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We discuss the destruction of vortex lattice order in type-Il superconductors by random point pinning and
thermal fluctuations based on Lindemann criteria. The location of the melting line and the order-disorder
transition, which marks the destruction of the topologically ordered Bragg glass phase and is the reason for the
second peak effect, is calculated. We focus on a comparative discussion of different versions of Lindemann
criteria and, with regard to experiment, on a comparative discussion of three classes of type-l
superconductors—lowWx, , anisotropic highf., and layered high-. materials. Specific attention is paid to the
role of nonlocal magnetic interlayer couplings and the softening of elastic moduli at high magnetic fields,
which is crucial for lowT. materials. We also discuss in detail the competing mechanisms of thermal depin-
ning and temperature dependence of the pinning strength through microscopic parameters as well as the
crossover between single vortex and bundle pinning for Townaterials.
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[. INTRODUCTION evaluations of(u?); have been presented for anisotrGpic
and strongly layerddHTSC materials. Recently two melting
Influence of quenched random pinning on the crystallineheories going beyond a Lindemann analysis have been pro-
order of the vortex lattice in type-Il superconductors is anposed offering two complementary mechanisms for the vor-
issue of longstanding interest for theory and experiment betex lattice melting. In Ref. 8 a self-consistent analysis of
cause structural properties of the vortex lattice immediatelyanharmonicities beyond the elastic deformation of the FLL
influence quantities crucial for applications, e.g., critical cur-leads to a melting instability, in Ref9 a theory of
rents and electrical resistance. The flux line array in Aigh- dislocation-mediated vortex lattice melting is put forward.
superconductors (HTSC's) such as BiS,LCaCyOg, « Since the work of Larkin and Ovchinnikd¥,the influ-
(BSCCO or YBa,Cu;0,_, (YBCO) is extremely suscep- ence of quenched pointlike pinning centers on the vortex
tible to thermal and disorder-induced fluctuations due to thdattice and the nature of the collectively pinned FLL have
interplay of several parameters such as high transition tenbeen subject of intense theoretical interest. It was argued in
peratureT., large magnetic penetration depthand short Refs. 11 and 12 that weak point disorder drives the vortex
coherence lengtlj, and a strong anisotropy of the material. lattice into a vortex glaséVG) state with zero linear resis-
This leads to the existence of a variety of fluctuation domi-tivity, which has been supported by experimental findihigs.
nated phases of the flux-line array and very rich phase dian weak collective pinning theory according to Ref. 10,
grams for the HTSC materials® But also in lowT, mate-  disorder-induced  relative  displacements grow  as
rials such as 2H-NbSeNbSe structural instabilities of the  ([u(r)—u(0)])>~r*" ¢ in d-dimensional space, i.e., the
vortex lattice produce analogous effects in the critical curpinned FLL is described by the roughness exponena(4
rent, however, in much closer vicinity to the upper critical —d)/2. This would lead to an instability with respect to the
field H;, as compared to higfi; materials. proliferation of topological defects such as dislocations in
Upon increasing the temperature across the melting trarthe FLL (Ref. 14 such that weak point disorder was believed
sition of the vortex lattice the critical current goes to zeroto destroy the crystal order of the FLL. However, the argu-
and superconductivity is destroyed by thermal fluctuations ofment does not take into account that the results of Ref. 10 get
the vortex lines. The existence of a melting transition of themodified for displacements exceeding the coherence length
flux-line lattice (FLL) into an entangled vortex liquidvL) & On larger length scales the growth of relative displace-
was first proposed by NelsdnObservations of hysteretic ments first crosses over to a power law with a somewhat
resistivity switching and magnetization measurentehgsre  smaller¢,*? before a very sloviogarithmic growth sets in on
experimentally supported a first-order melting of very cleanthe largest scal€’s:*® In the absence of dislocations this
lattices. Calculations for the locus of the melting line haveleads to a VG phase that maintains quasi-long-range transla-
been mainly based on the use of the Lindemann criteriomional order with power-law Bragg singularities in the struc-
<u2>T=cfa2, which estimates the root-mean-square thermature factor and has thus been called “Bragg glad3tG).1
displacement fluctuations(§?)7)*/? of a vortex element at In Refs. 16—18 it has been argued that the elastic BrG is
the melting transition as a fractiam a of the FLL spacinga  stable against dislocation formation at low magnetic fields.
with a Lindemann numbec, ~0.2. The phenomenological Upon increasing the magnetic field the vortex lattice soft-
Lindemann criterion has proven very successful in describens and the point disorder strength effectively increases. At
ing experimental melting curves, and refined theoreticabufficiently high magnetic fields the BrG becomes unstable
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and dislocations proliferate!”*® Various experimental sig- strength and the effective weakening of the pinning potential
natures can be attributed to the resulting order-disorder doy “thermal smearing” due to thermal motion of the vortices
amorphization transition into a high-fieldmorphousVG.  which can give rise to thermal depinnih@ften one or the
Neutron-diffraction measurements on BSCQO@ef. 19 other source of temperature dependence can be neglected.
show a destruction of the characteristic power-law Bragd-or example, in lowF. materials depinning temperatures are
peaks at higher fields. Also transport measurements owery close toT. and the temperature dependence through
YBCO (Ref. 20 indicate a crossover from the first-order microscopic parameters is more important whereas in high-
melting at low magnetic fields to a continuous VG-VL tran- T, materials thermal depinning is the dominating effect.
sition that can be related to the order-disorder transition The paper is organized as follows. First we will discuss
within the vortex solid. The occurrence of a very sharp secthe Lindemann criteria for thermal and disorder-induced
ond peak in magnetic hysteresis measurements on BSECOmelting transitions in Sec. Il. In a system subject to
YBCO,?? or NbSe(Ref. 23 at a well-defined second peak quenched disorder the Lindemann criterion can be formu-
field can be interpreted as another hallmark of the orderlated in two slightly different versions both of which can be
disorder transition from a low-field elastic BrG to the high- interpreted in terms of the underlying melting mechanism:
field amorphous VG. The second peak is associated with @hermal and quenched fluctuations can aatependently
rise of the critical current across this transition which is duefrom each other in destroying the lattice order or they can act
to an onset of plastic deformation. It has been shown in Refcooperatively In Sec. Il we will show how the Lindemann
24 that plastic degrees of freedom depin at lower currengriterion for melting of the vortex lattice can be reformulated
densities] but below the depinning threshold barridygj) in terms of fluctuations o$inglevortices of a certain length,
~j~* are higher, i.e.u is larger for plastic creep, which can the single-vortex length §, that is set by the interactions
explain the rise in the apparent critical current that manifestsvithin the FLL. In Sec. IV we discuss how the properties of
in the second peak. This corresponds to the intuitive pictureingle-vortex fluctuations are strongly modified if the nonlo-
that the additional plastic deformation allows better adjustcal electromagnetic coupling cannot be neglected. This be-
ment of the pinned FLL configuration thus leading to largercomes crucial in the Lindemann analysis for the strongly
critical currents. high-T. layered materials, e.g., BSCCO. In Sec. V we
Analogously to the case of thermal melting, progress inpresent the Lindemann analysis for thermal melting in the
predicting the locus of the order-disorder or amorphizatiorabsence of quenched disorder, first for YBCO and NbSe, and
transition has mainly been made by using generalized phehen for BSCCO. In order to study the order-disorder or
nomenological Lindemann criterfd->? Derivations of Lin- amorphization transition that is caused by quenched point
demann criteria have been given in Refs. 17 and 9 by studydisorder employing the single-vortex Lindemann criterion
ing the onset of the instability of the BrG with respect to we have to discuss the pinning of single vortices which is
spontaneous generation of disorder-induced dislocationslone in Sec. VI. Within weak collective pinning theory dis-
Whereas Refs. 25-30 and 32 focus on highmaterials cussed in Sec. VI A, the characteristic length scale set by the
such as BSCCO or YBCO, Ref. 31 addresses alsoTgw- frozen-in point disorder is theollective pinningor Larkin
materials such as NbSe. In this paper we want to criticallyjlength L.. We have to carefully distinguish several pinning
review the Lindemann analysis for the three representativeegimes depending on the size of the pinning lenigthin
materials BSCCO, YBCO, and NbSe with BSCCO as a typi-<comparison to the single-vortex lendthy and the layer spac-
cal strongly layered higf-, compound with weak Josephson ing d in a layered material. Fdt.>L, we havebundle pin-
coupling, YBCO as a typical moderately anisotropic high-ningfor L .>L, andsingle-vortex pinnindgor L <L, which
T., and NbSe as a typical weakly anisotropic I0wtype-Il  are discussed in Sec. VI B. Fa,<d the layered structure
superconductor. On the one hand, we want to emphasize thcomes relevant for the pinning, and there is a crossover
common approach via the Lindemann analysis; on the othérom weak collective pinning t®trong pinningof pancake
hand, the comparative study will show that each of the thre@ortices which is discussed separately in Sec. VI C. The Lin-
mentioned classes of superconductors exhibit peculiaritiedemann analysis is complicated by the fact that the pinning
that have to be taken into account in the analysis. At lowstrength is temperature dependent through two different
magnetic fields, when the vortex spaciagpecomes larger mechanisms. We have a temperature dependence of the pin-
than the magnetic penetration depthwe have to pay spe- ning strength through the microscopic parametsush as\
cific attention to the role of nonlocal electromagnetic cou-or &) but we also have smearing or weakening of disorder by
plings. This becomes particularly important for BSCCO with thermal fluctuations above thiepinning temperature gf,.
its weak Josephson coupling where the order-disorder transiherefore we have to carefully discuss the temperature de-
tion takes place at such low fields. In |oly- materials, on  pendence of the crossover between the different pinning re-
the other hand, the softening of elastic moduli at high maggimes for the three exemplary materials throughout Sec. VI.
netic fields is particularly relevant because both melting lineHaving clarified the different pinning regimes we can per-
and the order-disorder transition are located close to the ugerm the Lindemann analysis for the order-disorder or amor-
per critical fieldH.,. An important point in interpreting ex- phization transition driven by the quenched point disorder.
periments is also a detailed knowledge of the temperatur&his task is split into two parts. In Sec. VII we discuss the
dependence of the order-disorder transition line, which isanalysis forT=0 depending on magnetic fields and pinning
determined by an interplay between the temperature depestrength. Finally, in Sec. VIII, we discuss the influence of
dence of microscopic parameters entering the pinninghermal fluctuations and perform the Lindemann analysis for
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T>0, i.e., in the familiarB-T plane. In the Appendix we B .
provide a set of values for material parameters used for es- VG=VL
timates throughout the text for all three exemplary materials AN
and a list of symbolgTable |). ‘ \Y
BrG T \
Il. LINDEMANN CRITERION "I'; T

The phenomenological Lindemann criterion has proven

successfll” in determining the locus of the melting transi- _ FIG. 1. Schematic phase diagrdmeglecting reentrance at low
tion for the first-order thermal melting transition. At suffi- fields) illustrating the two scenarios corresponding to the two pos-

ciently low disorder strength or low magnetic fields the first- sible generalizations of the Lindemann criterion. Left: According to
order thermal melting transition can also be found in theZd ©) .if temperature and point.disorder act coopera.tivelly. Right:
presence of point disorder. In its conventional form for ther-ACCOIrOIIng to Eqs(2), (4), and(S) if temperature and point disorder

mal fluctuations the Lindemann criterion is formulated as cause distinct phase transitions. The dashed line is the thermal melt-
ing line in the absence of quenched disorder according to(Hqg.

