Certification Form

I certify that I have read the transcript for the June 20, 2007, meeting of the Panel, and that, to the best of my knowledge, this transcript is accurate and complete.

eiler, Designated Federal Officer Linda

Jan M. Mutmansky, Chaj DI

TECHNICAL STUDY PANEL ON THE UTILIZATION OF BELT AIR AND THE COMPOSITION OF FIRE RETARDANT PROPERTIES OF BELT MINING MATERIAL IN UNDERGROUND COAL MINING

CAPTION

The Technical Study Panel on the Utilization of Belt Air and the Composition of Fire Retardant Properties of Belt Materials in Underground Coal Mining met on June 20, 2007 and June 21, 2007 at the Best Western Airport Hotel, 5216 Messer Airport Highway in Birmingham, Alabama. The minutes of this Hearing were taken by Susan Bell, CSR, Notary Public in and for the State of Alabama. AGENDA

Wednesday, June 20, 2007

9:00 to 7:00 p.m.

Panel of AMS Manufacturers; presentations

and Q & A from:

American Mine Research.....Bob Saxton Conspec Controls....Rob Albinger Jim Walter Resources....Randy Watts Jim Walter Resources....Tommy McNider Pyott-Boone....Doug Coon Rel-Tek Corporation....Al Ketler

LUNCH RECESS

Jim Walter Resources Mine Tour Presentation No. 4 Mine Belt Air Issues National Mining Association/Alabama Coal Association Panel presentations, Q & A Public Input Hour Goodyear.....Dave Maguire Adjournment, Day 1

NMA/ALABAMA COAL ASSOCIATION PANEL

Bruce Watzman

Dr. Pramod Thakur

David Decker

Patrick Leedy

Greg Dotson

Bill Olsen

Jim Poulsen

Gary Hartsog

TECHNICAL STUDY PANEL

Dr. Jerry Tien

Mr. Thomas Mucho

Dr. Jan Mutmansky

- Dr. Jurgen Brune
- Dr. Felipe Calizaya

Dr. James Weeks

ALSO IN ATTENDANCE

Linda Zeiler, Designated Federal Official

Kevin Hedrick, Electrical Engineer, MSHA

Debra James, Standards Office, MSHA

Hazel Haycraft, MSHA

Bob Timko, NIOSH

1	
1	PROCEEDING
2	
3	MS. ZEILER: Good morning. I
4	would like to welcome everybody to this
5	Technical Study Panel meeting on the
6	Utilization of Belt Air and the
7	Composition and Fire retardant Properties
8	of Belt Materials in Underground Coal
9	Mining.
10	This morning we will have a
11	panel of AMS manufacturers here to speak
12	to us about the current state of
13	technology.
14	I have Kevin Hedrick here on my
15	left, who is a Mining Engineer with
16	Technical Support who has put this panel
17	together and will make the introductions.
18	Kevin.
19	MR. HEDRICK: As Linda said, my
20	name is Kevin Hedrick, and I'm an
21	electrical engineer at the Approval and
22	Certification Center.
23	One of my duties at the

1	Approval and Certification Center has been
2	testing AMS components and evaluating them
3	for safety for facilities.
4	This morning we're here to have
5	four companies give presentations about
6	their Atmospheric Monitoring Systems.
7	We're going to go in alphabetical order by
8	company name.
9	After the individual
10	presentations, we're going to have each
11	party sit in on a Panel discussion along
12	with a representative from Jim Walter
13	Resources, since they've assembled their
14	own infrastructure for their Atmospheric
15	Monitoring Systems.
16	The first presentation will be
17	by a representative from American Mine
18	Research from Rocky Gap, Virginia. Their
19	representative giving the presentation
20	today will be David Graf. That's G-r-a-f.
21	He's the Manager of Business Development,
22	and he has a Bachelor of Science and
23	Commerce from the University of Virginia.

1	He's been with AMR for five years.	
2	Helping him with the	
3	presentation is Bob Saxton. That's	
4	S-a-x-t-o-n. He's the general manager	
5	there. He's got a Bachelor of Science and	
6	Education from West Virginia Tech. He's	
7	been in the mining industry for 33 years	
8	and has been with AMR for 20 years.	
9	Sitting in on the panel	
10	discussion for AMR will be Jim Gunnoe.	
11	He's their Engineering Manager. He's been	
12	with AMR for 29 years, and he's developed	
13	hardware and software for their AMS.	
14	David, are you ready?	
15	MR. GRAF: Thank you for having	
16	us. My name is David Graf, as Kevin said.	
17	It's a pleasure to be here.	
18	I'm going to quickly give a	
19	history of AMR; where we've been, where we	
20	are now, and a brief description of our	
21	overall product line. Then Bob's going to	
22	describe in detail our Alarm Monitoring	
23	System.	

1	AMR was founded in 1975 by Bob
2	Graf, my dad, with his invention of the
3	pilotless or cone-type ground monitor for
4	the underground and surface mining
5	industries.
6	The company has since grown
7	into a monitoring control and automation
8	specialist, serving the mining aggregates
9	and water and waste water industries.
10	So there are two sides to our
11	business. We manufacture our own mining
12	equipment product line; and then we're
13	also system integrators of hardware and
14	software, off-the-shelf hardware and
15	software.
16	We're located in the bustling
17	metropolis of Rocky Gap, Virginia, up here
18	in Bluefield.
19	We also have two sister
20	companies who provide us turn-key
21	manufacturing. They do our sheet metal
22	fabrication, electronics,
23	electromechanical assembly for all of our

Г

1	electronics. They provide us service
2	mounting approval, PPD assembly, cable and
3	harness assembly, electromechanical
4	assembly, custom sheet metal fab, and
5	finishing and silkscreening.
6	Also, we have three facilities,
7	140,000 square feet of manufacturing
8	space, and 200-plus employees. We're also
9	ISO 9001.
10	As I said, AMR was started with
11	its introduction of the pilotless ground
12	monitor. Ground monitors ensure the
13	integrity of the ground wire and the
14	trailing cable for underground and above
15	ground electrically powered mining
16	equipment. So it basically sends a signal
17	through the three phases and back to
18	ground and ensures that the ground is
19	intact at all times.
20	Otherwise, if it's severed, the
21	equipment will become electrically
22	charged, and someone could possibly jump
23	on the equipment and get electrocuted.

These are our three primary
ground monitors. The low-voltage pilot
and pilotless version GM200; and the two
high-voltage versions, the GM250 and the
GM300.
We also offer a wide array of
monitoring controlled equipment. Our belt
monitoring equipment includes a "Little
Speedy" speed sensor, our Tip Switches,
and our Belt Master 400.
We also offer battery
indicators and cable fault detectors for
detecting an opening in shorts and
trailing cables.
Our circuit breaker series
replaces traditional molded case breakers
you find in power centers underground, and
it's comprised of one control unit, vacuum
contractors, fuses, and CTs. It
drastically improves the reliability
intake of all the case breakers. Monitors
can't close into faults, and they last
much longer with the vacuum contractors.

1	
1	we also remotely open and close the
2	circuit breakers from the surface using
3	our MC4000 system or any kind of DTS
4	system.
5	Now, I will hand it off to Bob.
6	MR. SAXTON: Thank you, David.
7	As David mentioned, we're
8	today my name is Bob Saxton to talk
9	about the Atmospheric Monitoring Systems.
10	The MC2000 system was the first
11	system that we designed and manufactured
12	back in the early-mid 1980s. At that
13	time, there was a lot of questions about
14	how can you put something underground that
15	could communicate to the surface via using
16	twisted cable for communication. Because
17	of the hash environment and rockfalls and
18	things similar to that, how can you get
19	that information back.
20	Well, we designed the MC2000
21	system with a technology that was
22	available at that time. All the sensors
23	were 4020 milliamp current type sensors.

1	So they were not addressable. Everything
2	that you ran, when you hung any sensor,
3	you had to bring it back to a power
4	source; hang another sensor, bring the
5	wires back to the power source.
6	It had a slow baud rate of
7	4,800 baud. So communications was always
8	a question about how fast this was
9	communicating. You used multiple pairs of
10	wires to communicate from that distance
11	and from the sensors back to the remotes.
12	We had a proprietary master
13	station, which shows right here in the
14	right-hand corner and MC2010, which was a
15	video monitor with our software that we
16	wrote to gather the information coming
17	back from the sensors. That's what was
18	available back in the 1980s.
19	From that, five years later, we
20	developed the MC4000 system, which we have
21	today, with a lot of changes. Naturally,
22	as technology improved, we incorporated
23	that into our new systems.

1	We use a Windows operating
2	environment; meaning, we use a computer
3	that is updated almost weekly now. Every
4	time we sell a system, it's a new type of
5	computer coming out from Dell or whoever
6	that you get a computer from.
7	All the sensors now are
8	addressable. So we use a twisted pair of
9	cables and communicate to those sensors
10	because each one has its own address.
11	We're running at a fast baud
12	rate, so we can communicate faster, at
13	38.4 kilobauds.
14	Some of the advantages that
15	this system had over the original system
16	was when you're calibrating the sensors to
17	keep from getting an alarm of some type on
18	the surface that's nondistinguishable from
19	an actual alarm, any time that we're doing
20	a calibration or a test on the sensors, or
21	as they calibrate those and test them,
22	that does not give an alarm to the
23	surface. It just shows on the screen that

1	it is being monitored or is being
2	calibrated or is being tested. Those go
-	into a log are recorded and kent for
1	information purposes down the road
-+ -	The concerts place have pute zero
Э	The sensors also have auto zero
6	and span calibration, where you can just
7	go put the gas on it and calibrate it up
8	to 50 and then zero it back down, and then
9	it settles in. It also flashes at set
10	points, whether it's 5 to 10 PPM or
11	whether it's addressed; and shows that it
12	is calibrated on the screen on the
13	surface. So all that's done
14	automatically.
15	The software that we provide on
16	our systems, we wrote. Jim Gunnoe wrote
17	the software for that and developed the
18	software. We use a Windows-type version
19	of software where we can show different
20	remotes, different sensors, and also do
21	graphical representations on those
22	particular items.
23	We buy HMI packages, either

1	from Wonder Wear, GE, or Simplicity.
2	We're in the process of developing our own
3	at this particular time.
4	Some of the advantages to these
5	systems, as I mentioned earlier about the
6	technology changing and us being able to
7	improve the systems and making these
8	enhancements, has been the availability to
9	troubleshoot these systems. As with
10	anything, it does take some maintenance
11	and it does take some time. They don't
12	self-heal themselves. They've got to have
13	some work done to them.
14	One of the things that we've
15	done is incorporate some smart repeaters
16	and splitters into our remotes or
17	outstations so if there is a problem in a
18	leg or in an area of the mine that you can
19	detect from the surface and say you're
20	getting bad communications from this spot,
21	you can go to this smart repeater and
22	isolate the rest of the mine and
23	troubleshoot that one leg. So it allows

