Vortices and Flux Pinning Coated Conductors

D. K. Christen

Oak Ridge National Laboratory, Oak Ridge TN

INVITED PRESENTATION

MURI-CC-03 Workshop Madison, WI June 11–13, 2003

"The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes."

> prepared by CONDENSED MATTER SCIENCES DIVISION OAK RIDGE NATIONAL LABORATORY Managed by UT- BATTELLE, LLC under Contract No. DE-AC05-00OR22725 with the U.S. DEPARTMENT OF ENERGY Oak Ridge, Tennessee

Vortices and Flux Pinning Coated Conductors

David Christen Oak Ridge National Lab

Coated Conductors as imperfect films

- epitaxial, c-axis growth from textured substrate surface
- > ~planar grain boundaries through entire thickness
- grain boundaries may limit critical currents
- > Must be thick (for large currents)

tape substrate w/ textured surface

Why is it important to optimize flux pinning for intragrain J_c ?

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Why Flux Pinning in Coated Conductors?

For low-angle grain boundaries,

Field Dependence of $J_c(GB)$ and $J_c(G)$

For low-angle GB's:

- $J_{\rm c}$ limited by GB at low fields, but
- Grain dissipation dominates at high-field

Field Dependence of $J_c(GB)$ and $J_c(G)$

For low-angle GB's:

- $J_{\rm c}$ limited by GB at low fields, but
- Grain dissipation dominates at high-field

Consistent with model:

Pinning of GB vortices by pinned G vortices

Issues Affecting Intragrain Flux Pinning in Imperfect Films (Coated Conductors)

Intrinsic HTS material properties

- $\succ T_{c}$
- Anisotropy
 Charge doping levels

Microstructure/ Defects

- Compositional/Growth Effects
 - growth on vicinal or rough substrate surfaces (dislocations, anti-phase boundaries)
 - twin boundaries, screw and edge dislocations and loops, phase segregation
- c-axis tilt grain boundaries
 - Dislocation core pinning in low-angle limit
 - oxygen vacancies; cation disorder; isolated $a\perp$; ...

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Flux-pinning in as-grown YBCO films is strong

- > $J_c \sim 1/10 J_d$ in self-field, but
- > far from optimal in field

In principle, $J_c \rightarrow J_d$ for pinning by matched columnar holes of radius $\sim \sqrt{2} \xi$

Thermally Activated Depinning from Columnar Defects

Anisotropy $\gamma^2 = m_c/m_{ab}$ limits the depinning energy scale $U_{eff} \propto (u_p \tilde{\epsilon})^{1/2}$

Depinning Probability

OAK RIDGE NATIONAL LABORATORY $exp[-U_{eff}/k_BT]$ U. S. DEPARTMENT OF ENERGY

Intrinsic Properties Define Limits of HTS Material Classes

- For optimized flux pinning, the energy scale $U_{eff} \propto (u_p \epsilon)^{1/2} / \gamma$ e.g., $\gamma \approx 5$ for YBCO, $\gamma \approx 100$ for BSCCO
- Optimized pinning extends the operating range to higher H, T

Flux pinning in as-grown YBCO films is strong

- > Bulk, melt-processed crystals show "fishtail" J_c peak
- > Epitaxial films show much stronger low-field J_c
- High-field properties are similar (MPG crystals better?!)

Significance of Vicinal Substrate Surfaces in Coated Conductors

- Coated conductor substrates have vicinal surfaces from:
 - Out-of-plane texture, typically 2 6°, of textured metal (RABiTS) or buffer layer (IBAD or ISD)
 - Thermal grain-boundary grooving of textured metal tape (RABiTS)

Origin of Pinning in Coated Conductors?

Extended Defects from YBCO Growth on Vicinal Surfaces

- c/3, anti-phase boundaries arise from YBCO growth on either side of substrate-surface step
- Localized strain, but defects can extend throughout film thickness

Anomalous Angular Dependence of J_c

YBCO/RABITS, 0.6 μ *m thick with* $J_c = 1.4$ *MA/cm*²

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Possible Effects of Dislocation Cores in Low-Angle Boundaries

Summary and Discussion Points

- GB's limit J_c at low fields, but benefit from intragrain flux pinning
 - > Why are high-field properties limited by flux pinning?
 - > Do the dislocation cores pin at high fields?
- Extended or correlated defects should be important for intragrain flux pinning
 - > Are they present in sufficient density?
 - > What is their origin?
 - > Can random point pins account for observed J_c 's?

۶...