(U?)y=c2a?, (1) ThcezagemperatureTX is defined by (Au?(a,0))r=(Au(a,0))?
=c?a?.

whereu is the displacement of vortex elements and- )t

the purely thermal average in tlasenceof quenched dis- melting of a two-dimensional lattice and to the order-

order. The Lindemann numbey is introduced here as a disorder transition due to quenched point disorder that we

phenomenological parameter that is supposed to depend onlyill discuss now.

weakly on the specific lattice parameters of the solid phase, There are two possibilities to generalize criteri® in

in particular it is assumed to be independent of the magnetiorder to include phenomenologically the disorder-induced

field. In principle its value can be determined Bk initio  quenched displacement fluctuations as possible cause for the

melting theories going beyond a Lindemann analysis, for exeestruction of the vortex crystal. To see this we first note that

ample, in Ref 9 a valuec, ~0.2 is found for dislocation- at finite temperatures and in the presence of quenched point

mediated vortex lattice melting. The Lindemann number  disorder the displacement has two pauts u,+uy, in the

can also be determined from simulations of the vortex latticenotation of Ref. 1. The quenched paf is due to pinning

melting transition. Early Monte Carlo studies of an interact-and does not average to zero upon performing the thermal

ing line modef® find a melting transition with a Lindemann average:up,=(u). The partuy,=u—(u) describes thermal

number that depends weakly on the magnetic field with valfluctuations around the pinning part. Thl(ytzh>:m

uesc, ~0.2 over a wide field range. Path integral Monte _W is the thermal part andf,=(u>2 the disorder part of
he mean-square fluctuations. By using a tilt symmetry of the

Carlo simulations of the corresponding lattice to superflui
vortex systerf one can establish théat3,) is unchanged by

transition of two-dimensional2D) bosons* give a Linde-
mann numberc, ~0.25. Finally, carefully equilibrated _ C — 5 )
Monte Carlo simulations of the three-dimensional uniformly the quenched disorder, i.gi,) =(u%)r. However,uy, is

frustrated, anisotropicXY modef® give a value ofc, ~ Not Gaussian distributed as in the absence of quenched

~0.18. All these findings suggest that a Lindemann numbe?“sorder_?7 - _ o
c_~0.2 is appropriate for the thermal vortex lattice melting. 1€ first possibility to generalize criteridd) is to replace
For the disorder-induced transition we will assume simila{Au?(a,0))7=(Aug,(a,0)) by thefull mean-square displace-
values of the Lindemann number. ment(Auz(a,0)>=(Autzh(a,O))Jr(AuS(a,O)) in Eq. (1):

For thermal fluctuations the main contribution to the
mean-square displacement comes from fluctuations with the TAL2 A () — 2 TA A M2 242
shortest wavelength of the order of the vortex spaang (MA@ 0)=(auT(@0)r+{Au(@0)"=ca® (3
Therefore one can rewrite the Lindemann criterion for ther-.l.
mal melting(1) as

his procedure is suitable if temperatum entropy and
quenched disorder acboperativelyin generating topologi-
2 _ _ N 2.2 cal defects in the FLL. It corresponds to a scenario where

(Aux(2,0))r=([u(a0) ~u(00)])r=cra @ there is onlyonetopologically disordered phase beyond the
whereu(R,z) is the displacement of the vortex element atBrG instability, and the VL phase and the amorphous VG are
r=(R,z), anda s a unit vector of the hexagonal Abrikosov thermodynamically identical phases. A criterion such as Eq.
lattice. z is the coordinate parallel to the magnetic fighd  (3) would shift the thermal melting line to lower fields and
which is directed along the ¢ axis of the anisotropic type-lilead to acrossoverof the thermal melting line into the amor-
superconductor in the usual experimental situatidjjc. In ~ phization transition line as soon agAu?(a,0))r
the form (2), the Lindemann criterion is #ocal criterion  =(Au(a,0))?=c?a? at a temperaturg&,, see Fig. 1. A Lin-
where thermal fluctuations in the bond length- Au(a,0) demann criterion of the forrtB) has been assumed in almost
connecting nearest neighbors are used to indicate the loss all  previous Lindemann analysis of the BrG
global positional order of the FLL. In the forr®2) the Lin-  stability?®=283°-33t can also be formulated in terms of three
demann criterion can also be applied to situations whereharacteristic energies of a vortex lattice unit é&fi the
(u?)7 is formally diverging as, for example, in the thermal temperatureT, a characteristic ener(ﬁmoccf necessary for
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plastic deformation of the FLL, and a characteristic pinningquenched disorder dislocation lines gain disorder energy by
energyE i, (equations folE,, andE, will be given below  optimizing their position and shape. However, in a dense
asT+Eyin=E . dislocation array with dislocation distances or dislocation
A different possibility to generalize criteriof®) is based loop sizes of the order of the lattice spacia@lso the opti-

on a mechanism where temperature and quenched disordgifization of position and shape can only take place over dis-
do not act cooperatively but lead to twdstinctinstabilities  tances of the order of, and thus give only small additional

of the BrG, for example instabilities with respect to disloc_a-disorder energy gains compared to the entropic terms. This
tion loops on two different length scales. Such a mechanisngggests that quenched disorder is an irrelevant perturbation

imﬁa%ﬁﬁn a?t\éof:stegétn tc?ijl dgis\llgc]:zrt(iao:]er;r[r):ra;ﬂrﬁi I?]agissltc())- 4d that thermal fluctuation@i,) alone should be consid-
Y P y 9 ered in the Lindemann criterion, as in E4). On the other

cation densityp~a~2, which can be interpreted as a VL — .
phase satura)t/gd with small dislocation Iogps. On the oth(i?and' for the melting induced by quenched disorder, thermal

hand, quenched disorder leads to an instability with respe Juctuations are irrelevant because in the three-dimensional
to a much smaller dislocation density that is essentially sefLL (U is independent of system size and thus not diverg-
by a large pinning lengtlithe positional correlation length, ing in the thermodynamic limit. Therefore we expect tem-

see Ref. 9 and characterizing the amorphous VG. Havingperature to be an irrelevant perturbation at this order-disorder
such a scenario in mind one would rather generalize(Eg. Or amorphization transition that causes only thermal smear-
by introducing a second criterion which considers only theing of the disorder but does not change the nature of the

pinning-induced displacements transition! This suggests that as in E@) disorder-induced
fluctuations(u)? alone should be considered in the Linde-
(Au(a,O))2=cfa2, 4 mann criterion. Note that effects of thermal smearing are

giving the locus of the disorder-induced or amorphizationtaken into account already in expressions sucfuas due to

transition line. The locus of the thermal melting line is still theTtrI;uerrT;al Freayeraging. bile lated models of elasti
given by Eq.(1) or (2) and unchanged by quenched disorder. € situation 1S more Subti€ for refated models of elastic

. . . . 8'39 . _
Within the scenario where quenched disorder and therma{Pan'fOIds intwo dimensions™* There it has been demon

fluctuations act independently, one consequently argues fofrated rigorously that below a depinning temperature ther-

two distinct topologically disordered phases, the VL and themal fluctuations are irrelevant and the transition driven by

amorphous VGat least close to the stability region of the quenched disorder is in the same universality class as the

guasiordered BrG, where we expect Lindemann criteria td:orrespor_\dmgTzo tra_nsmon. .A.S in three dimensions tem-
work, at higher fields a critical end point can ochuiThis perature influences this transition o_nIy by thermal smearing
’ below the depinning temperatut€This low-temperature be-

f#?gﬁ;sdg;?;m?"fg lJcSrigritgr? VG-VL transition is given by ahavior can also be qualitatively understood by using a Lin-
demann criterion where only disorder-induced fluctuations
(Au%(a,0))r=(Au(a,0))?, (5)  (u)*are considered. Above the depinning temperature, how-
ever, thermal fluctuations change the renormalization-group
and we have three-phase coexistence {dru®(a,0))r  flow equations. In a qualitative Lindemann analysis this be-
=(Au(a,0))2=c’a? at the temperatur&,, see Fig. 1. Only havior can only be obtained by the use of a Lindemann cri-
in the Lindemann analysis of Ref. 29 this second generalizaterion analogously to Ed3) where both sorts of fluctuations
tion of the Lindemann criterion has been employed consisact cooperatively.
tently although in Ref. 25 a criterion equivalent to E9). is If the dimensionality is further decreased and we consider
applied to calculate the irreversibility lijéut the BrG phase a one-dimensionadinglevortex it is well knowrt that disor-
boundary is calculated using E) in Ref. 25. In Ref. 29  der even becomes irrelevant for-2 wheren is the number
the two Lindemann criteria were formulated in terms of theof components of the vortex displacement field. For the
three characteristic energies that we introduced above. Wghysical case oh=2 disorder is only marginally relevant,
can writeT=Ep, equivalent to Eq(1) as criterion for ther- and it is the competition between quenched and thermal fluc-
mal melting, the BrG-VL transitionE;,=E, correspond- tuations that leads to an exponential increase in the crossover
ing to Eq.(4) is the criterion for the order-disorder transition scale between the short-scale regime dominated by thermal
line between VL and amorphous VG. Finallj=E,, fluctuations and the large-scale regime dominated by disor-
equivalent to Eq(5) is the criterion for the VG-VL transi- der fluctuations, the pinning length.(T) [cf. Eq. (43) be-
tion. low]. In this sense, quenched disorder and thermal fluctua-
Within a dislocation-mediated melting theory it is indeed tions always act cooperatively on single vortices. Therefore
possible to give some qualitative arguments supporting theve expect the cooperative Lindemann criterion to eventually
view that quenched disorder and thermal fluctuationsract govern the physics in the very diluted regime where the ther-
dependentlyather than cooperatively in destroying the lat- mal melting fieldb,, drops below the single-vortex pinning
tice order. For dislocation-mediated melting it is expectedfield b, .
that a first-order transition into a VL phase without any We want to conclude this section by comparing the result-
short-scale translational order has to correspond to a phasey phase diagrams if the criterid) based on cooperative
transition where a dense array of dislocatiops-@~ %) en-  action of quenched and thermal fluctuations is used or the
ters the sample. On the other hand, in the presence dafiteria(2), (4), and(5) where quenched and thermal fluctua-
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tions act independently. In Fig. 1 it is shown that naturallymodel”®>?° because a vortex line is trapped in a hexagonal
the stability boundary of the BrG phase is at slightly lowercage by the interaction with its nearest neighbors on scales
fields within the scenario of cooperatively acting fluctua-larger thanL,. On scales smaller than, the cage is large
tions. At low T, when thermal fluctuations have no effect, enough for the vortex line to freely fluctuate.

and close toT. both scenarios give identical results. The As the vortex lattice is essentially incompressible the elas-
differences become most pronounced around the temperatutie vortex lattice fluctuations are dominated by transversal
T, of three-phase coexistence in the second scenario of irshear and tilt modes which are described by the transversal
dependently acting fluctuations. Based on the arguments preart G+(K,q) of the elastic vortex lattice Green’s function
sented before we will employ the approachimdependently

acting quenched and thermal fluctuations, i.e., the criteria G1(K,q) =Ceg 2+ Ca4(K,q) 2. 7

(2), (4), and(5) throughout this paper which have also been

used in Ref. 29 for BSCCO and which are supported by thd It and shear contributions always enter the final results for
melting theory presented in Ref. 9. thermal and disorder-induced displacement fluctuations

through the elastic Green’s functidi¥) as a rescaling of
length scales irnz direction shows. Therefore the elastic
Green’s function(7) governs the scaling of tilt and shear
contributions, and for a given wave vectdrof shear defor-
Local Lindemann criteria of the forrt2)—(5), which are ~ Mation only tilt deformations withg>K[ ces/Caq(K,q) 1"
probing fluctuations of changes in bond length(a,0) be- ~ are accessible at comparable deformation energies both for
tween nearest neighbors, can be reformulated in terms of tHéermal and disorder fluctuations. Thus the scaling of tilt and
fluctuations of a single vortex line of a certain length whichshear deformations due to E() leads to the following re-
is set by the interactions with its nearest neighbors. Thigult for displacementsAu(L)=Au(0,L)=u(0,L)—u(0,0)
length scale is the so-callesingle-vortex length . (in the  andAu(R,0)=u(R,0)—u(0,0):
notation of Ref. 1, which can be obtained within the elastic