1	you to remove your 28 volts of DC power
2	and disable communication throughout the
3	ports that are available on that smart
4	repeater.
5	It also gives you your line
6	measurements for voltage and current draw.
7	That's another big thing. You've got to
8	run on a certain amount of voltage of 24
9	volts, your whole system. So, if you get
10	a low current draw and your communication
11	goes down, then this enables you to say
12	"Yeah, I need to put another booster in
13	here to boost my communication and boost
14	my power."
15	A lot of this can be done from
16	the master station. Not only underground
17	where you can go and look into the remote
18	and look and see what's blinking and where
19	your ports are and disable the ports
20	underground, but you can do this from the
21	surface at the master station.
22	You can enable and disable
23	communication with three output ports, and

1	you can reset the communication port arrow
2	count from the master station with the
3	kill remotes, as we're required by MSHA to
4	be able to kill these during a problem
5	underground.
6	The other thing that we've done
7	recently with the CO sensor is improve its
8	I guess its capabilities. A lot of
9	sensors that are out there or a lot that
10	we've had in the past weren't, I guess,
11	almost failsafe to some extent.
12	What we've done now is taken
13	our sensor with a new board, which we call
14	a flash upgradable board, whereby in the
15	past, we've had to any time we made
16	enhancements to our software, we had to go
17	change a processor on the board. That was
18	time consuming and costly, not only to us
19	but also to the users.
20	So what we're able to do now is
21	just go in there and flash the new
22	software with a little item that we have
23	where the operator can go in there and

1	flash each sensor, and everything's done.
2	Any changes that we make have to be
3	incorporated into the sensor.
4	Also, some of the things that
5	we've done to this when we came out with
6	this new board is we're detecting an open
7	and shorted cell. Thereby showing it to
8	the surface "Hey, I've got a bad cell,
9	take me out." It displays this on that
10	particular address of sensor.
11	If there's an electronics fault
12	on that sensor itself, it displays that on
13	the surface. If it loses its memory or
14	says "I've lost my span, where am I
15	supposed to be, I've lost my address, I've
16	gone dumb," it shows that on the surface.
17	We have this watchdog circuitry
18	that continuously monitors this particular
19	board and cell and all these functions to
20	keep it in tune with what it's supposed to
21	be and where it's supposed to be. All
22	these malfunctions are reported to the
23	surface.

1	Just recently, because of new
2	technology we were talking back in the
3	1980s, we had a twisted pair of cables.
4	The MC4000 system was using a twisted pair
5	cable, and everybody talked about when are
6	you ever going to use fiber? Nobody ever
7	wanted to use fiber underground because of
8	the capabilities of it. How can you
9	splice it? How can you get fiber
10	underground with roof falls and the
11	conditions it's got under there?
12	Well, a lot of mines are going
13	to fiber. They've started using fiber on
14	some of the longwalls, and now they're
15	using fiber on their Mine Monitoring
16	Systems, and that's what we've come out
17	with.
18	AMR has its own fiber-based
19	MC4000 ET system, which is an
20	Ethernet-based system. Basically, it's
21	the same type of system whereby you use an
22	HMI package on the surface; run your fiber
23	through the mine as a backbone; and

1	anywhere you hang sensors, you go through
2	a gateway; and, from that gateway, connect
3	up each of your sensors on copper.
4	Once you've run that full
5	length of copper and you have all your
6	sensors, then you can put another gateway
7	in and hang it right off your fiber and go
8	from there.
9	All our products that we
10	manufacture, like David was saying
11	earlier, with a CB, are able to
12	communicate with our system and also with
13	the Ethernet system; and the sensors are
14	basically the same.
15	That's one of the advantages
16	and that's one of the reasons why we went
17	to this flash sensor. So anybody that has
18	the flash boards on their system and
19	upgrades to an Ethernet-type system, it's
20	just a matter of flashing those systems
21	and making them modified from our regular
22	MC4000 system.
23	Some of the hardware that we

have for the gateway are the 4020, which
also is a battery backup, battery supply,
and power supply. We have three Modbus
data ports to drive four conductor copper
trunk cables. It's also a battery backup
and available diagnostic information from
each port because it has a smart repeater
built into those Gateways, as well.
This is a picture of basically
the gateway with the battery backup, the
board, an Ethernet switch, and our gateway
board.
The next step that we've taken
here recently is integrating in, because
of some the laws going into West Virginia
and also the laws that are mandated in
2009 of tagging and tracking, AMR is
developing it's tagging and tracking
system that will go right on to the copper
system that our users have right now.
We're in the process of testing
this out or in the process of finishing up
some design and going into test with that.

1	Not only will it go on to copper, but it
2	will also go on to fiber. So it can be a
3	stand-alone system on somebody else's
4	fiber, or can be integrated into AMR's
5	Monitoring System, as well.
6	We'll have a smart reader where
7	we can feature up to four antennae inputs
8	to cover multiple zones and ranges, and it
9	provides the system with tag message and
10	receiver information allowing tracking and
11	triangulation. All this is battery backed
12	up, as well.
13	This is basically some of the
14	units that we have here. Our smart
15	readers and our small little tags that we
16	have down there, that go onto the operator
17	or the miners' helmets, and then this is a
18	display of how this would show on the
19	screen. It would show them where they
20	were and what time they reported in and
21	the picture of that particular guy that
22	was wearing the tag.
23	Atmospheric monitoring safety

1	aspects. There's a lot of things that go
2	into conjunction when you're thinking
3	about these systems. Where the technology
4	was years ago and where it is today,
5	there's a big difference. We are able to
6	detect a fire before it begins versus a
7	heat detection system, which was way back
8	when.
9	Also, there is automatic alarm
10	activation for working sections. So, if
11	you have a fire in this one area, it can
12	detect that particular leg or all the
13	sections that you have, depending on how
14	you set it up.
15	We have real-time measurements
16	of other gases; CO, methane, oxygen, and
17	nitrogen. Also, we've developed a
18	hydrogen nullifying sensor. So a lot of
19	people that use battery stations, we can
20	put this hydrogen nullifying CO sensor
21	into that particular area to monitor their
22	charging station, but it won't nuisance
23	alarm because it's getting hydrogen bleed

1	off from the battery charging station
2	itself. That's why we put the hydrogen
3	nullifying in there.
4	We're also finalizing our next
5	step in going to diesel discriminating.
6	For a long time, that was not available;
7	but it is available now. We can go in and
8	detect so you don't get a nuisance
9	well, that's just a tracker going by, and
10	it's got diesel in it because you see that
11	rise in CO. So we're developing that
12	particular item right now.
13	Recently, we've had a lot of
14	requests for cell and return monitoring
15	requirements with oxygen, CO, and methane
16	as well, going through a blue barrier in
17	intrinsically safe areas.
18	One of the things that we
19	worked on back in the mid '90s was a smoke
20	detector. We used an ionization-type
21	design at that particular time and worked
22	with it probably for six months, and we
23	didn't have much success. I think mainly

because of the design, mainly because of
maintenance issues, and mainly because of
several different other items.
One of them was market drives,
what we manufacture, as well. The market
conditions at that time were conducive for
us to spend a lot of time and money on an
item, and we might sell one or two items.
Now, with new regs coming out
and concerns about fire retardant belts,
that might put this back on the front
burner where we can get more interest.
With new technology as it is today,
there's a big difference.
Where are we going for the
future? The main thing is that these
systems, as I mentioned earlier, are not
self-healing. It does take maintenance.
You go to some mines sometimes, and they
say "Well, the system is down, we don't
know what's wrong, we don't have anyone
here to fix it." Well, it's just like if
your miner was going down and your miner

1	needed oil in it or if your miner needed a
2	new motor, I guarantee you, you're going
3	to take care of that miner.
4	Well, it's the same way with
5	the system. If it's protecting the people
6	that are underground, it should be
7	maintained in that same manner.
8	It does require specialized
9	installation and maintenance personnel to
10	maintain these systems. It's not just
11	another job, and you say "You go take care
12	of the system or put in a CO." It does
13	take someone to take care of it that will
14	take responsibility for that system.
15	One of the things that Kevin
16	mentioned earlier about his job of taking
17	care and looking at what we as
18	manufacturers present to him to put
19	underground, he's got to make sure that
20	they work. We've got to make sure that
21	MSHA understands that what we try to do is
22	build a good product and a safe product
23	that will work and protect the people

1 underground. 2 That's it. Thank you. 3 Linda, can we DR. MUTMANSKY: 4 take some questions right now? 5 MS. ZEILER: Sure. 6 DR. MUTMANSKY: Bob or David, 7 would you comment a little bit more about 8 what you had mentioned about smoke 9 detectors? You basically said that in the 10 past, you've looked at these; but you also 11 said that perhaps today we could do a 12 better job. 13 Would you try to assess whether 14 or not it would be possible to implement 15 smoke detectors using your system today 16 and whether or not you could be successful 17 today where you weren't so successful in 18 the past. 19 MR. GUNNOE: My name is Jim 20 I'll take that question. Gunnoe. 21 As Bob said, in the past, we 22 looked at the ionization-type smoke 23 detector and did not have very much

1	success with that type of technology. The
2	next step beyond that would probably be to
3	do it optically. I know there's a couple
4	of them on the market now to do it with
5	obscurity techniques, and that's probably
6	what we would look at next.
7	Now, there are also problems
8	with that. There's naturally, you have
9	other particulates in the atmosphere in
10	the ground; such as, the rock dust, the
11	coal dust. So those dusts, those
12	contaminants affect even that type of
13	technology, the obscurity technology.
14	DR. BRUNE: My question relates
15	to your comment when you said you can
16	detect the fire before the fire begins.
17	What is the definition? Are you talking
18	about detecting a fire or something
19	heating before there's open flame, or
20	what's the definition there? I mean, if I
21	can detect something, obviously, there's
22	something there that indicates something
23	is smoldering or something is already

smoking. Is that also not a fire?
MR. GUNNOE: The carbon
monoxide sensors, when we say they'll
detect a fire before there's a flame, is
the fact that when a fire starts, before a
flame, you have carbon monoxide elements
off of that flame. So these sensors are
sensitive enough to pick that carbon
monoxide up before there's an actual
flame.
DR. BRUNE: Okay. So what you
said by detecting fire before the fire
begins is before there's a flame, you can
detect a fire?
MR. GUNNOE: That's correct.
DR. BRUNE: Okay. Thank you.
DR. TIEN: In the last slide,
you were talking about using you have
to have a specialized installation; and
then there's personnel. What are some
situations you have had in the field?
Where do those people come from? Do you
folks provide it, or does it come from the

1	mine? What kind of background are these
2	people? Are you happy with the type of
3	people you're dealing with?
4	MR. GUNNOE: In some cases, in
5	some of the larger mines, there are more
6	qualified personnel to take care of these
7	systems. In some of your smaller mines,
8	they'll use the same guy that may patch a
9	trailing cable to install some of these
10	sensors, and they're not they have no
11	electronics background.
12	We certainly try to train these
13	people when we put a system in, but
14	there's a lot of turnover. That's another
15	one of the problems. You will train
16	somebody on the system, and six months
17	down the road, they've signed off of that
18	job and gone somewhere else. So I think
19	that is a big problem, the type of
20	personnel that are available to work on
21	these systems.
22	The same thing goes with the
23	surface computer. We have people that may

1	not even know what a mouse is. You get
2	them on the phone and try to help them,
3	and you have to tell them which button to
4	push on the mouse. That's the kind of
5	people we deal with sometimes.
6	MR. SAXTON: The other aspect
7	of it is AMR has on staff six or seven
8	engineers with BS Degrees in Electronic
9	Engineering. So, when we do send someone
10	out to install the system and to train
11	these people on it, they are qualified to
12	do that and service them.
13	DR. TIEN: That's great. Now,
14	what do you see or how do you want this
15	problem to be addressed, the lack of
16	competent personnel in your field?
17	MR. GUNNOE: We'd like to see
18	the companies provide more trained
19	personnel; somebody that knows something
20	about the computer, somebody that can use
21	a multimeter, somebody that can
22	troubleshoot the system and take care of
23	it that knows a little more than turning a

wrench on a miner.

