNL/UCB

VAPI: Local mem not pinned (upc_memput/get)

GASNet one-sided pipelining through preallocated local-side bounce buffers - small
memcpy overhead, then RDMA

ARMCI pipelining through bounce buffers appears to be involving the separate server
process on the remote side - synchronization costs hurts small message latency

VAPI Roundtrip ping-pong latency (non-bulk) - local side not pre-pinned

0

10

20

30

40

50

60

70

80

90

1 10 100 1000 10000

Message Size (bytes)

m
ic

ro
se

co
nd

s
ARMCI_Put

ARMCI_Get

GASNet get_nbi

GASNet put_nbi

Unified Parallel C at LBNL/UCB

VAPI: Local mem not pinned (upc_memput/get)

GASNet bandwidth reduced when local side not pinned - pipelining through 4KB prepinned bounce
buffers. Not using firehose dynamic pinning of local side pages, but probably should

ARMCI two-sided bounce buffer pipelining approach performs worse at all sizes and reaches lower
saturation bandwidth, especially for gets

VAPI Flood Bandwidth (bulk) - local side not pre-pinned

0

100

200

300

400

500

600

700

800

10 100 1000 10000 100000 1000000 10000000
Message Size (bytes)

M
B

/s
ec

GASNet put_nbi_bulk
GASNet get_nbi_bulk
ARMCI_Put
ARMCI_Get

Unified Parallel C at LBNL/UCB

VAPI: Firehose vs. Pre-pinned

Firehose small-message latency very close to pre-pinned approach - small
bookkeeping overheads

ARMCI forbids the case where remote memory is not collectively pre-pinned

GASNet VAPI Roundtrip ping-pong latency (non-bulk)
with data in various segment configurations

0

2

4

6

8

10

12

14

16

18

20

1 10 100 1000 10000

Message Size (bytes)

m
ic

ro
se

co
nd

s

get_nb: both pre-pinned
get_nb: remote pre-pinned
get_nb: neither pre-pinned
put_nb: both pre-pinned
put_nb: remote prepinned
put_nb: neither pre-pinned

Unified Parallel C at LBNL/UCB

VAPI: Firehose vs. Pre-pinned

"Put/Get with local not prepinned" currently using bounce buffer pipelining - should
probably switch to firehose to get dynamic pinning of local pages

GASNet VAPI Flood Bandwidth (bulk),
with data in various segment configurations

0

100

200

300

400

500

600

700

800

10 100 1000 10000 100000 1000000 10000000
Message Size (bytes)

M
B

/s
ec

put_nb_bulk: neither pre-pinned
get_nb_bulk: neither pre-pinned
put_nb_bulk: both pre-pinned
get_nb_bulk: both pre-pinned
put_nb_bulk: remote prepinned
get_nb_bulk: remote pre-pinned

The cost of 1-sided
bounce buffer
pipelining

Unified Parallel C at LBNL/UCB

GASNet vs ARMCI conclusions

• Both layers run on most HPC systems of interest
- Both natively target the major high-performance networks
- Both have portable MPI/Ethernet based ports

• GASNet designed specifically for PGAS languages/compilers
- Provides exactly the semantics needed for PGAS
- Extensibility and bootstrapping features very important

• Preliminary performance comparisons very positive
- GASNet can meet or exceed ARMCI performance
- Hard work on Firehose gives us a significant advantage on pinning-

based networks (Myrinet, Infiniband, Dolphin)
• GASNet has well-tuned non-blocking contiguous put/get

- ARMCI has just added these
• ARMCI has well-tuned non-contiguous put/get

- GASNet has just added these

Unified Parallel C at LBNL/UCB

GASNet Extensions for
Non-Contiguous Remote Access

Vector (variable-length scatter/gather),
Indexed (fixed-length scatter/gather) &

Strided (regular non-contiguous)
a.k.a. "VIS"

Unified Parallel C at LBNL/UCB

Application Motivation for VIS

• Many applications have non-collective, non-contiguous (ie sparse)
remote access patterns
- irregular cases: SPMV, distributed graph data structures
- regular cases: remote sub-array access (ghost value exchange)

• Most natural way to write these algorithms leads to a fine-grained comm.
- naïve translation to individual remote accesses performs poorly on

modern networks
• Want communication aggregation optimizations

- Save by aggregating small messages into larger ones (ie
pack/unpack), possibly with help from hardware

