Pinning Properties and Thickness Dependence of J_c in *ex-situ* PVD-BaF₂ Films

Ron Feenstra

Albert Gapud, Patrick Martin, Yifei Zhang, Eliot Specht, Jim Thompson, Anota Ijaduola, Dave Christen Oak Ridge National Laboratory

Matt Feldmann, Xueyan Song, David Larbalestier University of Wisconsin

Terry Holesinger, Leonardo Civale, Boris Maiorov Los Alamos National Laboratory

Anna Palau, Teresa Puig, Xavier Obradors Institut de Ciencia Materials de Barcelona, Spain

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Overview

- Vortex pinning
 - controlled variations in the angular dependence of $\rm J_{c}$
- Thickness dependence of J_c
 - role of meandering GBs

Study of PVD-BaF₂ YBCO and comparison to MOD reveals the common characteristics of *ex-situ* processes

- WDG enables this kind of study by broad expertise in different processing and coordinated effort
- Flexibility of PVD-BaF₂ technique enables study of a broader range of thickness

ORNL ex-situ PVD-BaF₂ Process

- precursors deposited by e-beam evaporation (Y, BaF₂, Cu sources)
 arbitrary thickness in range 30 nm 3 µm
- > ex-situ conversion in flowing gases at 1.0 atm total pressure
- alternative processes developed to modify microstructure and properties
 - "baseline" (conversion at ~ 1 Å/s)
 - "fast" (5-15 Å/s)
 - Y-rich compositions for enhanced pinning (H||c)
 - "alternative" processes (pinning modification)
- I_c values on RABiTS are comparable to AMSC-MOD YBCO
 best values ~ 400 A/cm at 77 K, sf.

FY2004: Fast-processed Films Exhibit Strong Flux Pinning, Reduced Field-angle Anisotropy J^{max} / J^{min}

pinning is enhanced in orientations away from (a,b)—no peak along c
 Y-doping (Y-rich precursors) further enhances J_c, pinning

FY2005: Y-doping Increases J_c(H||c), J_c(sf)—Reduces J_c(H||ab)

- effects become stronger with increasing film thickness
- similar to MOD processed films: nanodot doping, HTOA

Opposite Effects May Be Induced by Process Modifications

- faster J_c drop-off for H||c, enhanced pinning for H||(ab)
- large (ab) peak is similar to baseline MOD films

TEM Reveals Different Defect Structures of Y-doped vis-à-vis Alternative-processed PVD-BaF₂ YBCO Films

• Y-rich precipitates

EST. 1943

 short planar intergrowths terminated with strain fields ⊥ substrate

Y-doped—reversed anisotropy

reduced density of Y-rich precipitates
extended planar intergrowths (medium density)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

J_c trends in Y-rich PVD-BaF₂ YBCO on RABiTS

- $J_c(H||ab)$ drops while $J_c(H||c)$ is enhanced—as in MOD YBCO
- note reversed anisotropy for H < 3.5 T

J_c trends in Y-rich PVD-BaF₂ YBCO on RABiTS

- $J_c(H||ab)$ drops while $J_c(H||c)$ is enhanced—as in MOD YBCO
- note reversed anisotropy for H < 3.5 T

Strong pinning for H||c resembling effects from correlated defects is not prevented by laminar growth mode in *ex situ* YBCO

Summary: Pinning

- Angular dependence of J_c in *ex-situ* PVD-BaF₂ films is influenced by the laminar microstructure—similar to MOD YBCO
 - planar intergrowths along (ab) direction
 - nano-scale precipitates
- Variations in $J_c(\theta)$ are enabled by process modifications and Y doping
 - Y-rich precipitates:
 - enhance pinning for H||c and related \perp orientations
 - reduce (ab) pinning by interruption or lowering planar defect density
 - process modifications can restore pinning along (ab) by increasing the length and density of Cu-rich planar defects (124 phase)

Potential for engineering of $J_c(\theta)$ has been demonstrated

Comparison between MOD and PVD-BaF₂ processes within the WDG identifies general trends, accelerates path towards optimization

Thickness dependence of J_c role of meandering GBs

Background and Motivation

- meandering results from laminar growth mode of BaF₂ ex-situ films
- fast lateral growth leads to complete or partial GB overgrowth
 possibly mediated by transient liquid phase(s)
- GB overgrowth depends on the YBCO (precursor) thickness:
 - thin films (< 0.5 μm) \rightarrow YBCO GBs in registry with RABITS GBs
 - thick films (> 2 μ m) \rightarrow disconnect between YBCO and substrate GBs
 - intermediate (1 $\mu m) \rightarrow$ meandering / tilted GBs
- \succ What is the role of GB meandering on the thickness dependence of J_c ?
- > Does GB meandering contribute to high J_c in 1 μ m *ex-situ* YBCO?

Strongest Parameter Controlling Meandering is YBCO Thickness

• no significant dependence on *ex-situ* conversion rate

J_c as a Function of Thickness Shows Different Behavior Depending on Thickness Range

J_c as a Function of Thickness Shows Different Behavior Depending on Thickness Range

Is flattening of J_c with thickness due to the meandering effect?

Intra-grain $J_c(G)$ Provides a Reference Point for Evaluating Role of Meandering as a Function of Film Thickness

J_c(G) of PVD-BaF₂ *ex-situ* YBCO on RABiTS determined by a magnetometer technique developed at ICMAB, Spain

Intra-grain $J_c(G)$ Provides a Reference Point for Evaluating Role of Meandering as a Function of Film Thickness

J_c(G) of PVD-BaF₂ *ex-situ* YBCO on RABiTS determined by a magnetometer technique developed at ICMAB, Spain

Based on assumed scaling of $J_c(GB)$ to $J_c(G)$ for straight GBs, the role of meandering may be quantified

Based on assumed scaling of $J_c(GB)$ to $J_c(G)$ for straight GBs, the role of meandering may be quantified

GB meandering enhances $J_c \sim 1.5x$ in the range 1-1.5 μ m

Summary: thickness dependence

- intra-grain and inter-grain J_c's for PVD-BaF₂ YBCO on RABiTS compared as a function of thickness
- magnitude and thickness dependence of the intra-grain J_c(G) agrees with reported data for PLD YBCO on STO crystal substrates
- results support hypothesis that GB meandering can substantially (~1.5x) enhance J_c in 1.0-1.5 um thick PVD-BaF₂ ex-situ YBCO.