1

2	MR. SAXTON: Some of the better
3	systems that we have in place today are
4	the ones where the end user takes
5	ownership of the system. When they call
6	in and say "The AMR system is down," we
7	know that they have not taken ownership.
8	If they call in and say "Our system is
9	down," then we know that there is
10	ownership and they have tried to take care
11	of some things.
12	DR. TIEN: I just want to have
13	a feel of the scope of the challenges we
14	face as an industry. For customers you
15	see, clients, how many of them roughly are
16	you putting in that are competent, less
17	than desirable, or whatever?
18	MR. SAXTON: Probably 10 to 20
19	percent are probably in that range of
20	having difficulty with maintaining the
21	system as we would like to see it
22	maintained.
23	DR. TIEN: Thank you.

1	DR. WEEKS: I have a related
2	question, and it's sort of the same
3	question about qualified people to operate
4	and maintain the system. Actually, I'm
5	more concerned with the operational
6	aspects.
7	Do you do the training of
8	operators, or do you leave that up to the
9	mine operator? How does that work? In
10	the end, there's a person there looking at
11	the screen that's got to make the
12	decisions about what to do given certain
13	circumstances. How does that person
14	acquire those skills? Do you provide the
15	training, or do you provide the people, or
16	how does that work?
17	MR. GUNNOE: Originally, we
18	provide the training to the operators.
19	Again, you see a lot of turnover,
20	personnel turnover. Once you train the
21	original operators and the company owners,
22	a lot of times, we'll depend on them to
23	task train as they trade that job off.

1	Many times, we've been called
2	back to do additional training, when the
3	staff does change.
4	DR. CALIZAYA: My question
5	deals with accuracy of the instruments.
6	Several of the instruments are affected by
7	local conditions. Specifically, I'm
8	talking about oxygen and carbon monoxide.
9	Depending on where you are located and
10	where you calibrate these instruments, you
11	may have some variation. How do you take
12	care of that?
13	MR. GUNNOE: In the carbon
14	monoxide sensors, and the oxygen, there's
15	a temperature compensation that's taken
16	into consideration. As far as accuracy, I
17	would say plus or minus two parts on the
18	carbon monoxide, and within half a percent
19	on oxygen.
20	We're somewhat limited to the
21	cell technology that we use. It's fairly
22	common among all the manufacturers. A
23	company called City Technology primarily

1	provides the cell technology that most of
2	us use.
3	MR. HEDRICK: Our next
4	presentation was scheduled to be by
5	Conspec Controls. Their representative
6	had travel difficulties and has been
7	delayed. So he will be here a little bit
8	later in the morning.
9	So that brings us to our next
10	presentation from Pyott Boone Electronics.
11	They are from Caswell, Virginia. Pyott
12	Boone Electronics was established in 1971,
13	and supplied the coal ministry with
14	communications and monitoring systems.
15	With us today is Doug Coon, who
16	is the Sales and Engineering Director. He
17	has 24-plus years at Pyott Boone, first
18	starting in February of '79, and he has
19	been there continuously since March of
20	1985.
21	He's held various positions,
22	starting in repair and service. He has
23	been a Sales Territorial Manager. He has

1	made marketing the Mine Monitoring System
2	a personal goal.
3	The Company Sales Manager's job
4	was his next responsibility, starting in
5	1990. His next opportunity came along
6	with the international business, traveling
7	to other countries in pursuit of business
8	opportunities.
9	Through all of this, he has
10	been the main liaison with the folks at
11	Triadelphia in getting products approved
12	and/or accepted as was necessary.
13	So Doug has got a presentation,
14	MR. COON: We appreciate the
15	opportunity to be present today and give
16	you an insight into our history and
17	involvement in Atmospheric Monitoring
18	Systems.
19	We started serving the mining
20	industry 36 years ago, and we presented
21	solutions for safety and production. Of
22	course, we had standard page phones that
23	have been with us for a number of years.

Г
1	We have sold over 250 of the
2	Atmospheric Monitoring Systems in the last
3	22 years, and we have sales of over 7,000
4	gas monitors all over the United States.
5	Some of these are obviously used in other
6	manufacturing systems, such as
7	integration, by those people that
8	integrate the items.
9	I want to show you a few slides
10	as I go along with my presentation.
11	Pyott Boone, as far as history
12	of the business, started in the late '70s,
13	early '80s. Pyott Boone's first
14	Monitoring System was the Model 950. The
15	model 950 used a CPU off the shelf and
16	other hardware that was available at the
17	time to engineer a master station which
18	utilized an LED display as part of the
19	HMI.
20	With a 12-key numeric key pad,
21	retrieving information and decoding the
22	messages was accomplished with charts
23	attached to the 950. It was very simple.

1	There was no PC computer or monitor as
2	such associated with the 950.
3	Pyott Boone arrived late on the
4	scene with the system and targeted the
5	small to medium mine operators since the
6	research indicated the larger operators
7	were going with Transmitton, Conspec, MSA,
8	Rel-Tek, and others.
9	Since Pyott Boone was
10	performing basic CO monitoring and belt-
11	control monitoring for small operators, we
12	did not opt for high speed data rates.
13	Monitoring distance was somewhat of a
14	concern, but did not become an immediate
15	issue.
16	As time moved on and more
17	operators learned of the Pyott Boone
18	System and what Pyott Boone had to offer
19	in service of reliability, expansion of
20	the PC-based system and requests for
21	additional monitoring capability plus
22	speed came about.
23	This continues today as we meet

Г

1	here. The next generation of the AMS is
2	being engineered, and we expect this
3	system to far exceed anything on the
4	market today.
5	This system has been under
6	design for the last nine months to a year,
7	and we expect to have it available to the
8	market sometime late next year.
9	What the system does. The AMS
10	monitors the environment for numerous
11	items; including, oxygen, methane, carbon
12	monoxide, and air flow. Components which,
13	make up the Atmospheric Monitoring System
14	are the cabling, the computer,
15	uninterruptible power supplies, gas
16	monitors, and other remotes.
17	Audible/visual alarms are part of the
18	system.
19	You can see there we have our
20	mine monitor station in the dust enclosure
21	to protect the computer. Of course, we
22	have multigas monitors. We have the
23	single gas monitors. Primarily, the

1	single gas monitors all look the same.
2	Obviously, they do different jobs,
3	depending on the sensor cells and what
4	their intended purpose is meant to be.
5	40 and 20 milliamp is
6	available, although we've never utilized a
7	system at Pyott Boone that used 40 or 20
8	milliamp monitors. We've always talked
9	directly to the remotes.
10	The gas monitors warn and alarm
11	on gas concentrations of the targeted gas
12	that exceed the predetermined levels.
13	These warnings and alarms are displayed at
14	the Monitoring Station on the surface with
15	the appropriate signals for monitoring
16	system personnel to act on.
17	The computer can be configured
18	to activate alarms at locations
19	underground where personnel are stationed,
20	and this can be automatic operation of
21	those alarms by the computer. It doesn't
22	require human intervention.
23	The most widely monitored

target gas is the carbon monoxide, CO. CO
is odorless, colorless, and toxic. It
results from incomplete oxidation of
carbon and combustion. It can auto ignite
at about 1,130 degrees Fahrenheit.
What are the AMS benefits? The
AMS benefits for the coal mine operator
are the best safety for personnel and
their assets. Most CO units are placed
along the belt haulage entry to warn of a
fire potential.
When installed and maintained,
to manufacturers requirements, the system
will report all concentrations considered
to be out of the window of normal
operation.
Reports of belt alignment
problems, along with hot rollers and
bearings, are not uncommon for operators
utilizing the AMS. With fewer personnel
to monitor and maintain the conveyor belt
infrastructure, monitoring for a safe
environment is of the utmost importance.

Г

1	Even though the Pyott Boone
2	Belt Boss belt controller is not a gas
3	monitor you will see the Belt Boss
4	controller at the bottom right it
5	incorporates one of the most advanced
6	digital speed monitoring services in the
7	coal industry today.
8	This technology monitors for
9	belt speed slow down, thereby turning off
10	power to the conveyor motors long before
11	slippage becomes a fire hazard. Conveyor
12	belt fires from slippage should be a thing
13	of the past for operators using this
14	controller.
15	Since the events of 2006, we
16	have seen an effort by operators to better
17	train personnel in understanding the AMS
18	and the calibration of the monitors. We
19	have conducted training for years for the
20	mine operators using the Pyott Boone
21	system. We typically give them one free
22	annual retrain, and they take advantage of
23	this. Sometimes they ask me for more, and

1 they have to pay for those. 2 During this training -- as a 3 matter of fact just this past Monday 4 night, we had one of the operators request 5 that our personnel be there for the Hoot 6 Owl shift to do training. Again, on 7 Tuesday night, last night, there was an 8 AMS operator doing training on the Hoot 9 Owl shift. 10 So we go, at their pleasure, 11 any time they ask; and we also have a 24/712 Service Department at our facility. 13 Pyott Boone, along with distributor/service centers. conduct 14 15 training. We do have distributors -- one 16 in Pennsylvania, one in West Virginia, one 17 in Kentucky -- that also perform training 18 of installation of systems, et cetera. 19 Pyott Boone always conducts 20 training for the MSHA inspectors at the 21 Beckley Academy. We are requested, from 22 time to time, to come to Beckley to help 23 train the mine inspectors there in the