I1l. SINGLE-VORTEX LENGTH AND LINDEMANN
CRITERION

description of the FLL in terms of the displacement field (AUA(R,0)1=(AU*(0.L))7,
u(r) with an elastic Hamiltonian that contains tilt, shear, and
compression modes and associated elastic maguli Cgg, (AU%(R,0))=(Au?(0L)), (8

andcy;, see for example Refs. 1 and 2. Over a wide range of o _ .
parameters the vortex lattice is practically incompressibleif the lengthR in direction perpendicular to the vortex lines
C11>Cgg, SUC that transversal shear displacements are mu@d L in direction parallel to the vortex lines are related by
larger than the longitudinal compression displacements at h=R[C44(1/R,11L)/ceg] V% According to Eq/(6), the single-
given temperature or quenched randomness. Therefore, wé@rtex length scald, is defined such that =L, and the
can neglect the longitudinal displacement modes for whavortex lattice spacinR=a in the perpendicular direction
follows, and we consider a vortex line participating in aform such a pair of length scales. Therefore we can use Eq.
shear deformation on the scale of the vortex lattice unit cel(8) to rewrite the Lindemann criterig2)—(5) as

R=a perpendicular to the vortex line and on a sdalalong

the vortex line(we denote perpendicular scales Byand (Au*(a,0))r=(AU*(0.Lo))T,
scales parallel to the vortex line Hy). The corresponding
wave vectors argK |=Kg; in the direction perpendicular to (Au?(a,0))=(Au?(0,Ly)). (9

the vortex where KBZ~2\/;/a is the (circularized
Brillouin-zone radius and= 1/L in thez direction along the To calculate mean values afu(Lo)=u(0,Lo)—u(0,0),

timizing the sum of the tilt and shear energy of the vortexscalesL<L, [the relative fluctuations ou(L,) are also
lattice  unit  cell Eyy+ Egpea= Cas(Kgz1/L)a2u?/L  identical to the total fluctuations of a vortex of lengthL

+cgel U2 with respect to the length which gives =L,]. Hence, fluctuatipns o_f a single vortex up to the scale
of the cage length are identical to relative fluctuations of two
Cas Kz o)\ Y2 [ g)(1lLg) | Y2 neighboring vortices. The local character of the Lindemann
Loza( c = ) (6) criteria(2)—(5) becomes even more obvious.
66 66

If the Lindemann criterion is formulated in terms of three
(= is used if numerical prefactors are neglegtazhere we characteristic energies as in Refs. 29 and 32 they also refer to
have to take into account the dispersion of the tilt modulughe energies of a vortex fluctuation of wavelengthparallel
Cas=Cas(K,q) whereas the shear modulus is approximatelyand wavelengtla perpendicular to the vortex line. The_ typi-
dispersion-free. Becaus&=1/a represents the shortest cal thermal energy of such a fluctuation’is The typical
wavelengthc,,(1/a,q)=¢,(q)/a? is given by the single- €Nergy for a plastic defor.mauon can be e.st|ma_ted by the
vortex line tensiors(q). The length scale, sets the typical €lastic energy correspcz)ndmg to a deformation withc, a
scale along the vortex line over which a single vortex canvhich is Epi=e(1/Lo)cta”/L,. The typical pinning energy
freely fluctuate relative to its neighbors. Fluctuations oniS e€stimated by the elastic energy corresponding to the typi-
larger scales are suppressed by the vortex interaction. Thigal pinning-induced displacement=(Au(a,0))* which is
effective single-vortex model has also been called “cageEyi=¢(1/Ly)(Au(a,0))?/L,. It becomes clear that the cri-
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teria T=Ep, T+Eqis=Ep, Eqis=Ep, and T=E, are Nem=Nap(1— b+ K32 " Y2=min{\ ,n(1—b) "2 a}
equivalent to the Lindemann criteri@)—(5). (13
In the following we calculate the single-vortex lendth
from Eq. (6). The result of this calculation will be
gives the length scale below which the nonlocality of the
ea(l—b) 12 for a<\gp electromagnetic contribution sets in. It turns out to be rel-
_an 1 (10) evan_t only.m the dilute regima> A\ ,, Where)_\em~)\ab. uis
exp(— _) for a>\gp, a typical displacement and the corresponding correction term
in Eq. (12) is due to nonlinear elastic effects. Factors of (1
—b) in the expression12) for the line stiffness result from
extending the elastic theory for the FLL to higher magnetic
fields b>0.25 by replacing\,, by an effective magnetic
penetration depth

LOZ a

a
)\ab

whereb=B/B,=2m¢2,/a? is the reduced magnetic induc-
tion, \5p is the magnetic penetration depth, ase \ 5,/ \
the anisotropy ratio of the type-ll superconductor. Small
logarithmic corrections are neglected in Ef0). In the di-
lute limit (a>\,p) and in the dense limitg<<i,,) very
close to the upper critical field 1b<1 the single-vortex ~ B
length becomes very large. In both cases this is due to a Nab=Nap(1—b) 12 (14)
softening of the lattice and a corresponding decreasggn
however for slightly different reasons. At low fields the vor- that takes into account a renormalization due to the large
tex interaction decreases exponentially with increasifg,, i&sThi 9
leading to a softening, at extremely high fields softening isnormal cores (Zf the vorticesThis also led to the replace-
due to the effective increase of the magnetic penetratioment of e by eo=eo(1—b) in Eq. (12). Using Eqs.(11)
deptthb=)\ab(1—b)‘1’2 by the large normal cores of the apd (12) in Eg. (6) we obtain the above resull0) for the
vortice€ and an effective decrease of the vortex-vortex in-Single-vortex lengtho. _ _
teraction by a factor (% b).*° The influence of the softening The dispersive behavior of the single vortex line deserves
at high fields on the single-vortex length has been missed SOmMe further attention. In the local limifor wave vectors
in Ref. 31 giving misleading results regarding the locus ofd<1/Ae¢y) the stiffness becomes nondispersive aad
the amorphization transition line for loWs materials such =ego[e2+(1—b)A2 /A2 ]; the electromagnetic part domi-
as NbSe where this effect becomes very important becausetes for all fields witta>¢\ ,, where the stiffness takes on
melting and amorphization transition lines are both locatedts isotropic values,=¢q. In particular, the electromagnetic
in the vicinity of the upper critical field. part governs the behavior in the whole dilute lirait-A 5.

To calculatel , from Eq. (6) we need the shear modulus On the smallest scal¢g>1/eX 4= (1—b) ¥ e\ 4], the Jo-
Ces and the single-vortex line tensiom(q). The shear sephson contribution always dominates and we find an es-
modulusceg is given by"* sentially nondispersivéwe neglect a small logarithmically

dispersive correction but anisotropic stiffnesse;=gq(1

€€y 1—b)? for a<\ —b)e?. Or_1 interm_ediate s_cales)delm<.q_< 1/3Xab the elep—

4a2( ) ab tr'omagn.e_tlcl cquplmg dominates but it is reduced .by Q|sper-
Coc~ sion until it is finally cut off by the Josephson contribution at

g [Tl a SIZeX% B i) for a>\ g~1/eX 5. In this regime we finds;=gq(1—b)2/g?\2,.

a2 vV 6\ N\ ab ab As can be seen from E10) the single-vortex length

(11)  is alwayssmallerthaneX,p(1—b) =2 in the dense regime
a<\ap- This means that in the whole dense regime the elec-
and exponentially decreasing in the dilute limit. The full ex- tromagnetic coupling is completely suppressed by the disper-

pression for the dispersive vortex line tensioh is sion becausé  is small enough that all fluctuations with
<87\ab are suppressed by the caging effect. Therefore, we
eo(l=b)| 1 need to consider large-scale fluctuations witheX ,, only
e(q)~ 2 2 ;2 2.2 2 in the dilute limit where we can neglect factors of-{b)
KBZ&ab—i_S fabq and set
1-b q°\2

+(2 2)|n< +——=1, (12)

a°Aab 1+qg°u Nem™Nab - (15)

wheree = (P /4m\ )2 is the characteristic line energy of a

vortex, andé,y, is the coherence length. The first term stemsFinally, this leads us to the following simplified expressions
from the Josephson coupling between the line elements arfdr the line stiffness which are justified if prefactors and
is local whereas the second term originates from the electrdegarithmic corrections are not crucial and valid only for the
magnetic interaction of line elements, and is thus stronglyelevant fluctuationgj<1/L, which are not suppressed by

nonlocal. The scale the cage effect:
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( a<lup: &o(l—b)e? because g (1—t), wheret=T/T. is the reduced tempera-
p 1 ture. For typical parameters for BSCCG~1/200, d
€0 for gq<— ~15 A, \,,~2000 A, and T,~100 K one finds that
Nap BSCCO has a weak Josephson coupling at low temperatures
&(0)={ &0 1 1 but the Josephson coupling becomes strong abdye
a>Ngp: —— for —<qg< ~36 K.
a°Nap Nab £\ap Considering only fluctuations with wave vectorsh 34
) <(g<(qq one can show that due to the predominantly elec-
\ €08 for q>8)\ab- tromagnetic coupling each vortex segment of length ef-
\

(16) fectively decouplesinto small segments of lengthy that
fluctuate independently in a harmonic potentfaTherefore,

the vortex line becomes very soft with respect to fluctuations

on the short scaley. This holds for thermal fluctuations as

well as for fluctuations due to pinning. In particular, this

leads both for thermal and for fluctuations from quenched

point disorder to a breakdown of scaling in the displacement

IV. SINGLE-VORTEX FLUCTUATIONS
AND ELECTROMAGNETIC COUPLING

As already pointed out we can use E@). to calculate the
averages in the Lindemann criterid)—(5) by considering
single-vortex fluctuations up to the scalg set by the vortex ~ correlations. For L>L4 displacements (Au?(L))r or
interaction. As the simplified expressi¢h6) shows there are (Au?(L)) essentially danot grow over a certain regime of
no further complications from nonlocal couplings in the length scalegneglecting eventual weak logarithmic correc-
dense regime<\,, because the essentially nondispersivetions. Furthermore, on scaled>\,,, (Au?(L)); or
Josephson coupling governs the behavior up to the $gale (Au?(L)) can be calculated in the conventional way using
in this regime. the isotropic stiffness,(q) =& but short-scale contributions

This, however, changes if the dilute limat>\ ,;, is con- <Au2(|_d)>T and(Auz(Ld» have to be taken explicitly into
sidered where competing effects of Josephson and electraccount. Specifically, we find fdr=L, (the following equa-

magnetic coupling between vortex elements have to be taketion holds analogously for thermal averagdes- )+)
into account as Eq16) shows. The effects for single-vortex

fluctuations due to temperature and quenched disorder ar@ u?(L))
discussed in detail elsewheteFor a self-contained discus-
sion we will present here the main results. (AU?(Lo)),
Due to the competing nonlocal electromagnetic and local ~ _ m for Ly<Lo<Map (20)
(AU?(Lg))i+{AUu?(Lg)) for Lo>N\ap,

for d<Lo<ehg,p

Josephson coupling there is a window of wave vectors
1\ p<q<lle),y, in the dilute limita>\,, where the line
stiffness is strongly dispersive with(q)=q~ 2, see Eq(16). o
In the limit of a very weak Josephson couplieg-0 the where the supscrlpte implies that only large wave vec.tors
dispersion of the electromagnetic contribution persists dowl~ & ap are integrated over and thus the average 1s per-
to the shortest length scale, which is then set by the layeiormed using the anisotropic stiffness(q)=eoe” and
distanced. For the fluctuation behavior in the dilute limit the @nalogously the subscript ™ implies that only small wave
largest possible wave vector showigg? dispersion is im-  VECtorsq<\g are mtegrate_d over and thus the average is
portant. In a layered material this i~ 1/maxd,e,,} and perfor_m_ed using the local limit of Eq16) where the stiff-
we introduce a correspondirdispersion length scale Ness IS ISOtropie;=eo. o _ _
According to the Lindemann criteri2)—(5) in conjunc-
Ly=maxd,e\a,} =NapmaxXeq,e}, (17)  tion with Eq. (9) the vortex phase diagram is determined by
the displacement fluctuations of a single-vortex on schles
<L,. From Eq.(20), the structure of the phase diagram with
d regard to the dominant scale of these single-vortex fluctua-
ea=y (18  tions becomes clear, see Fig. 2. In the dense regimg .,
ab the essentially nondispersive anisotropic Josephson part of
is an effectivelayered anisotropyof the material. For the &,(q) is always dominating. Then the largest sciajgin the
short-scale fluctuations it is important to distinguish betweercage model is the dominant scale of fluctuations as in the
two classes of superconductors depending on the strength 6ifst line of Eq.(20) but we have to include possible high-
the Josephson coupling or the size saof Superconductors field corrections and use,(q)=g,(1—b)e? in the dense
with a strong Josephson coupling>ey have Lg=g\,p; limit. Evaluation of the Lindemann criteria will show that
YBCO falls into this class and of course all Ioly-materials  this produces the upper branches of both the melting and the
such as NbSe without layered structures. On the other handmorphization transition line in the regime<\,, of the
superconductors withweakJosephson coupling<eq have  B-T plane, see Fig. 2.
Ly=d. But it has to be noted that evendk ey at T=0 the In the dilute limit a>X\,, the situation becomes more
Josephson coupling becomes strong above a temperature complicated becaude, grows exponentially witta, see Eq.
(10), and thusLy>\ 4, essentially in the whole dilute limit.
Then effects from the nonlocal electromagnetic coupling be-

where

tdzl_(é‘/é‘d)z (19)
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YBCO, NbSe BSCCO
b b |
1 | F—— -
\\\
N
12 2D )
L,=ca(l-b) Ly<d s
b ~(1-ty .~ Ly=¢a
2D - e
a=) a=A e
Ld=8)” Ld=d - Ld=87\,
L,~ a exp(a/2)) Ly~a éxp(a/Zk)
>t T -t
d<elr 1 d>er ty=1-€/€, d<ed 1