- Allow sophisticated users to directly express aggregate
non-contiguous communication

- Provide compilation target so optimizer can express automated
aggregation (ie message coalescing)

Unified Parallel C at LBNL/UCB

UPC Support for
Non-Contiguous Remote Access

• Proposal for extending upc_mem{put,get,cpy} library
(sent to UPC community list on Feb 10)
- Includes orthogonal non-blocking extensions
- New flavors of upc_mem{put,get,cpy}
- See full proposal on the UPC publications page

• Vector
- src and dst are each a list of variable-sized contiguous regions

• Indexed
- src and dst are each a list of fixed sized contiguous regions

• Strided
- src/dst are each a set of regularly sized and spaced regions
- sufficient for expressing arbitrary rectangular sections over dense N-d

arrays

Unified Parallel C at LBNL/UCB

Network Hardware Support for VIS

Hardware support for non-contiguous RMA varies widely:

YES

Strided

NOYESYESIBM LAPI

YESlocal-sidelocal-sideInfiniband

N/AYESCray X-1

YESYESMyrinet (MX)

YESYESQuadrics
Elan

RDMAIndexedVectorHardware

want the library/compiler VIS features to exploit the hardware
support where available, without rewriting the compiler for each

platform

Unified Parallel C at LBNL/UCB

New GASNet Interfaces for
Non-Contiguous Remote Access

• Vector - src/dst are list of variable length contiguous regions:

• Source/Destination region counts and sizes may differ
- only total data sz must match

• Most general and flexible option - least hardware support
• Blocking and non-blocking variants (explicit & implicit handle)

addr len addr len addr len addr lensrc:

addr len addr lendst:

Useful for fetching
bounding boxes,
sparse array data

Unified Parallel C at LBNL/UCB

New GASNet Interfaces for
Non-Contiguous Remote Access

• Indexed - list of fixed-length contiguous regions:

• More restrictive than vector interface
- Less metadata due to fixed size
- Closer to most available network hardware support

• Also have non-blocking variants (explicit/implicit handle)

addrsrc: addr addr addr addrlen addr

addrdst: addr addrlen

Useful for fetching
irregular set of
array elements,
inspector/executor

Unified Parallel C at LBNL/UCB

New GASNet Interfaces for
Non-Contiguous Remote Access

• Strided: regularly spaced/sized accesses
• src/dst specify an arbitrary rectangular section on an N-d

dense array, for any N

• Most restrictive access pattern - least metadata
- metadata size is linear in dimensionality (N)

• Also have non-blocking variants (explicit/implicit handle)

A B

 data copy

count[0]

count[1] count[2]

stride[0]

stride[1]
stridelevels=2

srcaddr
dstaddr

Useful for fetching any
non-contiguous section
of a dense array

Unified Parallel C at LBNL/UCB

GASNet VIS Implementation Status

• Reference implementation underway
- In terms of existing put/get (RDMA) - done
- In terms of each other (eg strided over indexed) - done
- In terms of core API Active Messages - in progress
- Internally maintain many different algorithmic options to

allow experimentation and tuning
- Select algorithm based on hardware characteristics,

transfer parameters (size, sparsity, etc) and current network
status

• Completed GASNet VIS hook-up to runtime & UPC library
source level
- Translator can generate VIS calls - message coalescing
- Berkeley UPC users can already call them as a library
- Still pushing for lang. acceptance of memcpy extensions

Unified Parallel C at LBNL/UCB

GASNet VIS Future Work

• Network-specific implementations and hardware exploitation next
- Use the reference implementation as a starting point
- Directly leverage available hardware support to tune
- Starting with Quadrics/Elan4 (FY04)
- Move on to VIS support over Myrinet/MX, Infiniband/VAPI (local-side

only), IBM/LAPI (software), Cray X1 (vector load/store)
• Hook up to Titanium array library
• Investigate compiler-generated VIS calls

- message coalescing, inspector/executor
• Performance experimentation & tuning

- Microbenchmarks
- Application-level benchmarks

- Programmer-inserted calls to VIS functionality
- Compiler-generated VIS calls

Unified Parallel C at LBNL/UCB

Unified Parallel C at LBNL/UCB

EXTRAS

EXTRA SLIDES

Unified Parallel C at LBNL/UCB

VAPI: Full Data, both pre-pinned

VAPI Flood Bandwidth (bulk) - local side pre-pinned

0

100

200

300

400

500

600

700

800

10 100 1000 10000 100000 1000000 10000000

Message Size (bytes)