1	operation of our system and try to point
1	operation of our system and try to point
2	out the things that would be of importance
3	to them, as far as inspecting the system.
4	We have also digital
5	calibrations, key-pad programming,
6	configurable set points, alarms, and
7	warning contacts. Obviously, we have a
8	nonmetallic impact molding, display LCD on
9	the system; and we have MSHA approval on
10	certain monitors; the 1700 and the others
11	employed with the latest technology.
12	We are in the process of
13	considering a new replacement unit, which
14	will be the third generation of our CO
15	monitors taking advantage of all the
16	improvements in the electronic components
17	and available electronics to us today from
18	the industry.
19	Our system has proven over and
20	over it works and alerts mine personnel of
21	pending problems. Obviously, as the folks
22	at AMR said, the best system in the world
23	will not work unless it is properly

1 installed and maintained. 2 We sell a system. We go to 3 help with the installation, especially at 4 the surface with the equipment. We train 5 them on the installation of the 6 underground monitors, the proper 7 procedures for installation; and we also 8 assist there, if they request us to. 9 I won't read that since you 10 folks can look at it. 11 Thank you. Are there any 12 questions? 13 DR. MUTMANSKY: Doug, I'd like 14 to ask a basic question, and this is a 15 question not directed necessarily just 16 toward you all, but to the AMS people. 17 Is there any attempt today to 18 not only integrate the sensors into a 19 computerized system, but also to provide 20 software which suggests the correct 21 decision to be made when any particular 22 event occurs within the Monitoring System? 23 For example, CO is picked up in certain

locations or something else is out of the
ordinary, do any of the manufacturers
provide software which helps the operator
make a decision?
MR. GUNNOE: Well, the working
sections are typically automatically
alerted, if there's a sensor that's gone
into alarm where air is traveling toward
their sections, but not so much to tell
the operator "Okay, get on the phone, call
this guy." I don't know that there's
anybody doing that at this point.
DR. MUTMANSKY: Can it be done?
MR. GUNNOE: Oh, yes. That's
not a bad idea. I'll take note of that.
MR. COON: Typically, an
operator has instructions for all their
people who are trained by us. As a matter
of fact, we had an operator bring about 20
of his people who actually bought the mine
operation. He brought about 20 of his
people to our facility for two-day
training, and it was primarily the

Г

1	operators that would be monitoring this
2	computer outside.
3	They have their own
4	instructions, which is I think mostly
5	driven by what's in CFR(30) Regulations.
6	That says when certain conditions occur,
7	you have to do this, this, and this.
8	So it's probably not something
9	that we've considered, but I'm not saying
10	we wouldn't, as far as the software
11	package.
12	DR. TIEN: Why don't you
13	consider that? Is it because of a legal
14	concern or because you haven't done that
15	before?
16	MR. COON: The instructions, is
17	that your question?
18	DR. TIEN: Yes.
19	MR. COON: It's not that I
20	don't think it's that, as much we've just
21	never had a request from the operators
22	that they would like for us to integrate
23	that into a software package.

1	DR. TIEN: Don't you think
2	that's a good idea?
3	MR. COON: Yes, sir.
4	DR. BRUNE: I have a question
5	that I would like to know. Do you provide
6	facilities for your sensing systems to
7	say let's say 10 percent methane behind
8	a seal could be a concern. However, if at
9	the same time the oxygen is less than 10
10	percent, that 10 percent methane is no
11	longer explosive.
12	So, if you have a second sensor
13	that says "We don't have enough oxygen to
14	make an explosion possible, we are not in
15	the explosive range," do you have a small
16	sensing system that could validate the
17	results from multiple sensors and
18	therefore make a smarter decision than
19	just say 10 percent methane and 10 percent
20	in the explosive range?
21	MR. COON: I think what you're
22	asking is: Do we have a monitor that
23	would have the ability to detect certain

1	levels of presence of gas, in the
2	presence, obviously, of oxygen or methane
3	or whatever; and then it would make that
4	decision whether that's a safe or unsafe
5	level?
6	DR. BRUNE: Yeah.
7	MR. COON: I don't know. I
8	would have to toss that over to the my
9	first thought is: Do we want that
10	liability? Okay. I think our approach
11	would be that we will provide them with
12	the actual sensor readings, which we can
13	do now; and it's up to them to make that
14	decision of whether that's an unsafe
15	condition or a safe condition.
16	They can set these alarm set
17	points wherever they want. They are fully
18	adjustable either at the computer or at
19	the actual monitor itself.
20	DR. BRUNE: Thank you.
21	MR. MUCHO: Just a comment a
22	little bit on that, Doug. Basically, what
23	you're looking at is probably not a

Г

1	monitor making that decision. It's really
2	the software would make that decision.
3	There's, of course, ways to do
4	that with software to make decisions from
5	sensors.
6	MR. COON: Oh, absolutely.
7	MR. MUCHO: Some of these
8	decisions could be are pretty straight-
9	forward. For example, the one that he
10	talked about is pretty scientifically
11	considered valid in understanding as to
12	what's in the explosive range and what
13	isn't in the explosion range. There
14	probably wouldn't be a lot of argument
15	about that.
16	So, in terms of liability,
17	there are certain aspects that are pretty
18	straightforward that wouldn't be much in
19	terms of liability and generally accepted.
20	There are some others we're
21	going to hear tomorrow about some work
22	that was done at NIOSH with multiple
23	sensors and making a determination on

1	fire.
2	You're right. There is some
3	liability there; but, for example, that
4	research considered a lot of variables and
5	so forth and came up with a neural network
6	to make that decision for diesel operating
7	hydrogen from a battery charging station
8	or whatever.
9	Again, while some of that stuff
10	may not be set in stone and you're getting
11	a probability of fire for example, that
12	worked within 90-something percentiles
13	that would be correct.
14	If we're going to move forward
15	in terms of some of these detections and
16	in some of these instances, that's kind of
17	what we have to be dealing with, is some
18	high probability, some assessment of risk,
19	and move forward. Otherwise, we'll be
20	stuck at this decision-making process
21	beyond what we want to do.
22	That's just a comment for the
23	manufacturers to think about. We're

1	probably going to see that come from, like
2	you said, operator requests or maybe a
3	regulation or maybe other actions; such
4	as, from this panel.
5	Thank you.
6	MR. COON: Thank you.
7	MR. HEDRICK: Our next
8	presentation is Rel-Tek Corporation from
9	Monroe, Pennsylvania. With us today is
10	Albert Ketler, who is President and CEO.
11	He is a Registered Professional
12	Engineer in Pennsylvania and Texas. He
13	graduated from Bucknell University with a
14	Bachelor of Science in Mechanical
15	Engineering in 1956.
16	He joined General Electric in
17	management assignments across the country.
18	He took graduate studies in Electrical
19	Engineering and Business at Penn State and
20	Xavier University while undertaking
21	advanced studies at General Electric's
22	three-year Advanced Engineering Program,
23	followed by their five-year Systems

Г

1 Engineering Development Program. 2 His last assignment with GE was 3 Systems Engineer on SNAP-27, the nuclear 4 power system used on Apollo lunar landings 5 and present interplanetary probes. 6 He founded Ocenco in 1970 and 7 then founded Rel-Tek in 1979. He has 8 pioneered in the development of Atmosphere 9 Monitoring Systems since their inception 10 and has numerous papers and patents to his 11 credit. 12 He holds an aircraft pilot's 13 license, raises bees at home, and spends 14 weekends gardening and keeping up with his 15 four grandchildren. 16 MR. KETLER: I guess I can 17 just -- while Kevin is doing the high-tech 18 stuff here --19 MS. ZEILER: You need to get 20 the microphone on. 21 MR. KETLER: Can you hear me 22 okay? 23 Okay. What to do when you have

1	on alarm? That's always a crisis Vaulue
1	an alarm? Inat's always a crisis. You've
2	got an alarm there and an inexperienced
3	person sitting in front of the monitor or
4	called in from an adjacent office and the
5	alarm is going off. What do you do when
6	you have an alarm?
7	We've given the resources
8	given the client the resources to do
9	whatever he needs to do; page out
10	messages, announce over a loud speaker,
11	have pop-up verbiage of what the
12	characteristics of this is and choices and
13	priorities and what to do.
14	All if this has to be conceived
15	by the operators in conjunction with the
16	known sections, the definitions, the
17	terminology, the nomenclature of where
18	things are, escapeways and whatever. We
19	can't impose that on them and do it for
20	them because we're not experts on their
21	particular set up.
22	So, if they give us the
23	information on what they want to have done

1	on these instances, then we can implement
2	it for them or we can put in voice
3	messages and have them brought up and
4	paged out and that kind of thing. It's
5	not something that they would look to us
6	to do for them, as far as coming up with a
7	concept of how to react to a particular
8	alarm or combination of alarms.
9	DR. MUTMANSKY: Al, would you
10	answer the question: In an ordinary AMS
11	system, what percent of the alarms are
12	false alarms? In other words, your system
13	or somebody else's. Roughly. Just give
14	us a rough idea of what percent are false
15	alarms.
16	MR. KETLER: Well, you're going
17	to have false alarms but, hopefully, not
18	very many. When you have an alarm, you
19	have to trust it. It's like I'm an
20	aircraft pilot. You always trust the
21	instruments first, even if you think
22	you're flying upside down. It's probable
23	the instruments are probably right. So

1	you have to react to them, but you have to
2	do it intelligently with history in mind.
3	I've always had trouble with
4	that. You've got to send somebody over to
5	look at a sensor and do something to it.
6	That would qualify your reaction to it,
7	but there shouldn't be very many false
8	alarms.
9	DR. MUTMANSKY: What would be
10	the source of the false alarm? Are most
11	of them sensor problems, or are they other
12	types of problems?
13	MR. KETLER: When you set up a
14	sensor, you don't just set the maximum
15	a low alarm threshold and a maximum alarm
16	threshold. You also set in there offset
17	alarms. If it falls below a certain level
18	indicating that there's a failure on the
19	instrument, you want an alarm on that; but
20	it's a different kind of alarm. It's not
21	what we call a critical alarm. It's a
22	maintenance alarm.
23	It will come up on the screen.

1	Instead of being red or flashing yellow or
2	something, it will be a different color, a
3	blue, which will indicate that you've got
4	to go take care of that sensor there.
5	That's sort of the qualifications to it.
6	The alarms are all logged with
7	the time and the date and the place to put
8	in a message by whoever acknowledges it.
9	You can have them type in their initials
10	and some statement, and that goes along
11	with that particular alarm, whether you
12	notice it or whether there's it's
13	guessed to be a false alarm, that sort of
14	qualification.
15	You can go back and then review
16	these alarms and sort them by categories.
17	There's carbon monoxide alarms, methane
18	alarms, offset alarms, critical alarms,
19	noncritical alarms. So you can get a
20	report on your plant's performance, your
21	mine's performance over time.
22	This is where that data mining
23	comes in. You can review what happened.