FIG. 2. Schematic diagrams in thet plane(the dilute regime is enlargeéghowing the dominant scales for displacement fluctuations of
a single-vortex of length ;. For YBCO and NbSe fluctuations on the largest staledominate in the dense regime and determine the upper
branches of the melting and order-disorder transition lines. BSCCO exhibits quasi-2D behavior in large parts of the dense regime. Fluctua-
tions on the exponentially large scdlg also determine the lower branches of transition lines deep in the dilute regime for YBCO, NbSe,
and BSCCO. The continuation of the upper branches of the transition lines into the dilute regime, however, is determined by fluctuations on
the scalel4; for YBCO and NbSd_4 = e\ 4, whereas for BSCCQ 4=d at low temperatures.

come relevant and according to EQO) fluctuations from As the previous discussion showed, in order to calculate
two scales— andL 4= maxd,e\,)—are dominant. Evalu- the upper branches of the transition lines, we only need to
ation of the Lindemann criteria shows that fluctuations on theconsider single-vortex fluctuations with the nondispersive
scaleL 4 give the continuation of the upper branch of both anisotropic stiffness,(q)=¢q(1—b)e? from the Josephson
the melting and the amorphization transition line into thecoup“ng as long as we have strong Josephson coupling with
dilute regime whereas fluctuations on the exponentially large ,= ¢ ., as for YBCO and NbSe. Only for the upper branch
scalelq give the lower branches of both transition lines, se€of the transition lines in the dilute limit for BSCCO with a
Fig. 2. Thus the nonlocal electromagnetic coupling is responyeak Josephson coupling dispersion becomes crucial, and
sible for the typical phase diagrams with reentrant liquid ofye have to take into account fluctuations on the scale of the
amorphous vortex phases that we will find, see Figs. 3, ayer spacing_q=d. This means we have to consider fluc-

and 7. Expenmentally, Iowe_r_bral_"nches of neither the meltin uations of a single pancake vortex relative to its neighbors
nor the order-disorder transition line could be observed so far

) ; . ; in adjacent layers.

in the dilute regime. Therefore we will focus on the upper Quasi-2D behavior of the vortex lattices becomes relevant
branches throughout this paper. Given the results in Ref. 4],fb i d when the til

a calculation of the lower branches is in principle straight- r melting processes as soonlag<d when the tilt energy
forward but actually very involved as the full fluctuation can be ”eg'eCted against the shear energy on.the sgale of one
behavior including the interplay of thermal and quenched@er spacingd. The crossover conditioho<d is fulfilled
fluctuations over all length scales is very diverse. for b>b,p above the2D crossover field

NbSe YBCO

1-by (17133 b
[Ly=ea(1-bj "]

l—bm~(1—t)_”312/3 ’

VL [L,=¢a(1-by"]
by~ (1= by~ (1-t)E7
VS “ [Ly=eal ;_.-*"[Lo:*l"]
/
a=\ n A\ FIG. 3. Schematic phase diagrams for thermal
by~ (1-t) ! a=) . . .
Lhech] melting of the vortex solidVS) into a vortex
¢ liquid (VL) in the absence of quenched disorder

for NbSe, YBCO, and BSCCO. For BSCCO
b BSCCO above the crossover field, there is a decou-
pling into a 2D VS prior to melting(The dilute

''''''''''''' VL regime is enlarged, the reentrance at very low
ba~ (1-f)F), V8 % fields is shown for completeness but not dis-
R 2D } . cussed in the text.

o | Vi -

b2D~(1_t) /)m~ (l_t)t

Ly<d 7 elg=d]

= = i /2
a=) oo b.,f(l—d 1
A\
l2D 2,2 ! t
toy tg=1-€ey 1
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20 &2 pling andLy=¢\,,, BSCCO a weak Josephson coupling
bop=— max[—z(l—b)l,l} , (21)  and thusLy=d for temperature§ <T4, and in the lowT
B €d material NbSe there is no layered structure at(faiimally
corresponding t@y=~0) andLy=¢&\ 4.
where we used Eq(10) and neglected a logarithmic
correctiont k=X\,,/&,p is the Ginsburg-Landau parameter. V. THERMAL MELTING
For a strong Josephson coupliag- ¢4 the crossover field is ] ] ] ]
in the dense regime and has a temperature dependencefirst we want to brlgfly recapitulate thg calculation qf
bop(1—byp)(L—t)~ L. From Eq.(10) one derives that for thermal melting curves in the absence of disorder according
e>d/5¢,, we alwayshavel,>d and there is no crossover to the Lindemann criterio2) or the equivalent criterion
to quasi-2D behavior. This condition is actually fulfilled for 2 2.
YBCO with typical parameters~1/5, d~12 A, and &y, (Au*(Lo))r=cia (22)

~15 A. Therefore we will exclude the possibility of 2D be- formylated in terms of displacement fluctuations of a single-
havior for YBCO in our s_l_Jbsequent discussions of melting,rtex on scalek <L, using Eq.(9), to which we apply our

and order-disorder transitions. For a weak Josephson COWagyits of the preceding section for the length scales of the
pling e <eq4 the 2D crossover field is appro>§|mately_equal 10 relevant fluctuations causing melting. For thermal melting
(actually slightly below the field b=2m/«" at whicha e will reproduce the well-known results of Ref. 6 for an-
=\ap, 1.€., the boundary between the dilute and dense reggtropic materials and Ref. 7 for strongly layered materials.
gime. This means for a weak Josephson coupling, €.g., ijve rederive these results as part of the complete phase dia-
BSCCO belowTy~36 K, the vortex lattice melting shows gram and to demonstrate the simplicity and correctness of

quasi-2D behavior in the whole dense limit. It is expectedie present approach. The results are summarized in Fig. 3
that as soon as the melting or the amorphization transitiogyr NpSe, YBCO, and BSCCO.

line intersects the linb,p(t) the character of the melting or
amorphization process changes from 3D linelike to quasi-2D
and decoupling of the FLL happens prior to the melting,
which is then a 2D melting transition. YBCO and NbSe are both anisotropic type-Il supercon-
However, it has been a long-standing questiamether ~ ductors and have qualitatively similar melting curves as long
already the dominance of fluctuations on the sdaje=d  as the layered structure of YBCO can be neglected. Fluctua-
given by the layer spacinffor weak Josephson coupling, tions are larger in the higfi; material YBCO due to the
e.g., in BSCCQin the dilute regime leads to a qualitatively increased transition temperaturég £ 90 K for YBCO and
different melting transition. Because these decouplinglc~6 K for NbSe¢ and lower coherence lengthsé,g
quasi-2D fluctuations dominate the mean-square displace=20 A in YBCO andé,,~100 A in NbSe which lead to a
ments in the Lindemann criterion for melting one can argueGinsburg number
that melting and decoupling happen in a single transition or,
in other words, that the FLL melts or becomes amorphnus 10 T 2
decoupling The argument against this point of view is that Gi= 8 e€0éap
Lo>d still holds and pancake vortex lattices in different lay-
ers are interacting logarithmicalf§.For the thermal melting Which is Gk1.5x10"2 for YBCO but much smaller Gi
transition it has been convincingly demonstrated in Ref. 43=1.7X10 °in NbSe. Therefore, the vortex lattice melting in
that even in the absence of a Josephson coupling there  the low-T, material NbSe takes place only at high fields in
is still a 3D lattice melting at low magnetic field&<B,y. the vicinity of Hc,, see Fig. 3.
However, this subtle issue is beyond the scope of the Linde- As pointed out in Sec. IV, the Josephson coupling domi-
mann criteria employed in this paper. For the case of théates throughout the dense regime \ ;, and thus we use
amorphization transition in the presence of disorder théhe anisotropic line stiffness|(1/Lg)=z(1—b)e? and L
analogous question is still unanswered. ~zga(1—b) Y2 from Eq.(10) to obtain
A two-dimensional BrG phase has been shown tabe

A. YBCO and NbSe

(23

ways unstable with respect to dislocation formation in the (AU(Ly) ~E~az i 1’2(1_b)_3/2 T
presence of disord& such that the decoupling transition 0T e %\ 27 geobap
leads directly to a 2D amorphous VG if amorphization does (29

not happen prior to decoupling. At this point it should also__ . , L .

noted i)hpat apLindemann-IiIE)e (?riterion aﬁalogous to E4). With the Lindemann cr|_ter|o_r(22) this gives for the upper

would give the incorrect result regarding the instability of the Pranchbm(t) of the melting line the well-known resfit

2D BrG phase as it would predict the existence of an amor-

phization transition and thus of a quasiordered 2D BrG phase b T

below a critical disorder strength. (1-b,)% 4
Figure 2 summarizes the findings of this section regarding

the relevant length scales for the fluctuations causing meltinffor b<<1 the factors b can be neglected anld,=(1

or amorphization for the three exemplary materials we want-t)t~2 or B,,=(1—t)?t 2. Close to the upper critical field

to study in this paper. YBCO has a strong Josephson coder 1—b<1, this yields

clGimY(1—-t)t =2, (25)
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s Td be? T
Z) c. Gt 1-t) Y4B (26) (Au?(d))r= a?— (29

BT e (Ud) & 27 eod

and the Lindemann criterion gives the upper brabgft) of

If the upper branch of the melting line is continued into the melting line for BSCCO in the dilute limit as

the dilute limita> A\, fluctuations on the scaley; dominate

the expectation value in the Lindemann criterig@2), - 2 —2mi—da _ ive—1
(AU(Lo))r=(AU?(Lg))r. YBCO and NbSe have a strong bin(t)= V2 meLk ™ Gip (11t (30
Josephson coupling and thug=e&\ 5,. On the scale) ., or By(t)=(1—1t)%t"1,” where we used the 2D Ginsburg
we use again the anisotropic line stiffness(1/eN,,)  number Gjp=2Gi?« le/e4~T./100T2° .1 For BSCCO
=gqe? and get with T,~100 K the 2D Ginsburg number is i~ 0.096.
For low temperatures<1, we can rewrite Eq(30) to get
) Tehgp L, b T the melting temperature as function of fidd
(Au“(elgp)) 1= . =a Ekssofab. (27

2m
__T2D5n-2
Thus the Lindemann criterion gives the upper brabglt) Tm(b)=Ti"70ct b2 (31)

of the melting line in the dilute limit as ) N ) )
showing that the transition approaches indeed the 2D melting

transition of a layer upon intersectifgpp~2/«? (if we

by~ lcEK‘lGi‘1/2(1—t)1’2t‘1 (28)  choosec, ~1/1/70), see Fig. 3.
V2 For temperature$ <T2" the 3D vortex solid first under-
goes a decoupling transition at a fiddg. into a 2D vortex
or B (1—t)¥4 %7 solid which undergoes a 2D melting transitionTaP . If this
decoupling transition is also described by a Lindemann cri-
B. BSCCO terion of the form
The strongly layered BSCCO has a weak Josephson cou- <Au2(0,d))T=cEa2 (32)

pling at temperatures beloW;~36 K. The upper branch of

the melting line should intersect the 2D crossover bipg(t)  as suggested in Refs. 7 and 48, we will get the same formu-

around the 2D melting temperature of a superconductindas (30) and(31) for the decoupling transition linby.(t) or

layer T2P~de(/70.) Taking again d~15A and \,, alternativelyTy4.(b), which is thus the continuation of the

~2000 A as typical parameters for BSCCO, one fiidS 3D melting line into the 2D regime, see Fig. 3.