M
B/

se
c

GASNet put_bulk (blocking)
GASNet get_bulk (blocking)
GASNet put_nbi_bulk
GASNet get_nbi_bulk
ARMCI_Put
ARMCI_Get
ARMCI_Put Jarek
ARMCI_Get Jarek

Unified Parallel C at LBNL/UCB

GM: Full Data, both pre-pinned

GM Flood Bandwidth (bulk) - local side pre-pinned

0

50

100

150

200

250

10 100 1000 10000 100000 1000000 10000000

Message Size (bytes)

M
B/

se
c

GASNet put_bulk (blocking)
GASNet get_bulk (blocking)
GASNet put_nbi_bulk
GASNet get_nbi_bulk
ARMCI_Put
ARMCI_Get
ARMCI_Put Jarek
ARMCI_Get Jarek

Unified Parallel C at LBNL/UCB

GASNet/ARMCI Engineering Issues
• System size:

- ARMCI: 33426 LOC, 3371 lines of comments (10%)
- GASNet: 76081 LOC, 17590 lines of comments (23%)

• High-level design
- ARMCI:

- Grown evolutionarily, no configure script (painful to install)
- code is messy - all the networks and platforms are interleaved in the

same poorly commented files
- GASNet:

- Designed from scratch for low-latency/overhead for small put/gets
and high bandwidth zero-copy for large put/gets, one-sided
operation

- Layered design with clean, well-documented internal interfaces and
a template conduit to streamline porting and conduit creation

Unified Parallel C at LBNL/UCB

Lines of Code breakdown

ARMCI: 33426 LOC, 3371 lines of comments (10%)

GASNet: 76081 LOC, 17590 lines of comments (23%)

shared infrastructure: 14788

9438 (top) + 651 other + 4699 extended ref

firehose 6708

vapi 7439

lapi 5117

gm 8338

elan 5344

smp 1677

mpi 6497 = 1780 + AMMPI 4717

udp 10820 = 1761 + AMUDP 9059

template 1512

dolphin 4279

shmem/X1 3562

Unified Parallel C at LBNL/UCB

Core API – Active Messages

• Super-Lightweight RPC
- Unordered, reliable delivery
- Matched request/reply serviced by "user"-provided lightweight

handlers
- General enough to implement almost any communication pattern

• Request/reply messages
- 3 sizes: short (<=32 bytes),medium (<=512 bytes), long (DMA)

• Very general - provides extensibility
- Available for implementing compiler-specific operations
- scatter-gather or strided memory access, remote allocation, etc.

• AM previously implemented on a number of interconnects
- MPI, LAPI, UDP/Ethernet, Via, Myrinet, and others

• Includes mechanism for explicit atomicity control in handlers
- Even in the presence of interrupts & multithreading
- Handler-safe locks & no-interrupt sections

Unified Parallel C at LBNL/UCB

Extended API – Remote memory operations

• Orthogonal, expressive, high-performance interface
- Gets & Puts for Scalars and Bulk contiguous data
- Blocking and non-blocking (returns a handle)
- Also have a non-blocking form where the handle is implicit

• Non-blocking synchronization
- Sync on a particular operation (using a handle)
- Sync on a list of handles (some or all)
- Sync on all pending reads, writes or both (for implicit handles)
- Sync on operations initiated in a given interval
- Allow polling (trysync) or blocking (waitsync)

• Useful for experimenting with a variety of parallel compiler
optimization techniques

Unified Parallel C at LBNL/UCB

Extended API – Remote memory operations

• API for remote gets/puts:
void get (void *dest, int node, void *src, int numbytes)

handle get_nb (void *dest, int node, void *src, int numbytes)

void get_nbi(void *dest, int node, void *src, int numbytes)

void put (int node, void *src, void *dest, int numbytes)

handle put_nb (int node, void *src, void *dest, int numbytes)

void put_nbi(int node, void *src, void *dest, int numbytes)