1	If you had a shutdown or a fire or
2	whatever, you can see the conditions
3	leading up to it. So it was an historical
4	trend. If you had an early alarm, you'd
5	go in, look at the logs, the graphs, and
6	see if the CO started building up slowly
7	or whether it went abruptly.
8	Maybe you had a roller lock up
9	and you had some heating. That always
10	generates carbon monoxide. You might have
11	some slow build up. So that's small
12	forensic-type information that you can get
13	off the system.
14	We use 12-bit resolution in all
15	of our end-log input so we can see very
16	carefully. It's like this, it's a nice
17	smooth curve. We get 4,096 steps between
18	zero and full scale. We have a lot of
19	room there to you can see small
20	differences and small changes.
21	You can print out these graphs
22	and grids and amplifications for
23	particular dates and times and periods.

1	DR. WEEKS: While that's being
2	set, I have a similar question. When you
3	do this kind of data mining for, as you
4	put it, forensic purposes well, first
5	of all, I assume you do that on a regular
6	basis?
7	MR. KETLER: It's automatic.
8	It comes with our software package.
9	DR. WEEKS: So what do you get
10	when you do that? What do you get in the
11	way of false alarms? If you find trends,
12	are you looking at spikes? What exactly
13	does that tell you, either about the mine
14	or about the system? When you get that
15	kind of information, what do you do with
16	it?
17	If you could provide some
18	examples or just discuss some examples of
19	how that develops, it would be helpful to
20	get a better understanding of how to use
21	the system.
22	MR. KETLER: One forensic
23	application was a capital metro transit

1	facility down in Austin, Texas. They have
2	one of our systems for monitoring for
3	compressed natural gas emissions off of
4	CNG powered buses. They have a system
5	that's a block-sized building, a huge
6	facility, with hundreds of sensors.
7	There was an instance where
8	they had a hose a fueling hose came off
9	a bus while they were fueling it, and the
10	gas level went up, and the alarms went
11	off, and the police weren't notified.
12	So the Union sued the Company
13	because the system wasn't maintained
14	properly or whatever it was, that it was
15	they didn't have the right reaction to
16	the alarm.
17	We looked into our log of the
18	data, and it showed that the maximum level
19	where you you sound the alarm, the
20	audible alarm, and then the visual
21	alarm first and then the audible alarm,
22	but it never went up to the level of
23	notification of the fire department. So,

1	if there's a prima facia thing throughout
2	the case, that kind of evidence is useful.
3	I can't think of a mining
4	application of that right now, but there
5	probably has been. I'm sure maybe some of
6	these folks have.
7	We've all been around this
8	industry for a long time and seen it grow
9	and seen the technology advance, and it's
10	just remarkable the things that you can do
11	in the system now; with the archiving,
12	with the logging, with the printing, with
13	the automatic printout of reports. So
14	every morning you walk in there, and you
15	have a report of your last week's CO
16	levels and that kind of thing.
17	DR. WEEKS: Is that something
18	that when you go out and sell a system and
19	you train operators on how to use it and
20	so on and so forth, is that the kind of
21	thing that's regularly included in when
22	you sell a system? Do you talk to them
23	about data mining and how to get a better

1	handle of what's going on in their mine?
2	MR. KETLER: Well, any viable
3	mining entity that's interested in doing
4	business on a long-term basis has to be
5	concerned with safety. So they're looking
6	for anything that sheds some light on an
7	unsafe condition or information on their
8	mining; their down time, their conveyor
9	shut-down events and how many there were
10	and how long the durations were and that
11	kind of stuff.
12	So there's a payback from a
13	safety standpoint and also a productivity
14	standpoint. I think they combine those
15	benefits.
16	DR. WEEKS: Well, it's the ones
17	that don't that are the problem. The
18	question is how do get them to do what's
19	needed to explore the capabilities of
20	them.
21	MR. KETLER: Well, you can lead
22	a horse to water, you know, and all that.
23	You can't make them do something

1	sometimes they don't want the logging.
2	Sometimes they don't want meters on the
3	sensors. They don't want the CO levels to
4	be visible. They want to keep that in the
5	archives and stuff.
6	Yeah, you run into those
7	situations. You kind of walk around it
8	because it's nothing but trouble.
9	DR. WEEKS: It's trouble that
10	can cause some serious problems.
11	MR. KETLER: Yeah, you're
12	right.
13	Okay. What's new at Rel-Tek?
14	That's what I was invited here to talk
15	about. Let me very quickly go through
16	these slides. I have too many slides so I
17	will kind of brush through them.
18	If anybody wants a copy of
19	them, you're welcome to I can E-mail
20	them to you. No, it's too big to E-mail.
21	I can send it to you some way or another.
22	We do have a record copy here.
23	Conveyor belt controls, MSHA

4	
1	approval, these are new categories of
2	things we want to talk about; longer
3	distance, higher security communications.
4	Communications is the backbone
5	of your system. If you don't have good
6	communication, no matter how many bells
7	and whistles of things you have on your
8	computer, it's not going to be meaningful.
9	So you have to have solid communications,
10	that's kind of a given here. Really long-
11	life sensors are not questionable after
12	six months or a year, but they'll last for
13	five years and ten years.
14	Some of the carbon monoxide
15	sensors we get back for repair when
16	they're ten years old. They've never had
17	a cell change on them. It's kind of
18	amazing. Some of the old equipment comes
19	back that the technical people forgot
20	existed.
21	Automatic gas sensor
22	calibration. We're talking about
23	reliability of sensing, where you get a

1	sensor that drifts a little bit with
2	temperature, with age, with conditions.
3	Do you wait for the 31 days to come up to
4	do the manual calibration, or do you push
5	that CAL NOW button and get all your
6	sensors calibrated while you're having
7	coffee? That's all possible and doable
8	now.
9	DR. BRUNE: Are you talking
10	about actual calibration remotely, or are
11	you talking about zeroing in and out?
12	MR. KETLER: Automatically.
13	Totally within the computers.
14	DR. BRUNE: Without putting a
15	test gas on it, is that what you're
16	saying?
17	MR. KETLER: No. We put test
18	gas on it. It's done automatically.
19	DR. BRUNE: I'm not sure I
20	understand this calibration.
21	MR. KETLER: I will get into
22	it. I hope to cover that here.
23	Okay. Personnel location and

1	tracking. This is a new area. You folks
2	are all involved in coming after the
3	products.
4	What we're doing is the
5	backbone for it. Our part is the
6	communication and reliability, the long-
7	distance communication. We're doing the
8	long-haul backbone for the manufacture of
9	the personnel tracking equipment.
10	Emergency and post-disaster monitoring.
11	Monitoring of the conditions so that
12	people leaving the working place and
13	leaving the mine know in advance what's
14	happening outby, what they're getting
15	into, if they're getting into a CO level
16	or some methane or whatever it is.
17	Temperature. That's in our sights now of
18	doing that.
19	Seal pressure. Seal pressure
20	is a big item now. We're selling quite a
21	lot of pressure sensors, deferential
22	pressure sensor that measure inches of
23	water gauges to know what's behind the

1	seal, whether there's positive pressure or
2	whether the barometric pressure changed
3	and all of that, and what's behind it in
4	the way of methane and carbon monoxide and
5	smoke. There's temperature and air
6	velocity, vibration of fans, and that kind
7	of thing.
8	Okay. Our Windows operating
9	system. We have our own software. We've
10	been developing it for about 12 years or
11	more. It's quite a piece of work. It's
12	just all our own code; but, by doing the
13	telemetry components in conjunction with
14	the software, we can optimize the two and
15	come up with enormously improved
16	communication and reliability and high
17	speed.
18	The computer speed and the
19	software speed contributes to the overall
20	monitoring speed. You have to keep that
21	software running really lickety-split
22	because you don't want slogging through a
23	lot of overhead code that's just slowing

implementation.

1

2	We have ours running all in
3	hard code. We have hundreds of thousands
4	of lines of code that do this.
5	We include all the setup tools.
6	All the setup tools are sometimes
7	expensive add-ons to other systems,
8	whereas we supply that with it.
9	So the client can do their own
10	customizing. If they put in a new
11	section, they don't have to call us in to
12	reprogram it for them. They can do it
13	very intuitively and very logically, and
14	it's very simple for them to add onto the
15	system.
16	Large hard drive capability
17	gives us archiving capability that was
18	unheard of. We have 50 gigabytes of hard
19	drive that you can save things on, and we
20	have automatic file management so that the
21	files never get too big to offload and
22	that kind of thing. It does all that.
23	We solved these problems over

1	the years, and now it's kind of a standard
2	for our Millennia system.
3	That's a wall mount PC. This
4	is for mine offices where you don't want a
5	cabinet occupying floor space. This goes
6	against a wall. It has the same specs as
7	our main Millennia system, but it's in a
8	box with positive pressure ventilation,
9	and it's a durable piece of goods for a
10	mine office.
11	We have hot standby, in case
12	the computer fails. We have what I will
13	call our referee in the center that does
14	nothing but watch the performance of that
15	of the main primary computer.
16	If it hiccups for anything, it
17	automatically switches over to a hot
18	standby, which has been kept up to date
19	with all the file transfers. Everything
20	is ready to go. It steps in and carries
21	on.
22	The flag goes up that the old
23	computer died, and you can continue your

1	operation. Switch back to the primary,
2	when you get the hard drive fixed or
3	whatever the problem was on it.
4	The PCs are not forever. As
5	you know and as with Exhibit A here, you
6	never know what's going to happen. Hard
7	drives and dust and temperature, they're
8	all killers of PCs. So you keep your
9	cabinet PC and a wall mount PC.
10	We now have two different
11	configurations. So it's functionally
12	redundant. You have this kind of
13	situation here, and another configuration
14	there, and whatever happens to one
15	probably won't happen to the other. So
16	it's a good back up.
17	Anyway, hot standby with
18	Windows is not an easy thing to do. It's
19	something that we've developed, and it's
20	quite a nice add on to our system.
21	This is the University of
22	Missouri has one of our Monitoring Systems
23	out there. Dr. Tien has a class that's

1	using that in their mine studies, mine
2	engineering studies. They have a
3	simulated mine and that sort of thing.
4	I show you this because it
5	indicates the graphics capability to
6	import maps, use logos, use mine maps, put
7	things on top of familiar landmarks so you
8	can see where things are and you can put
9	your sensor data right there and make it
10	visible for you.
11	This is a fairly large mine. I
12	don't mention a name for the mine because
13	I don't have their clearance to do that.
14	We call them other things. This is K
15	mine.
16	The green spots are carbon
17	monoxide sensors. This is just their
18	setup screen. You can see how you can
19	make a very big system out of these.
20	DR. WEEKS: Could you go back
21	to that for a second? Are all those
22	those are all entries where the carbon
23	monoxide senses. Are those all belt