~10 K which is well belowT4. This means that at the tem-

peratureT2C the 2D crossover line is at the boundary to the VI. PINNING OF SINGLE VORTICES

dense regime, see E@1), such that the upper branch of the

3D melting line lies entirely in the dilute regime, see Fig. 3.
In the case of a weak Josephson couplingatd another

phase diagram for the 3D thermal melting is possibtahd

& are such thal2®>T,. In this case the upper branch of the

melting line will enter the dense regime before the melting

transition turns into 2D melting, and the phase diagram look

gualitatively similar to that of YBCO. But for clarity of pre-

sentation we will limit the discussion here to the situation

TﬁP<Td that arises for a realistic choice of parameters for

the BSCCO material. o ___ The parametey gives the strength of the quenched disorder
In the dilute regime, BSCCO exhibits a behavior distinctand is temperature dependérithis temperature dependence
from YBCO or NbSe due to its weak Josephson coupling oye to the microscopic pinning mechanism will be discussed
Lg=d. At the upper branch of the melting line fluctuations fyrther below. Usually, we consider point disorder correla-
on the scale of the layer spacihg=d dominate the mean- tjons of a short rangé,, given by the size of the vortex
square displacement in E(22) due to the nonlocal electro- cores with and an integrable disorder correlater (u) that
magnetic coupling as discussed in Sec. IV, KAu?(Lo))t we normalize such thafd2uA, (u)=1. Then V\",‘g can ap-
ab

=(Au?(d))+. To calculate{Au?(d)); on the scale of the _ - _
layer distance, the fluctuations of single pancakes have to B¥OXimateA, (u)~d, (u) by a & function of rangecy.

considered. This can be done in much more microscopic dé=0r single-vortex pinning, however, the correlation function
tail (see for example Ref. 42ut for our purposes we can Ag (u) can be weaklylogarithmically nonintegrable. This
consider a single pancake coupled to the pancakes in adjall only affect the thermal depinning behavitr.

Before addressing the BrG stability boundaries by using
the Lindemann criteriod) we want to discuss different pin-
ning regimes depending on the strength of the frozen disor-
der. We consider a single elastic vortex line with stiffness
£,(q) in a quenched disorder potenth(z,u) with a Gauss-
ian distribution, zero mean, and short-range correlations in
2l directions,

V(Z,UV(Z',U") = yEa,8(2—2') A (u—u'). (33

cent layers by a harmonic potentigl(1/d)Au?/d, and use A convenientpinning strength parametef (see Ref. Lis
&)(1/d)=gqs3 from Eq. (16) (where we neglected logarith- defined by the ratio of the mean-square pinning energy
mic correction&’ in u). We obtain Edin(£c)=v&apé. for a small line element of length=£;
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and with typical displacement=¢,;, and the square of the in at much lower temperature§ {,<T.), the temperature

corresponding tilt energi(£.) =eo82E2y £c=€obe dependence through the microscopic parameter§ plays
an important role in lowF, materials(NbSe where the de-
S yggbgc 34 pinning temperature essentially coincides with
—= . 34
€ (Sofc)z

. . . A. Weak collective pinning
It should be noted that this expression Imascorrection fac-

tors (1—b) at high fields becausexf2; =25, wheref ;, is
the pinning force exerted by a single point defettthere-
fore corrections due to the replacemeqt—zo=¢co(1—b)
in Eq. (34) cancel.

In a layered material one can consider the analogous e
ergies for a segment of length=d, i.e., the mean-square
pinning energyE>;,(d)=U} with the pancake pinning en-
ergy

Within weak collective pinning theory the central cross-
over length for a single-vortex is theollective pinning or
Larkin length L. which is defined as the length scale at
which (Au(L.))?>=¢2, at low temperatures. On smaller
r§_cales perturbation theory applies and the disorder potential
can be expanded into random for¢&¥-). In this regime the
roughness exponent i&r=3/2, i.e.,(Au(L))?><L>. Seg-
ments longer thah., on the other hand, explore many al-
most degenerate minima of the pinning energy landscape. In

U :(y§2bd)1/2 (35) this so-called random manifoldRM) regime we use the es-
P é timate {ry~5/8 for the roughness exponéfit® Note that
and the square of the corresponding tilt eneigy; (d) slightly different estimates fofr,, have been used in previ-
:s|(1/d)§§b/d:so(sz+ sg)ggb/d, see Eq(16). Using this ous Lindemann analysis; different estimates are discussed
we define an analogoudayered pinning strength parameter theoretically in Ref. 50. References 26 and 27 implicitly use
Sy as {rv~1/2 (from a variational replica approagiRefs. 28, 29,
31, and 32 us€ru~3/5, and Refs. 25 and 30 usgy
U,zJ ~5/8 which gives practically identical results {g\~3/5.
0q= > 2 .2 412" (36)  As pointed out in Sec. IV we only need to consider single-
[20(e”+ &) ar/d] vortex fluctuations with the nondispersive anisotropic Jo-
From the definitiong34) and (36) it is clear that collective ~Sephson stiffness and fluctuations of single pancakes on the
pinning theory app"es to weak pinnir@agl and 5d<1 scaled if we are Only interested in the upper branch of the
Whereas the former condition is usually fulfilled both in low- order-disorder transition between BrG and amorphous VG
T. materials such as NbSe and anisotropic HTSC's such a@hase. . _ _ . _
YBCO, the latter condition is violated in layered HTSC's ~ For pinned single vortex lines with the anisotropic Jo-
with strong disorder, e.g., in BSCCO. We will call pinning Sephson stiffness we have at low temperatures the usual an-
with 5,>1 strong pinning Experimental estimates for the iSotropic collective pinning length
pinning strength can be obtained from measurements of the
(single-vortex critical current j. using the relationj, -1
=jo(8/e)?® where jo=ceqlé, P is the depairing '—czsfab<g) (39)
current! Due to their larger anisotropy and the intrinsic dop-

ing typical values for the pinning parameiéfe are usually \yhich hasno correction factors (£ b) at high fields exactly
higher in the hight. materials YBCO and BSCCO. |ike /5. The displacement fluctuations are given by
Throughout this paper we assume valulg~10"2 for

YBCO (corresponding toj.~10" Acm 2) and much RE

smaller valuess/e~10"° for the low-T. material NbSe (AU(—L»szgb(—) for L<L,, (40)

(corresponding tg./jo~10"°, see Ref. 4% both well in the Lc

weak pinning regime. For BSCCO we find indeed strong

pinning 84~10*>1 using an estimate) ,~10 K (these val- L\ 54

ues correspond té/s~0.03). (AU(L)>2:§§b(L—) for L>L,. (41
There are two basic microscopic pinning mechanisshs, ¢

pinning from variations in the mean free path afit. pin-

ning from variations inT., which give rise to a different

temperature dependence &fe. Without going into details

here it is found™! that

There are two important crossovers upon increasing the dis-
order strength, the crossover from bundle pinning to single-
vortex pinnind if L. decreases below the single-vortex

length L, set by the interaction between vortices and the

5%(1—1)32 (8l pinning (37)  crossover from weak collective to strong pinnind-if drops
' below the layer spacind and we have to consider the strong
s(1—t)"¥2 (5T, pinning (39  Pinning of individual pancake vorticés.
c .

At higher temperatures the disorder gets effectively weak-
Whereas for highr, materials(YBCO, BSCCOQ the thermal ened by thermal fluctuations within the pinning energy land-
smearing of the pinning energy landscape above the depirscape as soon g u?(L.))t=&2,. This happens at the an-
ning temperaturd g, is much more important because it setsisotropic depinning temperature
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YBCO
BSCCO

(42 1

S 1/3 b
Tq p=¢&é& ofab .
single vortex
pinning

above which an exponential increase of the pinning length
sets if#® 1-h~ (/e N\

bundle
po @ bsv~(6/3)2
Le(M=Lc=" e(MTap) (43 NP
_ N
with a numerical factorC and an exponent. For point a= b~ _2ln(K;18—1/3)
disorder with an integrable disorder correlation function — i > O/e

-3 3
A; (u) one finds@=3,"** and the numerical factoC « G 0.008

=32/m has been determined in Ref. 46. For a weakly non- FIG. 4. Schematic pinning diagram in thes plane showing the
integrable functionAgab(u), however, as in the case of single-vortex pinning fieldg, at low temperaturegthe dilute re-

single-vortex pinning it has been shown in Ref. 45 that thegime is enlarged Due to their larger anisotropy typical values for
exponential growth of the pinning length due to thermalthe pinning parameted/s are usually higher in the highz mate-
smearing is slightly modified in the temperature raﬁ'g,g rlals YBCO and B_SCCO and lie in the_ single-vortex pinning regime
<T<Tgpln  where an exponent=1 is found whereas the (right hatched _reglo)_n They are lower in t_he _Iovﬂ'—c materlals such
precise value of is unknown. The exponent=3 as for an as NbSe and lie typically in the bundle pinning regitfedt hatched

: . ion. The lineb,(5) shows the amorphization transition line in
integrable disorder correlator only holds above the temper region ot : A
ture Typlnk. The displacement fluctuations for>L (T) be- “ihe dense regime as described by €5 for bundle pinning and

Eqg. (61) for single-vortex pinning. For very weak pinning/e
come <cf as in NbSe this line is in the bulk pinning regime, for stronger
disorder as in YBCO and BSCCO it lies in the single-vortex re-

5/4
) ] (44) gime.

R RS
ab po Lc(o) LC(T)

using Egs.(10) and (39). This equation produces two
branches for the single-vortex pinning fiddd, . For b<1,
where the factor (3 b) can be neglected in E€45), we find

Note that thermal depinning plays no role in IGw-materi-
als wheresgyé,,~1000 K atT=0, and the depinning tem-
perature practically coincides wifh. if the temperature de-

[ 2/3
pendence of the microscopic parametegs andé&,;, is taken fort.thtlefllol\lcxi/elr_bt)rinlc: HJSF]oc(éif]) f atgg clos;z o thle tjpdp'er
into account and y, is calculated self-consistently from Eq. critical fie » Where the Tactop can be neglected In