• "nb"/"nbi" = non-blocking with explicit/implicit handle
• Also have "value" forms that are register-memory, and "bulk" forms optimized for large

memory transfers
• Extensibility of core API allows easily adding other more complicated access patterns

(scatter/gather, strided, etc)

Unified Parallel C at LBNL/UCB

Extended API – Remote memory operations

• API for get/put synchronization:
• Non-blocking sync with explicit handles:

int try_syncnb(handle)

void wait_syncnb(handle)

int try_syncnb_some(handle *, int numhandles)

void wait_syncnb_some(handle *, int numhandles)

int try_syncnb_all(handle *, int numhandles)

void wait_syncnb_all(handle *, int numhandles)

• Non-blocking sync with implicit handles:
int try_syncnbi_gets()

void wait_syncnbi_gets()

int try_syncnbi_puts()

void wait_syncnbi_puts()

int try_syncnbi_all() // gets & puts

void wait_syncnbi_all()

Unified Parallel C at LBNL/UCB

Network Hardware Support for Non-
Contiguous Remote Access

• Cray X-1
- fixed-size indexed load/stores

• Quadrics libelan
- recently added fixed-size indexed put-get RDMA

• Infiniband
- local-side gather sends and scatter recvs

• Myrinet
- planned support for variable-sized vector put-get RDMA in new MX

interface
• IBM LAPI

- variable-size vector put/get/am and strided put/get (not RDMA)

want the library/compiler VIS features to exploit the hardware support where
available, without rewriting the compiler for each platform

Unified Parallel C at LBNL/UCB

Basic Idea: A Hybrid Approach

• Firehose - A distributed strategy for handling registration
- Get the benefits of Pin-Everything in the common case
- Revert to Rendezvous-like behavior for the uncommon case

• Allow remote nodes to control and cache registration operations
- Each node sets aside M bytes of physical memory for registration

purposes (some reasonable fraction of phys mem)
- Guarantee F = physical pages to every remote node,

which has control over where they're mapped in virtual mem
- When a remote page is already mapped, can freely use one-sided

RDMA on it (a hit) - exploits temporal and physical locality
- Send Rendezvous-like synchronization messages to change mappings

when a needed remote page not mapped (a miss)
- Also cache local memory registration to amortize pinning costs

M
pagesize*(nodes-1)

Unified Parallel C at LBNL/UCB

Firehose: Implementation Details
• Implemented on Myrinet/GM as part of a GASNet impl.

- Fully non-blocking (even for firehose misses) and supports multi-
threaded clients - also need refcounts on firehoses to prevent races

- Use active messages to perform remote Firehose operations
- Currently only one-sided for puts, because GM lacks RDMA gets

- For now, gets implemented as an active message and a firehose put
- Physical memory consumption never exceeds M+MAXVICTIM (both tunable

parameters) - may be much less, based on access pattern
• Data structures used:

- Local bucket table: bucket virtual addr => bucket ref count
- Bucket Victim FIFO: links buckets w/ refcount = 0
- Firehose table:

(remote node id, bucket virtual addr) => firehose ref count
• All bookkeeping operations are O(1)

- Overhead for all metadata lookups/modifications for a put < 1µs

Unified Parallel C at LBNL/UCB

Performance Results: "Worst-case" Roundtrip Put Latency

Rendezvous no-unpin
exceeds physical
memory and crashes at
400MB

Rendezvous with-unpin
not shown (6000 microsec)

• 8-byte puts, uniform randomly distributed over increasing working set size
- worst-case temporal and spatial locality

• Firehose degrades to match Rendezvous with-unpin performance once
physical memory exhausted and unpins are required

Unified Parallel C at LBNL/UCB

Memory Registration Approaches

• Hardware-Based (e.g. Quadrics)
- Zero-copy, One-sided, Full memory space accessible, No handshaking or bookkeeping in

software
- Hardware complexity and price, Kernel modifications

• Pin Everything - pin pages at startup or when allocated
- Zero-copy, One-sided (no handshaking)
- Total usage limited physical memory, may require a custom allocator

• Bounce Buffers - stream data through pre-pinned bufs on one or both sides
- No registration cost at runtime, Full memory space accessible
- Often Two-sided, mem copy costs (CPU consumption - increases CPU overhead, prevents

comm. overlap), Messaging overhead (metadata and handshaking)
• Rendezvous - round-trip message to pin remote pages