4	
1	entries, or are they other kinds of
2	entries? Are they all entries that are
3	used for face ventilation?
4	MR. KETLER: They are all belt
5	entries. They all feed on the belts.
6	DR. WEEKS: Are they all used
7	for face ventilation, all of those belt
8	entries?
9	MR. KETLER: No. I would say
10	no. I don't know which ones are or which
11	ones aren't, quite frankly.
12	DR. WEEKS: So you're putting
13	monitors on all the belts?
14	MR. KETLER: We use the
15	thousand-foot rule. We put CO sensors on
16	thousand-foot centers and link them into
17	the system. We have the RPMs and the
18	vibration and varying temperatures and the
19	Delta Ps and that kind of stuff.
20	There are just some of the
21	tools that you can use. Blinking lights,
22	log in, the window maker. If you want to
23	make an extra screen. You can put any
1	number of screens on this thing, and you
----	--
2	just click on it, and that screen comes
3	up.
4	You can have it come up on a
5	particular set of events. An alarm here,
6	will bring up that screen for that
7	particular section.
8	Units showing all of the
9	addresses, what you've got underground.
10	The signals and all the tags that are
11	these are just menu choices there. They
12	bring up all the details of it.
13	Alarms and PID controls. If
14	you want to do any analog output controls,
15	you can do that.
16	Logging. You set up for the
17	logging every few minutes or every ten
18	seconds. I think that's the fastest we
19	can do it, every ten seconds up to every
20	hour. It depends on how important that
21	data is. You can put in you only log
22	it if it exceeds a certain change so that
23	your files don't get huge and you don't

1 have repetitive data.

2	Communications. We tell you
3	all of the options for setting up the
4	speed. We can go up to 115 kilobaud. Our
5	normal speed is 19.2 K for mining, but you
6	can go higher depending on your distances
7	and that sort of thing.
8	I have my little CAL NOW button
9	just to nudge you into this automatic
10	calibration concept because it's really
11	slick. It would be ideal for coal mines.
12	We're using them on gas wells.
13	We're using them on above-ground tunnels
14	and transit facilities and things where
15	you have a lot of sensors in one place.
16	That makes it amenable to central a gas
17	supply going out to different sensors.
18	Customized controls. We use
19	visual graphics to show the controls. We
20	have for the operators we have ors and
21	ands and buts and ifs and all that.
22	Expanders and timers. We can
23	do voice outputs on various alarms. We

1	can set in a schedule so that you have a
2	different set of consequences when it's on
3	a weekend or on a third shift rather than
4	on a normal shift.
5	We put in those kinds of
6	details that allow the guard shack to get
7	the alarm one day. On Saturdays and
8	Sundays, maybe dial out to somebody else
9	on weekends or on third shift or I
10	don't know what. Whatever. Those options
11	are available.
12	We can store wave files of
13	messages that you want to have read out on
14	a loud speaker or over the land, sending
15	messages to workstations.
16	These are looking at logs
17	log files of data that you've stored. If
18	you want to see the temperatures on a
19	particular motor last week or if you have
20	an interest in CO levels for the last
21	month, you just click in either using
22	words like "today," "yesterday," "this
23	week," "last week," "this month," or "last

1	month."
2	So you don't have to type in
3	dates and stuff. Mining people don't like
4	to type. So they can just click and drag
5	and get all these graphics to the printer
6	without typing anything.
7	This is just a field IO
8	station. The telemetry cards and power
9	supplies and all that. This is a red-out
10	station. Red is always fresh air. It's
11	always dealing with sensors of fresh air.
12	When you want to go into a
13	hazardous area, now we use our blue-out
14	station. U.S. Steel people used to call
15	this our blue baby. So it kind of stuck.
16	It's a blue baby integrated
17	MSHA barrier box. We have all our
18	barriers on one box. You can take a
19	red-out station, which is sitting there,
20	and stick this box in between; and than
21	you can go out into a hazardous area with
22	your Automatic Monitoring Systems, or AMS,
23	with certified barriers and power circuit

1 barriers and current regulators. 2 So there's no fuses to replace. 3 It's a very handy little thing. We make 4 our own barriers, by the way. We have UL 5 approval and MSHA IAs on that. 6 These are some of the field IO 7 cards that we manufacture. Some are more 8 or less analogs and digitals and 9 combinations of the two. It depends on 10 what your sensor load is. You can pick 11 the IO cards to match. 12 Now, this is our link 13 configuration. A link is sensing a 14 repeater. It's a repeater and an 15 isolator. Each one of those blocks is a 16 link. One block will go for about 8,000 17 feet. Then you can only put so many links 18 in a strain. 19 This is kind of a configuration 20 that you could walk to. This one shows 17 21 miles. It's not for the faint of heart to 22 do this because it's keeping your 23 reliability -- the data reliability and

1 your speed. 2 It's a balancing act. Only by 3 optimizing the software and the hardware 4 in combination can you do this sort of 5 thing. 6 This is the mine tracer. I 7 mentioned earlier that this is for the 8 personnel locator. 9 Now, each one of those blocks 10 has an array of RF transmitters and 11 transceivers and tags and all that stuff. 12 This is just the backbone. That's the 13 part that we're providing for Venture 14 Design and Hillcom with their marketing 15 link. 16 This can go out to 15 miles, 17 and we don't need fiber optics for this. 18 Going back to that last slide there, we 19 show a fiber optic link there on the 20 bottom, which can go out for ten miles in 21 a spell. We can go 20 miles or 17 miles 22 without fiber and without the maintenance 23 nightmares, and this just on a twisted

1	pair of wires. It's 20-cents-a-foot wire.
2	We can go the extent of most of the
3	biggest coal mines without fiber.
4	This one here, what's unique
5	about this is that it's a loop. You can
6	have a redundant path so that if you break
7	the path somewhere, you don't lose the
8	whole thing. You can communicate. The
9	computer can switch communication
10	directions and pick up whatever's left of
11	the system that way.
12	This is another longwall
13	operation. This happens to be up in Ohio.
14	It's 6 it's about 10 miles into the
15	existing longwall operations. We're doing
16	that at 19.2 kilobauds.
17	It's 100 percent communications
18	reliability. You get 10 million poles,
19	and you don't have one failure. So, if it
20	gets down to 95 percent, we get a phone
21	call that there's a problem up there.
22	Well, 95 percent, that's pretty
23	good. They're so used to having 100

1	percent, when they get a little bit down,
2	they give us a call; and we have to go
3	find out what they've got going or what's
4	causing it.
5	There's a that's a big mine
6	out in Illinois. I can't read the numbers
7	there, but I think that's pretty close to
8	10 miles, also.
9	This is some of the gas
10	sensors. You brought up the subject of
11	smoke sensors. That one on the lower
12	right is a patented smoke sensor. It's
13	got it's all optical.
14	The question is always the
15	ambient dust. What do you do with that?
16	The old concept was to take it out of
17	service, send it back to the factory, and
18	stick a new sensor in.
19	On this one, you can clean and
20	recalibrate it on the wall without in
21	probably about two minutes. It's just a
22	real simple approach to maintaining a
23	viable smoke sensor because it has to be

cleanable.

1

2	Somebody will come by with
3	their lime dust spreader and cover up the
4	sensor. You go in there and recalibrate
5	it, and it's all ready to go again.
6	We have air velocity sensing.
7	The one up on the green tube there, that's
8	zero to 2,000 beats per minute. It's also
9	reversible. It indicates reverse
10	readings, plus or minus air velocity.
11	Temperature sensors, you have
12	an IA on that. There's a carbon monoxide
13	sensor, which is a workhorse. The CO
14	sensor is in the middle. Over here we
15	have a carbon dioxide sensor. On the
16	bottom, we have moving sensors. We've got
17	the sensors pretty well covered. You name
18	it, we probably have a sensor that will
19	handle it.
20	This is a list of some of the
21	sensors. We have MSHA approval status.
22	We have quite a few pending there, which
23	are the smoke sensor is pending, IA.

1	It's already classified GH and
2	L, but it's not IA. We have some of those
3	IAs so we can use it in post-disaster
4	applications. There's a lot of
5	information there.
6	Alarms. Permissible alarms.
7	We can alarm in hazardous areas, in the
8	working place. Flashers and horns and
9	strobes. Typical application. You all
10	know those. Conveyor belt monitoring.
11	Rel-Tek products are truly
12	advanced technology. We have been in the
13	business for a quarter of a century now.
14	This is the first I think we got the
15	first MSHA approval, which was Ocenco back
16	in those days. That was my company then.
17	Automatic gas sensor
18	calibration. This is what I was eluding
19	to. You're using actual gas and
20	transmission of the gas on command to
21	sensors and calibrating automatically
22	through the computer, and it's just a
23	lovely capability that might one day catch

1	on in mining. I hope it does because it's
2	working above ground.
3	We have big facilities with
4	hundreds of sensors. They have any
5	question about the sensor, you push the
6	CAL NOW button, and it's like setting your
7	clock to the National Observatory. It
8	takes NIST certified gas and puts that
9	accuracy into the sensor.
10	You can do that monthly or
11	weekly. Some of the gas will be monitored
12	daily because they have to have such
13	precision on the accuracy.
14	So tanks of gas are
15	inexpensive. You buy those big tanks, and
16	you get an awful lot of gas for not that
17	much money, and it's all NIST certified.
18	It eliminates the trudge out to the
19	sensor, the time to do that; the cost of
20	the portable supplies; the possibility of
21	human error.
22	They put the gas on, and the
23	wrong gas is on. They didn't leave it on

1	long enough. They turned the wrong pots
2	on.
3	We get sensors back all the
4	time for repair, and there's nothing
5	wrong. They've just got all the pots
6	screwed up.
7	So anyway, by doing it
8	automatically, that transcends the whole
9	problem. We have applied for patents on
10	parts of that system.
11	There's an automatic
12	calibration system for it's not a very
13	good slide there gas well. This is a
14	gas well operation. Those two tanks there
15	will keep that the black sensor up at
16	the top there, that's a methane sensor.
17	It's zero to 100 percent methane. It's a
18	thermal conductivity sensor.
19	It's got the IA MSHAs IA on
20	it and UL approval class one and all that.
21	Plus, it's got automatic calibration on
22	it. So you have a little stand-alone
23	package that takes care of itself, and it

1	can calibrate itself for a year or more
2	with virtually no attention.
3	This is the kind of thing you
4	can also do where you look at the history
5	of calibrations. These are the previous
6	calibrations for a particular sensor, and
7	you can see that the sensor is drifting
8	upward or downward. You can see if the
9	signal level is getting smaller,
10	indicating that it's aging.
11	You can print out the graphs of
12	historical calibrations. If you put your
13	cursor on any of those bars, it will give
14	you the details of what that calibration
15	was before and after, the date and the
16	consequences of it and all that.
17	This is an interesting analysis
18	here. We use 12-bit resolution from zero
19	to full scale. We only need 256 we
20	only need 206 bits of data to expand it up
21	to 8-bit resolution. So we only need a
22	very small signal.
23	So a sensor where the zero has