(42). Eq. (45), an upper branch 1bl = (&/¢)?? see Fig. 4. For
8le <k 3 the lower branch enters the dilute regime \ 5,
wherebl, =« 2In"%(x 15 *3); this is the generic situation
for NbSe. Foréd/e>(87) %?~0.008 there is only single-
For Lo<L. pinned vortices on the scale of the pinning vortex pinning; typical disorder strengths for YBCO and
length are already interacting and the collectively pinned obBSCCO have similar values.
jects are vortex bundles rather than single vorticghe re- Values for the pinning parametei/e are higher in the
gime Lo<L. is calledbundle pinningregime. For our pur- high-T. materials YBCO and BSCCO and the amorphization
poses bundle pinning simply means that on the scale of thgansition line atT=0 will lie in the single-vortex pinning
single-vortex length, single-vortex displacements are stilkegime whereas they are much lower in the rather isotropic
treated correctly by the perturbative RF regi(€). On the  |ow-T, materials such as NbSe where the amorphization
other hand, fo,>L . the pinned objects on the scale of the transition line typically starts out in the bundle pinning re-
pinning length are single-vortex lines rather than bundlesgime atT=0, see Fig. 4. For lovir, materials the lower
The regimel o> L. is therefore callecsingle-vortex pinning  pranch of the single-vortex pinning boundasy, is usually
regime. In this regime the RF regime does no longer applyn, the dilute regimea >\ ,;, due to the small disorder strength
on the single-vortex scale, but we rather have to apply the \hereas in the higfi-, materials it is in the dense reginae
findings (41) for the RM regime. For the following discus- <) _ . This is the experimental situation that we will assume
sion of different materials it is crucial to know thengle-  throughout the following discussion of the different materials
vortex pinning field i, where the crossover between single- gnd that is sketched in Fig. 4.
vortex and bundle pinning happens within the pinning  The temperature dependence of the libgsis rather dif-
diagram in theb-& plane. For our purposes, we can focus theferent depending on whether the depinning temperafgge
discussion on the dense regime 5, in the dilute regime  js much smaller then the critical temperatdfg as in the
single-vortex pinning is dominant because interactions behigh-Tc materials YBCO and BSCCO or whether it practi-
come exponentially weak. At=0 the conditionLo=Lc for  cajly coincides withT, as in the lowT, superconductor
bs, gives NbSe, see Fig. 5. Therefore the thermal weakening of disor-
o3 der above the depinning temperature, which gives an expo-
b, (1-b )sz(—) (45) nential increase of the pinning length, is the dominant effect
SV SV for high-T. superconductors. The temperature dependence

B. Single vortex versus bundle pinning
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NbSe , YBCO,BSCCO 8l FIG. 5. Schematic pinning diagram in thet
b 1B t1-0 b plane showing the temperature dependence of the
\ single-vortex pinning fieldbg, for &1 pinning
I'I (solid lineg and 8T, pinning (dashed lings For
i o the highT, materials YBCO and BSCCO ther-
by (e . _w,‘“,@y,’ mal smoothing above the depinning temperature
A \ e . Tqyp governs the temperature dependenceHf
=i o 4 For the lowT_ material NbSe the temperature de-
hyric2inGe I3 ™) singte vortex 51 " < T pendence of the pinning parameté(t) itself

pinning ; I :

Tyl Ta T, [Egs.(37) and(38)] is most relevant.

single
1 =="vortex
pinning

1T single vortex pinning"i"ﬁ*----

. 173
1-bo (5e)” b (-t

/3
1-h,~ e < oM,
I-he b
bundle
pinning

a=)

through the microscopic parametdBY) or (38) can be ne- of pancake vortices becomes particularly interesting because
glected for these materials as longTag /T is small. In this  we cross over to a regime where pinning is no longer a small
situation we have to use the conditibp=L(T) with L.(T) perturbation but we havgtrong pinningof pointlike pancake
from Eq. (43) above the depinning temperatufg,. This  vortices. To calculatd Au?(d))+ on the scale of the layer
gives in the dense regime distance, we consider as in Sec. V B a single pancake with
s , displacementi coupled to thze pancakes in adjacent layers by
é Ty _ « a harmonic potentiat,(1/d)u</d, but with an additional pin-
bs,(1—bg)=2m g) (Tp) e 2C(TTap (46 hing potentialVy(u) =dV(0u).

Using an Imry-Ma argume one can estimate
from Whicr? we delrive an exponentially decreasing lower()? for strong pinning §4>1) at low temperatures as fol-
branch by, (T) =bs, (0)(Tqp/T)*exf —2C(TMM4)“1  [bY  lows. A vortex with displacemen can explore\'=u?/£2,
neglecting factors of (+b) in Eq. (46)] and an exponent- pinning sites with statistically independent disorder configu-
ially increasing upper branch -1bg,(T)=[1-bg,(0)]  rations. Doing so it can gain a pinning energ;,(u)

X (Tgp/T)%exy —2C(T/Typ)*] [by neglecting factors ob in ~—U,In"¥u? ¢?) that can be determined from the condi-
Eq. (46)] as shown in Fig. 5. At te(nperatu'res slightly aboveyjgn NIE‘;L“(”)dE p(E)~1. In the Imry-Ma argument the to-
Tgp the onver branch _entelrs the dllgte regime \ - Note tal energy E(u)=Epm(u)+(1/d)s|(l/d)u2 is minimized.
that for highT, materialsbg,(T) typically starts out in the g ontimal disorder-induced displacement fluctuatioi
dense regime fol=0. The thermal weakening of disorder o ground state is
aboveTg, has been neglected in Ref. 32 although high-
materials with potentially rather lowy, have been consid- du U2
2 p -2l

ered. _ U=~ ) In ( 2). (47)

On the other handl,/T, is no longer small for the low- ! &
T superconductors wheflg,/Tc~1, and in these materials Solving the last equation iteratively yields
the temperature dependence of the pinning length comes ex- o
clusively through the temperature dependence of the pinning (u)y?=¢2, 654An=Y2(5%?). (48)
strength(37) or (38). Using this in Eq.(45) we find b!sv(t)
«(1-t) and 1-bl (t)«(1—t) for & pinning andby,(t)
x(1—t)" 13 and 1- Ib's,)(t)oc(l—t)*lf3 for 8T, pinning in Eo=—U,In*3( 512 (49)
the dense regime. b, (T) starts out in the dilute regime for _ _
T=0 the lower branch for 8l pinning is blsU(T) whereas the tygncal elastic energy sets an energy $¢ale
kA" teY(1—t)" 2] and stays in the dilute re- = (1/d)e(1/d)u’,
gime, see Fig. 5. FofT . pinning the lower branch will enter
into the dense regime at a temperaturet® (8/¢)%«° in
this case, see Fig. 5. Note that these results are very differemthich is the typical size of elastic energy barriers between
from what has been obtained in Ref. 31 where factors (Idifferent metastable states.

?ﬁ,41,51,52

The corresponding ground-state enekgy=E;,(u) is

U*=UIn" %55, (50

—b) in the expression fok, have been neglected. Equation(48) is a nonperturbative result which holds for
(uy>>¢2,, which is exactly the conditiod,>1 for strong
C. Pinning of pancake vortices pinning. Otherwise perturbation theory applies and one finds
On the smallest scale in a layered superconducted T2
Y " (U)re=E24dg. (51)

we can no longer discuss fluctuations of vortees Then

we have to consider the relative displacememsAu(d) which is the perturbative RF result for weakly pinned pan-
between single pancake segments of the vortex line in twaake vortices.

neighboring layers and discuss the pinning of single pancake Thermal fluctuations weaken the pinning and lead to ther-
vortices?®41°152For |arge disorder strength and weak Jo-mal depinning of pinned pancakes. The characteristic depin-
sephson coupling as it occurs typically in BSCCO, it is pos-hing temperatures, however, are different for the cases of
sible thatdy>1, which is equivalent td..<d as becomes strong pinning §4>1) and weak pinning §;<1). For
clear from the definitio{36) of &4. In this case the pinning strong pinning the relevant depinning temperature is set by
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the typical barrier heightJ*, and the depinning happens of the order-disorder transition can be written as

in the temperature interval* <T<|E,|.**®? For weak

pinning the pancake depinning temperatureyJy is deter- (Au(Lg))?=cfa?, (57
mined in the usual way by the conditigm?)= ¢, which

gives where we used Eq9). As for thermal fluctuations we only

need to consider displacement fluctuations of single vortices
T = UYd)VE2 Jd=U s 12 2 on scalesL.<Lo using the_ results_ for plnn(_ad smgle vortices
ap.a=#1(1/0)€3/d=U, 0 (52) introduced in the preceding section. In this section we want
For weak pinning the resulting thermally weakened displaceto consider the cas&=0 and study the order-disorder or
ments aré' amorphization transition link;(8) as function of the pinning
strength only. The resulting phase diagrams intih& plane

—3 2 are shown in Fig. 6 for NbSe, YBCO, and BSCCO.
(U)*RE~ 5p94

1" )2 (53)
= .
Tap,d

. . . A. NbSe, YBCO
For strong pinning the resul#d) is valid up to a temperature
T=U* at which the thermal energy becomes sufficient to At T=0 the anisotropic type-Il superconductors YBCO
overcome barriers between minima of the pinning energyand NbSe have essentially identical phase diagrams in the
landscape. Thereforgl* is the depinning temperature for b-& plane if pinning is weak enough that a vortex is collec-
strongly pinned pancake vortices. FdF <T<|E,| there is  tively pinned over distancels;>d and the layered structure
a crossover region where a modified random force result apf YBCO can be neglected.
plies that decreases exponentially with increasing tempera- For weak pinning in the dense regirae<\ ,, we use the
ture before it crosses over to the thermally weakened randomweak collective pinning theory and the anisotropic stiffness

force result(53):** from the Josephson coupling, i.e., E40) for bundle pin-
ning or Eq.(41) for single-vortex pinning to evaluate the
[, T\7? T left-hand side(lhs) (Au(L,))? of the above Lindemann cri-
Eapda| 1+ | & _ZU_* terion. For very weak pinning the transition line will be in
- the bundle pinning regime where we usg=ea(1—b) 2
2 * )
(WRe=q  for U*<T<|E,| (54 from Egs.(10) and (40) to obtain
Tapd|? 3 —1p
§§b5d( ' ) for T>[E|. 7 . [Lo)"_ o[ P Cy-af
\ T Bu(Loy=&| | =2’ 5, @-b .

What remains to be considered for strong pinning are the (58)
displacements on scales larger thani.e., the casee>d  This result is interesting because it means that the Linde-
>L.. At low temperatures, we are in the RM regime at allmann criterion(57) gives a order-disorder transition line
scalesL>d such that b:(8) leading to areentranceof the amorphous VG within
the dense regima<\,, as long as we have bundle pinning.
We find upper and lower branches of the reentrant transition
line by( ),

2{rMm
) : (55

L
BwL={aw@) 5

where (Au?)(d) is given by Eq.(48), and {gy~5/8. This s —ag 8122
result stays valid up to temperaturdé where the strongly 1—-b{=(2m)"c_ (;) ,
pinned pancakes thermally depin. At this temperature the
thermally increased pinning length grows beyond the layer 52
spacing L,(U*)=d, increases(double exponentially for b{szc[“(—) , (59
U* <T<|Eg|, and crosses over to the weak pinning result €
(43) for T>|E,|. The details of theldouble) exponential ~ which meet ab,= 1/4 such that there is no transition line in
increase ofL¢(T) in the temperature intervdl* <T<|Eo|  the bundle pinning regime for disorde#s>0.1%?, see
for strong pinning are given in Ref. 41. The displacements-ig, 6. Using the conditioh,=L for b, , one finds that the
(Au)*(L) for U* <T<|E| are as in Eq(44) given by order-disorder transition line,(5) intersects the single-
5/4 vortex pinning linebg,(8) for c2a?=(Au(L,))?= £2, and
(Au)z(L)z<Au2>T[LC(T)](—) (560  thus leaves the bundle pinning regime at a fiejer 2mc?
Le(T) and a disorder strengtbvs~cﬁ, see also Fig. 4. Therefore,

but with the altered strong pinning behavior of the pinningthe pezculiar reentrant behavior can only be f?/lzmd thpr
lengthL4(T). For T>|E,| Eq. (44) applies again. =2mc{<1/4 or Lindemann numbers <(8w) “>~0.2.
Note that our results for weak pinning in the dense regime

are very different from the results of Ref. 31 as we treated
high-field correction factors (% b) correctly. As indicated in

In the presence of quenched point disorder the LindemanRig. 6, NbSe typically has a very small pinning parameter
criterion (4) for the stability of the BrG and thus the location such that the upper order-disorder transition field is given by

VII. ORDER-DISORDER TRANSITION AT T=0
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FIG. 6. Schematic phase diagram for NbSe and YBCO inkth#e plane, and for BSCCO in thb-54 plane (the dilute regime is
enlarged, the reentrance of the amorphous VG at very low fields is shown for completeness but not discussed)inTihe texgram also
contains the single-vortex pinning fielld, marking the boundary between single-vortex pinning and bundle pinning, cf. Fig. 4. The hatched
regions indicate a range of realistic disorder strengths for each material, cf. Fig. 4. The BrG is stable in the dark shaded regions. For NbSe
and YBCO the order-disorder transition libgis given by Eq.(59) for bundle pinning and Eq61) for single-vortex pinning. Note that in
the bundle pinning regime there can be an upper and lower branch leading to a reentrant amorphous VG phase. For YBCO with strong
disorder we havé .<d, and the upper branch of the order-disorder transition line in the single-vortex regime is given (6%)Emnd (68).
For BSCCO the order-disorder transition is given by E§9) and(70). The decoupling transition liney., which is the continuation of the
order-disorder transition line above the 2D crossover figlgl.