- Zero-copy, Full memory space accessible, Only handshaking synchronous
- Two-sided, Registration costs paid on every operation (very bad on Myrinet)

• Firehose - our algorithm
- Zero-copy, One-sided (common case), Full memory space accessible, Only handshaking is

synchronous, Registration costs amortized
- Messaging overhead (metadata and handshaking) on miss (uncommon case)

Unified Parallel C at LBNL/UCB

Code Generation Tradeoffs
• Blocking vs. Non-blocking puts/gets
• Put/Get variety: non-bulk vs. bulk

- optimized for small scalars vs large zero-copy
- difference in semantics - put src, alignment

• Put/Get synchronization mechanism
- expressiveness/complexity tradeoffs
- explicit handle vs. implicit handle, access regions

• Work remains to explore these tradeoffs in the
context of code generation

Unified Parallel C at LBNL/UCB

Titanium Language Support for Non-
Contiguous Remote Access

• Titanium N-d Array Library
- Powerful and flexible language support for directly expressing many

high-level array operations on array descriptors
- Many regular N-d operations lead to non-contiguous access:

- Restrict, Slice, Permute (transpose)
• Recent irregular extensions to array library

- Sparse array copy - over irregular Domains and Point lists
- Scatter/Gather copy - to/from 1-D contiguous buffers

• Implementation status:
- Fully implemented on Active Messages and contiguous RDMA
- Want to take advantage of available hardware support for non-

contiguous remote access, to improve performance
• Work on automated aggregation optimizations underway

Unified Parallel C at LBNL/UCB

GASNet Vector Interface

• Vector - list of variable length contiguous regions:
typedef struct {

void *addr;

size_t len;

} gasnet_memvec_t;

void gasnet_putv_bulk(gasnet_node_t dstnode,

size_t dstcount, gasnet_memvec_t const dstlist[],

size_t srccount, gasnet_memvec_t const srclist[]);

void gasnet_getv_bulk(size_t dstcount, gasnet_memvec_t const dstlist[],

gasnet_node_t srcnode,

size_t srccount, gasnet_memvec_t const srclist[]);

• Also have non-blocking variants (explicit & implicit handle)
• Source/Dest region sizes may differ - only total data sz must

match
• Most general and flexible option - least hardware support

Unified Parallel C at LBNL/UCB

GASNet Indexed Interface

• Indexed - list of fixed-length contiguous regions:

void gasnet_puti_bulk(gasnet_node_t dstnode,

size_t dstcount, void * const dstlist[], size_t dstlen,

size_t srccount, void * const srclist[], size_t srclen);

void gasnet_geti_bulk(

size_t dstcount, void * const dstlist[], size_t dstlen,

gasnet_node_t srcnode,

size_t srccount, void * const srclist[], size_t srclen);

• More restrictive than vector interface
- Less metadata due to fixed size
- Closer to most available network hardware support

• Also have non-blocking variants (explicit/implicit handle)

Unified Parallel C at LBNL/UCB

GASNet Strided Interface

• Strided: regularly spaced/sized accesses
void gasnet_puts_bulk(gasnet_node_t dstnode,

void *dstaddr, const size_t dststrides[],

void *srcaddr, const size_t srcstrides[],

const size_t count[], size_t stridelevels);

void gasnet_gets_bulk(void *dstaddr, const size_t dststrides[],

gasnet_node_t dstnode,

void *srcaddr, const size_t srcstrides[],

const size_t count[], size_t stridelevels);

A B

 data copy

count[0]

count[1] count[2]

stride[0]

stride[1]
stridelevels=2

srcaddr
dstaddr

• Also have non-blocking variants
(explicit/implicit handle)
• Most restrictive access pattern -
minimal metadata
• Sufficient to express src/dst regions
which are an arbitrary rectangular
section on an N-d dense array

Unified Parallel C at LBNL/UCB

UPC Vector Interface
typedef struct {

void *addr;
size_t len;

} upc_pmemvec_t;
typedef struct {

shared void *addr; // treated as a (shared [] char *) - ie. no wrapping
size_t len;