1	come up from aging and the span has come
2	down from aging, we can still put it to
3	work as long as it doesn't get less than
4	.8 milliamps out of a 20-milliamp
5	excursion.
6	So we can take an old sensor
7	and keep it working. It's essentially
8	saving the replacement cost and the
9	maintenance cost of taking it out of
10	service or replacing it.
11	So, anyway, you can do this
12	with automatic calibration. You can't do
13	this without it.
14	Engineer complete systems.
15	Everything in the system is a Rel-Tek
16	product. We manufacture the sensors, the
17	telemetry, the barriers, the software, the
18	computers, the com drivers, the links.
19	Everything about this system is part of
20	our domain.
21	If something goes wrong, it's
22	not pointing to some third-party suppliers
23	if the software had a hiccup. Like, we

1	have an update on the software here, and
2	it's going to cost you \$20,000 to replace
3	it or do the upgrade on it. If you put
4	the upgrade on and it doesn't work
5	anymore, what do you do?
6	The fingers always point to us.
7	We can sort out the problems usually over
8	the telephone using PC anywhere or
9	internet. So it's we support our
10	system.
11	We have a training facility in
12	Monroeville, where we have all the
13	equipment there. People can our
14	clients come in and schedule their
15	training or retraining. New employees
16	come in. They send them up for a day or
17	two and put them through the paces. We
18	show them how to actually repair stuff,
19	how it works, from the basics on up.
20	So that's what we are, Rel-Tek.
21	We are way ahead. That's what we would
22	like to think, anyway. So that's the end
23	of the slides.

1	MS ZEILER: I'd just like to
- 2	suggest that we take a 10 -minute break
2	Suggest that we take a 10-minute bleak
3	before you ask Al any questions. We can
4	find out where the other representative
5	is, and we can decide how to use the
6	balance of the morning, if that's all
7	right with everyone.
8	(Short recess.)
9	MR. ZEILER: I would like to
10	mention before we start that if you
11	haven't signed up in the back, please do
12	so at some point today; especially, if
13	you've requested to speak this afternoon.
14	We're pleased to have our
15	representative from Conspec. Once again,
16	Kevin will do the introduction.
17	MR. HEDRICK: The next
18	presentation is from Conspec Controls.
19	Their main office in Toronto, Ontario; but
20	they are in Pennsylvania and Colorado, as
21	well as Australia and China.
22	With us today is Rob Albinger,
23	A-l-b-i-n-g-e-r. He's the Vice President.

1	He's been with Conspec for ten years and
2	works from the Pennsylvania production
3	facility.
4	MR. ALBINGER: Good afternoon.
5	I apologize for being late. I ran into
6	some travel troubles, but I'm here and
7	I've been instructed to make this as
8	thorough and quick as possible.
9	Again I represent Conspec.
10	We are a manufacturer based out of
11	Pennsylvania. Our R and D is handled out
12	of Denver, Colorado and Toronto, Canada,
13	as well. We have facilities in China and
14	Australia. We were founded in 1968.
15	Our market share consists of
16	about 41 total AMS systems installed in
17	underground coal mines and throughout the
18	US. We have systems installed in 26 of
19	the 39 most productive coal mines from
20	2006, based on the information out of
21	"American Longwall Magazine." They had
22	them ranked in a recent article.
23	Over the last four years, our

1	company has increased our production by
2	over 100 percent. The mining market, with
3	the increase in and the amount of coal in
4	the mines, has been very beneficial to our
5	industry.
6	One thing that Conspec's
7	direction that we've decided to move into
8	over the last several years, is becoming a
9	bit of an integrator, as well as a
10	manufacturer. We've worked with other
11	companies to operate our system over
12	existing ones throughout the mine.
13	A lot of mines are moving over
14	to Ethernet over fiber optic cable. This
15	allows them to use off-the-shelf software
16	packages first, where they were originally
17	using a Conspec-500-system-type server as
18	compliant.
19	Here, we're using Bradley,
20	Illusion, and Wonderwear with an off-the-
21	shelf OPC that allows an open protocol,
22	where we can communicate modified 485 or
23	232.

1	In the mines that already use
2	Conspec and want to get away from our
3	graphics package, we offer what's called a
4	universal interface that allows them to
5	convert that protocol from Conspec to
6	either 232, 485, or Ethernet.
7	This has opened up a lot of
8	opportunities for us over the last couple
9	of years. It's very beneficial. It gives
10	the end user a lot more flexibility.
11	Where we are not really a
12	software-production facility, they get the
13	technical support 24/7 from larger
14	companies that are specializing in that.
15	These are some of the new
16	products that we have in for approval
17	right now. We've designed a new blue out
18	station. A blue out station, basically,
19	takes a 24 volt down to a 15 volt. Our
20	existing blue out station has been
21	approved since 1982. So it's lived well
22	past its prime.
23	What we used to call blue

1	barrier, we are now calling blue out
2	station, based on the fact that it will
3	not only take care of 15 volts, it's also
4	going to drive your communication signal
5	to allow the mine to operate at a much
6	further distance than what they're used
7	to.
8	We are also in development on a
9	photo electric smoke monitor. We
10	currently have an ionization monitor,
11	which I'll move on to; but, right now,
12	we're looking at photo electric, which is
13	also infrared. We have a couple working
14	in trial. We don't have that submitted
15	yet for approval.
16	We also have the vehicle and
17	personal tracking system. Back in '98, we
18	did get an approval on the vehicle
19	tracking with the receivers, and we
20	submitted it here for the personal
21	tracking.
22	The benefit there is any
23	existing mine that's running a Conspec

1	system, this just acts as another access
2	along the trunk line; and then, as the
3	vehicles or the personnel pass the
4	receivers, it picks up their tag and
5	reports that to the service.
6	We have a couple of different
7	variations of smoke monitors. We have
8	just a regular stand-alone smoke monitor.
9	We have an MSHA-approved CO smoke
10	combination monitor. That uses the
11	ionization technology. Ionization is
12	we're just looking for a change in the
13	electrical conductivity through the
14	detection chamber.
15	What they're saying there is
16	basically smoke that's not visible to the
17	human eye can actually be detected using
18	this ionization. Whereas, a photo
19	electric or infrared, it's picking up the
20	visible particulates from smoke.
21	As far as the Conspec system
22	reliability, some of the things we've done
23	over the last several years is to try to

Г

1	make the system eliminate as many nuisance
2	alarms as possible.
3	We've developed what's called a
4	diesel discriminator. Basically, we're
5	detecting two gases; CO and NO. As a
6	diesel machine passes by a CO monitor, you
7	tend to get a lot of spiking CO. The guys
8	on the surface are getting alarms and
9	moving on.
10	What we've tried to do is
11	eliminate the operator from actually
12	acknowledging these alarms by
13	differentiating CO from actual fire and
14	combustion to the CO from diesel fumes.
15	So what we're doing is we're
16	measuring CO and NO. Then there's a
17	correlation between the two, which was an
18	algorithm designed by Carnegie. They have
19	the patent. We just have it in our
20	processor.
21	It determines the ratio of
22	actual CO concentration. So you get
23	what's called a corrected CO reading at

1 your surface. 2 We also use a hydrogen 3 compensated CO monitor, which will 4 eliminate the nuisance alarms due to 5 hydrogen gas from your battery charging 6 stations. 7 Other ways we've eliminated 8 nuisance alarms is we put in some 9 temperature sensors. We have built 10 combination temperature and smoke sensors 11 that go around the battery charging 12 stations. as well. 13 We've built in a lot of fail-14 safe features. If a cell is disconnected 15 from the actual electronics, it will 16 immediately go into a high alarm and send 17 that signal -- that alarm to the surface. 18 You know when it's at 50, there's a 19 problem with the electronics. Then 20 there's communication failures and other 21 failures built into that system, as well. 22 Another thing that will help to 23 keep the system reliable is we offer

1	24-hour service. We do on-site service
2	and training. We do in-house training in
3	our Colorado facility and our Pennsylvania
4	facility.
5	One thing we pride ourselves
6	on is a quick turnaround on product. Our
7	average turnaround is ten days. In case
8	of emergencies, we can usually get 20 to
9	40 COs built in a day or two. A lot of
10	times we're called on, a mine will need
11	ten; and we can get them out that same
12	day.
13	So, in conclusion, on our
14	Conspec's AMS system, we pride ourselves
15	on being a customer-driven R and D
16	company. The customers that have a system
17	installed that work with it most
18	frequently come to us on a regular basis
19	and say "This would be a nice feature,
20	we'd like to see this added."
21	We take that back to our guys
22	in the engineering department. Usually,
23	within a couple of weeks, we can come up

1	with a solution. We are always trying to
2	continue to keep up with today's
3	technology and trying to incorporate that
4	into the existing system.
5	One other thing that we also
6	take great pride in is our hardware that
7	has been running in mines since the late
8	'80s is still operating in those mines;
9	but you're still able to take that
10	hardware and incorporate it into today's
11	technology without having to actually go
12	in and replace the entire system.
13	We feel that it's very
14	important for the customer to take
15	ownership of that system. When a customer
16	has a full understanding of how to
17	maintain that system, they're going to get
18	the best performance from it. So we try
19	to stress it as not only a safety, but as
20	a production pull, as well.
21	That's a wrap up on Conspec.
22	DR. TIEN: That is a thorough
23	and brief.