the bundle pinning result59). The lower transition field is has been obtained in all previous Lindemann analysis

then located within the dilute regime>\,,, and not given  which differ only in the estimates used fdg, -

by Eq. (59). On the continuation of the upper branch of the order-
For stronger disordes/e>c?, as it is typical for YBCO, disorder transition line into the dilute lima> X\, fluctua-

there will be another transition line in the dense regimetions on the scaley=¢eA\,, govern the displacement fluctua-

which lies in the single-vortex pinning regime at magnetictions in the Lindemann criterion57), i.e., (Au(Lg))?

fields bt<27TCE, see Fig. 6. This part is found from Egs. =(Au(e\,p))?. Only for single-vortex pinning disorder is

(41) and(10), strong enough §/&>c2¥°«%9) that the upper branch of the
L\ 5 b |38 515112 amorphization line lies in the dilute regime. Thus we use
Al N2 2 | 2O a2 2 _ 58 ¢ Egs.(41) and(10) to obtain
<AU(L0)> gab( LC) : 277) (1 b) (8 . 5/4 5/12
©9 <A‘u(s‘xab>>2:§2b(“ab) :azik—w(f)
a l
For single-vortex pinning, the Lindemann criteri(sv) only Le 2m &

gives an upper branch of the order-disorder transition line (63)
b(6) at which gives with the Lindemann criterion the upper branch
of the order-disorder transition in the dilute regime,

5\ —10/9
bi=2 770&6/3( —) , (61 ~5/12

& b;*zzwcfx—f""‘( —) . (64)
where we used + b<1 becausé,<2wc?<1 in the single- ¢
vortex regime. We conclude that there will be a reentrance of
the amorphous VG and the BrG as function of the magnetic B. YBCO
field for disorder strengthe?< /e <0.1%?2, see Fig. 6, if The YBCO phase diagram in the-8 plane is qualita-
the Lindemann numbeg, is sufficiently small. Only the re- tively different from the NbSe diagram only for such strong
sult (61) for the order-disorder transition line in the single- disorder that the collective pinning length drops below the
vortex pinning regime, which can be more generally writtenlayer spacingL.<d, see Fig. 6. This happens fa#/e
as >(e&ld)3=(eleqk)® [or 64=(blg)(keqle)®>1, see Eqs.
(34) and (36)] in the single-vortex pinning regime; for ge-
neric disorder strengths in YBCO this also happens before

the order-disorder transition line enters the dilute regime as

S\ ~28rmB(1—rM)
) : (62

b?"’Cil(l_gRM)(g
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indicated in Fig. 6. FolL.<d we have to use our results bgzzwcfggm, (70)

about strongly pinned pancake vortices from Sec. V116

particular, we have to use E5) together with Eq(48) to _ _ _

calculate the Ih¢Au(Lo))? in the Lindemann criteriofi57). which agrees with the corresponding result of Ref. 28. For
In the dense limia<\,, the Josephson coupling and thus tYPical valuesx~200 for BSCCO it is clear that the order-

fluctuations on the scale, dominate the displacements. Ne- disorder transition line intersects the 2D crossover fiBlg

glecting logarithmic corrections we find from Eq§5) and =27« 2 in the strong pinning regime faf;=c{«* (which
(48), usually entailsé4>1). Note that typical pinning strengths
for BSCCO have similar values, as indicated in Fig. 6. At
sl Lo 5/4 o[ b M eq \ VA 5|12 smaller disorder strengths the BrG phase will be stable up to
(Au(Lo)*=&wds | 5| =25 |+ o a decoupling fieldby(5,) where the FLL decouples into 2D

(65) pancake lattices. As already mentioned there is no stable 2D
. _ _ BrG phase and we thus conclude that at the decoupling field
which gives for the upper branch of the order-disorder trang|so the in-plane topological order is lost and we have a

sition in the dense limi? direct transition into a 2D amorphous VG. If the decoupling
transition is also described by a Lindemann criterion of the
—-2/3 S —4/3
u 16/3 &d form
bi'=2mc™ —« — . (66)
£ t]
Upon increasing the disorder strength, the order-disorder (Au(0d))?=c?a? (72

transition line enters the dilute limit [for /e

>cl(elegk) V%%, see Fig. 6. In the dilute limit, fluctua- _
tions on the scald j=&\,, cause the strongest displace- as proposed in Ref. 51 the same formy(ég and(70) apply

- ; to the decoupling transition linby.(J84), which is the con-
ments, for which EqS(SS) and (48) yield tinuation of the order-disorder transition line into the regime

Ehgp) above the 2D crossover fiel,;, see Fig. 6. It should be
(Au(s)\ab)>zz§§b5$’2( Ta> stressed that the phase diagram of BSCCO inbthiplane
looks qualitatively different from those of YBCO and NbSe
b (eq |Y4 S5\ 12 in the dense regima<\\,, at higher fields as the peculiar
zazﬁ(;:c) K5/4(g) (67) reentrance of the amorphous VG phase is absent for BSCCO
because fluctuations on the scale of the layer spagiage

and hence for the upper branch of the order-disorder transAominating for this material.
tion line in the dilute limit

—1/4 —-1/2
& 1) VIIl. ORDER-DISORDER TRANSITION AT T>0
b{JZZWCﬁ<—dK> K5/4( ) : (69
& € In this section we discuss the influence of thermal fluc-

This case has been previously studied in Ref. 28, the resulfgations on the phase diagrams we derived in the preceding
of which agree with Eq(69). section forT=0. To do so we choose a realisfie=0 value
for the disorder strength/e or 54 somewhere in the hatched
regions of Fig. 6. The results for the phase diagrams of
NbSe, YBCO, and BSCCO in thet plane are summarized

The strongly layered BSCCO has a weak Josephson coin Fig. 7. Similar to what we found already for the single-
pling at low temperatures, and the 2D crossover figlg is  vortex pinning fieldbg, there are essential differences in the
slightly below the boundary to the dense regime according téemperature dependence of the order-disorder transition line
Eq. (21). Consequently, the upper branch of the 3D amor,(t) depending on whether the depinning temperaliggis
phization transition line lies entirely in the dilute regime much smaller than the critical temperatdteas in the high-
where fluctuations on the scadlg=d dominate on the lhs of T_ materials YBCO and BSCCO or whether it practically
the Lindemann criteriori57), (Au(Lo))2=(Au(d))?. coincides withT, as in the lowT, superconductor NbSe. In

In a strongly layered material such as BSCCO it is morethe highT, materials the thermal weakening of the disorder
convenient to use the parametdy, see Eq.(36) for the  which gives an exponential increase of the pinning length in
disorder strength and discuss the order-disorder transitioRq. (43) is by far the dominant effect. On the other hand, in
line in theb-54 plane. For weak pinningd;<1) we use Eq. the low-T, materialsT, is very close tdl; and the tempera-
(51) to calculate for the upper branch of the order-disordetture dependence through the microscopic pinning parameters

C. BSCCO

transition line in the dilute limit (37) or (38) is most important.

bi=2mclo,t. (69) A. NbSe
On the other hand, for strong pinning{>1) we use Eq. In a low-T. such as NbSe we typically have weak bundle
(48) to obtain pinning at the order-disorder transition &t=0, and the
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FIG. 7. Schematic phase diagram for NbSe, YBCO, and BSCCO ib-thglane.(The dilute regime is enlarged, the reentrance at very
low fields is shown for completeness but not discussed in the B¢ BrG is stable in the dark shaded regions. The amorphous VG phase
occurs in the light shaded regions. The diagrams contain both the thermal melting,lifresn Fig. 3 and the order-disorder transition lines
b,. For YBCO and BSCCO the order-disorder transition line is shown for two different disorder strengths; for the smaller disorder strength
the stable BrG phase extends into the lighter shaded region. For NbSe the temperature dependence of the order-disorder transition line stem:s
from the temperature dependence through microscopic parameters. The stable BrG plagepfoning is indicated by the dark shaded
region, fordl pinning it extends also into the lighter shaded region to the right. For YBCO and BSCCO the temperature dependence mainly
stems from thermal smoothing above the depinning temperagyeFor YBCO the order-disorder transition line is temperature indepen-
dent belowT g, and given by Eq(73) betweenTy, andT,, where it intersects the melting line and the single-vortex pinningbipe For
BSCCO the order-disorder transition line is generically temperature independent, i.e., horizontal and intersects the meltifig, line at
=U* (t*=U*IT,).

order-disorder transition fieldsx{"I are given by Eq(59) at increases with temperature foil . pinning the topology of
T=0. Thermal depinning from disorder can be neglectedfhe phase diagram in thet plane is the same as that in the
and the temperature dependence of the order-disorder trandi-o plane, as can be seen in Figs. 6 and 7. In particular the
tion line comes exclusively from the temperature dependencamorphous VG and the BrG are reentrant as a function of the
through the microscopic parameters entering the pinningnagnetic field in the dense regime also in tx plane.
strength 8, i.e., Eq.(37) or (38). Then, the order-disorder Using Eq.(59) we find within the bundle pinning regime the
transition line in theb-t plane is obtained from Eq$59),  two branches # b!(t)e(1—t) Y andbj(t)<(1—t) "% In
(61), and(64) simply by substituting the corred(t) accord-  the single-vortex pinning regimeg6l) gives by'(t)«(1

ing to Eq.(37) or (39). —1)%°, Finally, the upper branch of the order-disorder tran-

For 6l pinning the disorder strength decreases with in-sition line enters the dilute regime and with E@4) we
creasing temperature (1—t)¥2 which gives together with obtain bY(t)e(1—t)524 These results are summarized in
Eq. (59 an upper branch of the order-disorder transition linerig. 7.
which stays in the bundle pinning regime and has a tempera- Qur results for the case afT, pinning might give an
ture dependence -1b;(t)<(1—t). Therefore, the order- explanation for the experimental phase diagram measured in
disorder transition line approachles- 1 with increasing tem- Ref. 23 where a reentrant amorphous VG phase was found in
perature and has to intersect the melting lngt) where it  the dense regime which does not intersect with the melting
terminates, see Fig. 7. Because we used here the Lindematfine. This is exactly what we find fobT, pinning in the
criterion based on the scenario of two distinct instabilities forbundle pinning regime, see Fig. 7. We also want to point out
thermal and quenched fluctuations the phase diagram lookkat our results are markedly different from what has been
qualitatively as in Fig. 1 on the right. For a cooperativeobtained in Ref. 31 where high-field correction factors (1
mechanism the transition line will be lower andtintersect —b) have been treated incorrectly.
the melting line as on the left in Fig. 1.

For 6T, pinning the situation is rather different because
the disorder strength increases with temperaturél
—t) Y2 such that the BrG becomes always unstable suffi-
ciently close toTl ;. and the order-disorder transition line does  For the highT, materials YBCO and BSCCO the thermal
not intersect the melting line. Because the disorder strengtemearing plays a much bigger role than the temperature de-

B. YBCO
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pendence through the microscopic parameters contained in
the pinning strength. For YBCO effects from the layered

structure can be neglected unless at rather high disorder

2 1/
szpo(Eln[(6/8)1’3c[1]) , (74)

strengthd/e > (s £/d)® or 54>1 whereL .,(0)<d. However,
typical disorder strengthé/e for YBCO are bigger than for

NbSe(due to the intrinsic doping of HTSC and the increased

anisotropy and the order-disorder transition fiel{ is lo-

cated within the single-vortex pinning regime at low tem-

peratures.