} upc_smemvec_t;

void upc_memcpy_list(size_t dstcount, upc_smemvec_t const dstlist[],
size_t srccount, upc_smemvec_t const srclist[]);

void upc_memput_list(size_t dstcount, upc_smemvec_t const dstlist[],
size_t srccount, upc_pmemvec_t const srclist[]);

void upc_memget_list(size_t dstcount, upc_pmemvec_t const dstlist[],
size_t srccount, upc_smemvec_t const srclist[]);

Unified Parallel C at LBNL/UCB

UPC Vector Example

#define BLKSZ 100
shared [BLKSZ] double A[BLKSZ*THREADS]; /* assume THREADS >= 3 */
upc_smemvec_t srclist[] = {

{ &(A[14]), sizeof(double) }, /* element 14 (from thread 0) */
{ &(A[20]), sizeof(double) }, /* element 20 (from thread 0) */
{ &(A[100]), 50*sizeof(double) }, /* elements 100..149 (from thread 1) */
{ &(A[2*BLKSZ]), BLKSZ*sizeof(double) } /* entire block (from thread 2) */

};
double mybuf[52+BLKSZ];
upc_pmemvec_t dstlist[] = { { mybuf, sizeof(mybuf) } };
upc_memget_list(1, dstlist, 4, srclist);
/* compute on contents of mybuf */

Unified Parallel C at LBNL/UCB

UPC Indexed Interface
void upc_memcpy_list(size_t dstcount, shared void * const dstlist[], size_t dstlen,

size_t srccount, shared const void * const srclist[], size_t srclen);
void upc_memput_list(size_t dstcount, shared void * const dstlist[], size_t dstlen,

size_t srccount, const void * const srclist[], size_t srclen);
void upc_memget_list(size_t dstcount, void * const dstlist[], size_t dstlen,

size_t srccount, shared const void * const srclist[], size_t srclen);

#define BLKSZ 100
shared [BLKSZ] double A[BLKSZ*THREADS]; /* assume THREADS >= 2 */
shared void * srclist[] = {

&(A[14]), &(A[15]), &(A[16]), /* element 14..16 (from thread 0) */
&(A[100]), &(A[110]) /* element 100 and 110 (from thread 1) */

};
double mybuf[5];
void * dstlist[] = { &mybuf };
upc_memget_list(1, dstlist, 5*sizeof(double), 5, srclist, sizeof(double));
/* compute on contents of mybuf */

Unified Parallel C at LBNL/UCB

UPC Strided Interface

void upc_memcpy_strided(shared void *dstaddr, const size_t dststrides[],
shared const void *srcaddr, const size_t srcstrides[],
const size_t count[], size_t stridelevels);

void upc_memput_strided(shared void *dstaddr, const size_t dststrides[],
const void *srcaddr, const size_t srcstrides[],
const size_t count[], size_t stridelevels);

void upc_memget_strided(void *dstaddr, const size_t dststrides[],
shared const void *srcaddr, const size_t srcstrides[],
const size_t count[], size_t stridelevels);

Unified Parallel C at LBNL/UCB

UPC Strided Example

Example: To put a 3-d block of data, shaped 2x3x4,
starting at location (5, 6, 7) in A to B in location (8, 9, 10):

double A[11][12][13]; /* local array */
shared [] double B[14][15][16]; /* remote array */

srcaddr = &(A[5][6][7]);
srcstrides[0] = 13 * sizeof(double); /* stride in bytes for the rightmost dimension */
srcstrides[1] = 12 * 13 * sizeof(double); /* stride in bytes for the middle dimension */
dstaddr = &(B[8][9][10]);
dststrides[0] = 16 * sizeof(double); /* stride in bytes for the rightmost dimension */
dststrides[1] = 15 * 16 * sizeof(double); /* stride in bytes for the middle dimension */
count[0] = 4 * sizeof(double); /* bytes of contig data (width in rightmost dimension) */
count[1] = 3; /* width in middle dimension */
count[2] = 2; /* width in leftmost dimension */
stridelevels = 2;
upc_memput_strided(srcaddr, dststrides, dstaddr, srcstrides, count, stridelevels);

A B

 data copy

count[0]

count[1] count[2]

stride[0]

stride[1]
stridelevels=2

srcaddr
dstaddr

Unified Parallel C at LBNL/UCB

A B

 data copy

count[0]

count[1] count[2]

stride[0]

stride[1]
stridelevels=2

srcaddr
dstaddr

UPC Strided Example