T -2
X ) . (75)

-2/3
P _x
bx_zwcL(«?) (po

For L (0)>d collective pinning theory applies and the The temperaturel, is only slightly aboveTg, due to the
thermal smearing sets in above the depinning temperatugxponential increase of the upper branch of the order-

Ty4p- For T<Ty, the order-disorder transition line{(t) is
horizontal and given by Eq61), see Fig. 7. In highF; ma-
terials Ty, is typically well belowT, . Taking typical values
for YBCO as an anisotropic highz superconductor with
strong Josephson couplingh,,~1500 A, £~1/5, d
~12 A, and a disorder strengife~10"? [corresponding
to a critical currentj,=jo(8/e)?*=10" Acm 2], we have
weak pinning L(0)>d] and findT,=40 K for the depin-
ning temperature, which is indeed well beld@w~90 K. For
T>Tgy, we have to use Eq44) to evaluate the lhs of the
Lindemann criterion57) and obtain

LO 5/4 T 5/4
Au(L 2.2 (_) (_) ef(C/4)(T/po)“
< ( 0)> gab LC(O) po

b 3/81 b75/855/12 T 5/4
2x) PG T,

w @ (CIA(TITg®

=a

(72

disorder transition line. Using a disorder strengfe
~10 2 andc ~0.15 we obtainB,~5.6 T for the intersec-
tion field in good agreement with experimental phase dia-
grams for YBCO?? The characteristic exponentially increas-
ing upper branch of the order-disorder transition l(i7&)
above the depinning temperaturg, has also been obtained
in Refs. 25, 27, and 30.

ForL.(0)<d pancake vortices are strongly pinned at low
temperatures and the thermal smearing of the pinning poten-
tial sets in at the higher temperatuts® (50) which is the
characteristic depinning temperature for strong pinning. For
T<U* the order-disorder transition ling'(t) is horizontal
and given by Eq(66), see Fig. 7. At the temperatut&* we
find L,(U*)=d, and in the temperature interv&l* <T
<|Ep| pinning-induced displacements decreédeuble ex-
ponentially with increasing temperature according to Eq.
(56). For T>|E,| the results cross over to the above formula
(73). The details of thédouble exponential increase of the
order-disorder transition linb;'(t) for U* <T<|E,| can be
easily obtained using the results of Ref. 41 but will not be
presented here. The resulting phase diagram looks qualita-

Pinning-induced displacements drop exponentially abovéi_VEIX as for weak pinning with the slightly higher®
Tqp. therefore the thermal smearing is by far the most im-— U™ /T replacing the depinning temperatuig,, see Fig.
portant effect of thermal fluctuations. The Lindemann crite--

rion (57) yields an exponentially increasing upper branch of

the order-disorder transition line

S —10/9 T —10/3
b;.lzzﬂ_ci(i/i( _) (_) e(2C/3)(T/po)a' (73)
&

which will intersect the melting line at a temperaturg,

Regardless of whether we have strong disorder with
L.(0)<d or weak collective pinning, we find a remarkable
reentrant nonmonotonic BrG instability line if we follow the
order-disorder transition linb/(t) and after the intersection
further on the thermal melting line,,(t), see Fig. 7. This is
in agreement with experimertasvhere a nonmonotonic BrG
instability line is clearly seen for YBCO. Because we used
here the Lindemann criterion based on the scenario of two
distinct instabilities for thermal and quenched fluctuations

which can be determined from a simple argument as followsthe phase diagram of YBCO in Fig. 7 looks qualitatively as
According to the scenario where thermal and quenched fludh Fig. 1 on the right. For a cooperative mechanism the tran-
tuations cause independently instabilities of the BrG, thermasition line b{/(t) will be lower andnot intersect the melting

displacements should be of thkamesize as disorder-induced line as on the left in Fig. 1. However, also in this scenario a

fluctuations afT,, i.e., (Au?(Lo))r=(Au(Lo))2. However,
this is exactly the definition of the pinning length.(T)
above the temperatufg,, from which we conclude that,
is determined by the additional conditian(T,)=L,. This
also means that the amorphization transition llét) does

not leave the single-vortex pinning regime for thermally

weakened disorder abovg, until it intersects also with the
single-vortex pinning boundatys,(t) (46) atT,, see Fig. 7.
For the temperaturd, and the fieldb,=b(t,)=b}!(t,)
=bg,(t,) we find

reentrant nonmonotonic behavior of the resulting cuni)
is found.

C. BSCCO

For the strongly layered BSCCO several phase diagrams
in theb-t plane are possible depending on the three tempera-
turesTy, below which BSCCO has a weak Josephson cou-
pling, the 2D melting temperatuf®? , and finally the char-
acteristic depinning temperatuté*. For pancake pinning
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energiesU,, betweenU,~10 K and U,~20 K one finds
values betweel* ~5 K and U*=~10 K for the depinning

PHYSICAL REVIEW B 69, 024501 (2004

temperaturel,=U*, see Fig. 7. However, there will be no
subsequent thermal decoupling in this case but eventually

temperaturdJ* . another temperature-driven crossover to the 2D VL phase.

As for the thermal melting we will focus on the situation
Tan<Td that occurs for a realistic choice of material param-
eters for BSCCO; in Sec. VB we found estimatég

~36 K a.ndT.ﬁqulolK. Then the upper branch of the 3D |, conclusion, we have presented a comparative and com-
melting line lies entirely in the dilute regime as in Fig. 3. prehensive Lindemann analysis of the melting line and the
Typical disorder strengths for BSCCO are such that we are igtapility boundaries of the Bragg glass phase, i.e., the amor-
the strong pinning regiméy>1. For sufficiently strong dis- phization transition line for the three superconducting mate-
order 54> c‘L‘K4(>1), which corresponds th*>T§]D, rials of most intense experimental interest: the highma-
there is a genuine 3D amorphization transition Tat0  terials YBCO and BSCCO and the low: superconductor
whereas for smaller disorderdsy<c{«*, correspondingto NbSe. We find that it is important to distinguish between
U* <T§"D , we have found a decoup”ng transition that Simu'_ Sl|ght|y diﬁerent VerSionS Of the Lindemann Cl’itel’ion de'
taneously destroys topological in-plane order. pendmg on whether que_nched ci_lsorder-lnduceq and thermal

For strong disorde6d>cﬁx4 or U*>T§1D the 3D amor- quctuat_lons act cooperatively or independently in de_stroylng
phization transition field;' lies in the dilute regime at low the lattice orde(. The two Versions can actually pe linked to

. t A different scenarios for the proliferation of topological defects

temperatures and its _dlsorder dependen_ce_ls given by Eh the destruction of the Bragg glass phase.
(7.0)' Thermal fluctugtlons lead to a depinning of strongly Special attention is paid to the role of the electromagnetic
pln.ned&cakze vornceszonl}lll above the temperatifreat coupling for the strongly layered compound BSCCO and to
which (Au(d))*=(Au(d)*)7."" ThereforeU™ is also the  the gifferent mechanism of temperature dependence in the
temperature where the amorphization transition 0{€t)  pinning strength. We find that in high: materials thermal
intersects the melting line, i.eT,=U*. For all T<U™ the  smearing of the pinning potential is most important whereas
amorphization transition line runs horizontally, see Fig. 7. Injn the low-T, material NbSe the temperature dependence
particular, this excludes a reentrant behavior. The horizontthough the microscopics of the pinning mechanism deter-
order-disorder transition linkey'(t) and, after intersecting, the mines the phase behavior. Taking also into account high-field
thermal melting lineb,,(t) are monotonously decreasing corrections to the elastic moduli we obtain results regarding
with increasing temperature. This is unchanged also if wehe phase diagram of the loW; material NbSe which are
use the slightly different Lindemann criterion based on amarkedly different from earlier findingsand which give a
cooperative mechanism of thermal and quenched fluctugeentrant amorphous VG phase in the dense regime very
tions. Indeed, experimental signs for a nonmonotonic BrGsimilar to what has been observed in recent experinfénts.
instability line are much weaker for the BSCCO
compound’! and only recently a small “inverse melting”
effect has been confirmed experimentafifBecause the non-
monotony is much smaller in BSCCO than in YBCO this
effect might be beyond the scope of the Lindemann criterion  The authors thank A.E. Koshelev and T. Nattermann for
for BSCCO. Above the order-disorder transition libg(t)  numerous discussions on the subject. J.K. thanks the Ar-
we can speculate that a 3D amorphous VG phase will bgonne National Laboratory for hospitality and the Deutsche
stable up to the thermal decoupling fiddg(t) that we dis-  Forschungsgemeinschaft for support through Grant No. KI
cussed in Sec. V B. Aby(t) the FLL decouples by thermal 662/1 during early stages of this work. This work was sup-
fluctuations into 2D pancake lattices which are in a 2D amorported by the U.S. DOE Office of Science under Contract
phous VG phase as there is no stable 2D BrG phase. The 2Ro. W-31-109-ENG-38.
amorphous VG phase might be separated by another dynami-
cal crossover, in which the dislocation mobility increases by
thermal fluctuations, from the 2D VL phase but both phases
have no in-plane topological order.

For somewhat weaker disorder<;<cix* or U* For the lowT. compound NbSe we use the following set
<Tﬁ]D a slightly different sequence of transitions occurs as abf material parameters:
low temperatures the BrG phase is stable up to a decoupling

IX. CONCLUSION

ACKNOWLEDGMENTS

APPENDIX: MATERIAL PARAMETERS AND LIST
OF SYMBOLS

field by., which lies in the dense regime and the disorder T.~6 K,

dependence of which is also given by the right-hand side of

Eq. (70). As there is no stable 2D BrG phase the FLL de- e~1/3

couples directly into the 2D amorphous VG laf.. If the '

locus of this line is as well determined by a Lindemann

criterion such as Ed71), we obtain as for the amorphization £ap~100 A,

transition line a temperature-independent, horizontal transi-

tion line by(t) that intersects the thermal melting line at a Nap=2000 A, (A1)
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TABLE I. List of symbols. Our notation is mostly adapted from Ref. 1.

€44(K.q), Ces
d

Eo

)

2

e=Nap/\¢

&d

()
802(@0/477)\:111))2
Gi

Gisp

Je

Jo

)\em

)\ab

FLL spacing

Decoupling transition field

Thermal melting field

Single-vortex pinning field

Order-disorder or amorphization transition field
Intersection field ob,, and b,

2D crossover field

Pinning strength parameter

Lindemann number

(Dispersive FLL tilt modulus, FLL shear modulus

Layer spacing

Pancake ground-state energy

Pinning strength parameter

Layered pinning strength parameter

Anisotropy ratio

Layered anisotropy

(Dispersive single-vortex line tension

Characteristic line energy

Ginsburg number

2D Ginsburg number

Single-vortex critical current

Depairing current

Scale for onset of electromagnetic dispersion

Effective magnetic penetration depth

Collective pinning or Larkin length

Dispersion length scale

Single-vortex length

Crossover temperature to strong Josephson
coupling

Depinning temperature

Pancake depinning temperature

Thermal melting temperature

2D melting temperature

Intersection temperature of, andb;,

Pancake pinning energy

Pancake energy barrier

Eq€45) and (46)

Eq21)
EGJ

Eqd)
EqLl)

40)

Eq84), (37), and(38)

E£86)

Eq18)
Eq12)

Eq23)

Ef8) and(15)
Ea4)
Eq$39) and (43
EqL7)
Eq6)
Eq. (19

E@2
E5R)

E€B5)
EGO)
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which leads tok~20, Gi~=1.7x 10 °. NbSe has no layered
structure which can be formally considered as the ligmit
~0. Pinning is typically weak withs/e ~10"°,

For the strongly layered highz material BSCCO we use

! A T.~100 K,
For the moderately anisotropic high-compound YBCO
we use
e~1/200,
T.~90 K,
e~1/5, €ab~100 A,
£a~15 A, N ap=~2000 A,
Nap=1500 A,
d~15 A, (A3)
d=12 A, (A2)

which leads to k~200, Ghp~0.096, T?P~10K, &4
which leads tok~100, Gi=10 2, and £4~0.008<s. A  ~0.0075>¢, andT4~36 K. A typical value for the pinning
typical pinning strength i$/e~10"2. parameter is5;~10*>1 corresponding tdJ,~10 K.
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