1	I do have a quick question. To
2	the extent possible without getting into
3	comparing companies, will you describe in
4	principal how that will work with the
5	personnel and vehicle tracking system
6	underground?
7	MR. ALBINGER: Well, it's a
8	range of frequency. It's a medium
9	frequency signal from your transmitting
10	devices to your receiver. Then, from your
11	receiver to the surface, it's over a
12	24-volt four-conductor cable.
13	DR. TIEN: What is roughly the
14	operating range? How far away?
15	MR. ALBINGER: Around a
16	receiver, it's 200 feet in either
17	direction.
18	DR. TIEN: That's around
19	pillars? It can't be a straight line
20	without interruption in between.
21	MR. ALBINGER: Right.
22	DR. TIEN: Thank you.
23	DR. WEEKS: Again, from what

1	you said and others, the primary source of
2	nuisance alarms is diesel exhaust and
3	hydrogen from battery stations and so on.
4	Could you give us some
5	estimate of what percent of how the
6	frequency of nuisance alarms has declined
7	over the past 20 years or so. By using
8	these discriminators and taking care of
9	those other sources, what portion of the
10	alarms now are nuisance alarms?
11	MR. ALBINGER: That would be a
12	tough question to actually give you a
13	direct answer on, but I can tell you that
14	the diesel discriminator and the hydrogen
15	compensated sensors are not going to
16	completely eliminate a nuisance alarm
17	situation. All they were designed to do
18	is limit them.
19	There are still issues with
20	some nuisance alarms, especially if you're
21	running into situations where the CO and
22	the diesel discriminator itself needs to
23	be calibrated. If you've got a piece of

1	equipment that's idling in front of that
2	particular diesel discriminator for a long
3	period of time, it will saturate that
4	sensor and send you up an alarm.
5	So to prevent nuisance alarms,
6	we're still looking and trying to
7	determine ways to do that. What we've
8	tried to do is just limit them as much as
9	possible.
10	DR. WEEKS: Would you say by
11	using the diesel discriminator in this
12	hydrogen device, did that cut them in
13	half?
14	MR. ALBINGER: I would say it
15	cut them by about 70 percent, 75 percent,
16	somewhere in that area.
17	DR. CALIZAYA: I have two
18	questions. Both of them are related to CO
19	sensors and oxygen sensors.
20	First, do you manufacture those
21	products and sensing units?
22	The second question is: How
23	sensitive are those units to changes in

1 air velocity? 2 MR. ALBINGER: All the 3 electronics are manufactured by Conspec. 4 The actual sensor itself for your methane 5 oxygen hydrogen sulfite is manufactured by 6 City Technology. 7 How accurate are the sensors in 8 high air velocities? That's not something 9 that we've actually ever had to determine. 10 As far as our approval and what 11 we've done over time, we're monitoring the 12 air flow. as well as our toxic and 13 combustible gases; but there's never 14 really been an actual study on how 15 accurate a CO monitor is at a certain CFM 16 or FPM. 17 DR. CALIZAYA: When you do 18 calibrations, I assume that you decide 19 specific calibrations that you recommend 20 to your clients how to calibrate? 21 MR. ALBINGER: Yeah. DR. CALIZAYA: What do you do? 22 23 MR. ALBINGER: Our calibration

1	the manufacturer actually recommended a
2	calibration quarterly, but the MSHA
3	standard is a calibration every 31 days.
4	DR. BRUNE: You mentioned
5	earlier that you are catering to I think
6	26 of 39 of the most productive mining
7	operations. I assume those are all major
8	mines.
9	Do you also have some small
10	mine operations, say less than a million
11	tons a year or maybe even less than
12	500,000 tons of coal a year that you are
13	working with? If not, why not?
14	MR. ALBINGER: We have a
15	couple, but not many.
16	My opinion on why we don't have
17	more is the system, when it was originally
18	designed as the Conspec 500 with our
19	computer graphics and our client, was a
20	little pricier than what the competition
21	was. The smaller mines tended to go for
22	the smaller systems.
23	Over time now, we've kind of

1	faded away and allowed the operator to
2	choose what package they want on the
3	surface, and then we just tie our hardware
4	into that.
5	DR. BRUNE: Okay.
6	DR. MUTMANSKY: One of the
7	questions asked of the other speakers was
8	whether or not it would be feasible and
9	wise to implement or computer program it
10	into interpreting what the sensors are
11	saying and suggesting a course of action.
12	Has your company ever done any
13	thinking toward this end, and would it be
14	possible to do this kind of thing, and
15	would it be advisable to do that sort of
16	thing?
17	MR. ALBINGER: Right now, we're
18	working with a company called Pillar
19	Innovations. They are a company owned by
20	Beitzel Corporation. They have an
21	approval through MSHA on an AMS system.
22	They don't manufacture any
23	hardware. All they concentrate in is

1	software for trending and everything that
2	they see underground. Not only your gas
3	concentration, but everything that's
4	operating underground.
5	So, through these guys, we've
6	done extensive studies on all types of
7	different trends that we see.
8	DR. MUTMANSKY: What's the
9	purpose of that, though. What are you
10	hoping to do with that information, or
11	what is that company hoping to do with
12	that software? What will be the end
13	product?
14	MR. ALBINGER: I can cite a
15	specific example of a mine in western PA.
16	We're running about 145 CO monitors
17	throughout the entire mine.
18	There's one section in the mine
19	where we're not seeing the life expectancy
20	that we normally see throughout the rest
21	of the mine. So what we've tried to
22	determine is what other factors are in
23	that airstream that causing our sensors to

1	lose the life expectancy that is common
2	with them.
3	So we're measuring
4	temperatures. We're measuring the
5	humidity. We're measuring the air flow.
6	Through that data, we're then trying to
7	determine how we can correct those factors
8	in order to increase the life expectancy.
9	Does that answer your question?
10	DR. MUTMANSKY: Actually, I'm
11	more interested in whether or not we
12	should be developing systems that
13	interpret the results and tell the
14	operator on the surface or suggest a
15	course of action to the operator on the
16	surface.
17	What I mean by that is, it
18	interprets any signals it gets that are
19	out of the normal range and then makes a
20	suggestion as to what the possibilities
21	would be. If, indeed, it is an alarm
22	situation, it suggests a course of action
23	to the operator on the surface; whether it

1	is to contact the responsible person or to
2	make a decision to evacuate a section or
3	any other course of action that actually
4	could be all done by computer. At least
5	to the suggestion level, not necessarily
6	to be implemented, but to be suggested to
7	the operator that "Here is the proper
8	course of action to take at this moment
9	using this data as we interpret it or as
10	the software interprets it."
11	MR. ALBINGER: Kevin, in the
12	requirements, isn't it written that the
13	AMS has to be monitored 24 hours by an
14	individual, and that individual is
15	responsible for making those decisions?
16	MR. HEDRICK: The AMS operator
17	has to be somewhere where he can see or
18	hear the alarms on the surface and be able
19	to respond to them, and that sensor
20	continues.
21	MR. ALBINGER: So the system is
22	actually designed where it's giving you
23	all that information.

1	What the operator does with
2	that information is based on, I think, a
3	lot of what they're most comfortable with,
4	which is having somebody there making that
5	call, rather that relying on the computer
6	to make that call.
7	DR. BRUNE: Let me maybe add to
8	Dr. Mutmansky's question here.
9	The Australians have what's
10	called the action response plan.
11	Typically, it's four different alarm
12	levels that require a specific action from
13	the operator, and this action instead
14	of showing just the alarm, it also shows
15	the action that's required of the monitor
16	or the control center operator to take.
17	Let's say the CO Monitoring
18	System goes to say 10 PPM above ambient.
19	It says right there "Evacuate section by
20	this monitor." It tells the operator
21	that. So you can essentially put somebody
22	who is relatively untrained I'll put it
23	that way and not go into specifics in

1	there; and, if he or she sees that message
2	flashing, this is what the system tells
3	them to do because that's what the system
4	manufacturer programmed in based on
5	specifications that the operator made.
6	Is that something that's
7	possible?
8	MR. ALBINGER: Yeah. In the
9	system setup, you can have as many alarm
10	points that you want triggered in there.
11	Based on your air flow, if there is a
12	condition where the CO is traveling,
13	you're going to follow it all the way down
14	the belt.
15	Any time you see a CO alarm,
16	you can watch it move from one level to
17	the other. I think in most cases, the
18	biggest part of the determining the
19	operators themselves or the mine itself is
20	going to want to make that call and not
21	have a computer say "I want that area
22	evacuated."
23	That's my personal opinion. I

Г
1	don't know if you guys agree with that at
2	all.
3	MR. GRAF: I think Al alluded
4	to this earlier, as well. It's not really
5	in our purview to say it's the mine's
6	policy. We can certainly say "The mine's
7	policy is to evacuate if this event
8	occurs," and we can message that in our
9	software.
10	We don't want to be the persons
11	to say "Do this," or "Take this action."
12	DR. BRUNE: I'm very clear
13	there. I think it's the operator's
14	responsibility to define what the response
15	of the control room operator does.
16	The question is: Is it
17	technically possible today with the
18	system, instead of just flashing up a red
19	light that says "This sensor is going into
20	alarm mode," can I at the same time flash
21	a message that says "Hey, what you as the
22	operator should do today or at this point
23	is call a responsible person; call the

1	shift foreman, call the mine foreman, call
2	the superintendant, call MSHA, or whatever
3	the operator would designate the response
4	to be"?
5	MR. GRAF: Yeah. The way the
6	system the way you can set the system
7	up is you can break in to sections, and
8	you know that the chief is on different
9	sections in that area.
10	If the system goes into alarm,
11	you can have a voice communication from
12	the computer travel over either a page
13	phone system or a feeder and just go to
14	that particular person in charge.
15	He'll know he's got an alarm in
16	that particular area, and then he makes
17	the call to either evacuate the section or
18	to have a guy run over into that
19	particular area and inspect what caused
20	that alarm.
21	DR. TIEN: This is I don't
22	know how to ask this question. It's to
23	anybody sitting on the panel.

1	This morning, we have four
2	manufacturers represented. There may be a
3	few others, I presume, in the U.S. I
4	guess my question is this. I heard this
5	morning you were talking about how you
6	have an open system. Do you see the
7	merits of standardization? I'm thinking
8	about 30 years ago, the VHS versus Beta.
9	Now, you have so many systems, mines have
10	a hard time do you know what I'm
11	getting at?
12	MR. ALBINGER: Yeah. I
13	understand, but I also believe that over
14	the last several years, we've all kind of
15	followed the trend that the mine wants to
16	operate over Ethernet fiber optic cable in
17	an open protocol.
18	I think one of the main reasons
19	that the mine wants to do something like
20	that is so that if there is a problem
21	between the mine and the manufacturer, the
22	mine can make a decision to go in another
23	direction without pulling everything out

1	from underground and start from scratch.
2	We're all on a level playing
3	field, their equipment can tie onto their
4	system; and ours can tie onto theirs. So,
5	in a way, I guess that would be a
6	standardization.
7	DR. MUTMANSKY: If you were to
8	be if the superintendent at a mine
9	offered you the opportunity to suggest the
10	ideal operator for the AMS system, what
11	kind of a person would you choose as the
12	operator who's going to monitor the
13	signals and make decisions?
14	MR. ALBINGER: You've got to
15	look for somebody that, number one, wants
16	the job and hasn't just been put into that
17	position. A lot of times, you get guys
18	that show an interest; and the people that
19	show an interest are going to maintain the
20	system the best.
21	You can usually tell in the
22	first half hour of training somebody
23	whether they are in that job because they

1	want to be or whether they're in that job
2	because they were put there to be.
3	You need somebody with a little
4	bit of technical know-how that can
5	navigate around a couple of different
6	screens. You have where you're entering
7	your points, where you're addressing your
8	accesses, and then where you're mapping
9	them out on our graphics.
10	So they don't need to be a
11	computer programmer, by any means, but
12	they need to have some computer literacy.
13	DR. MUTMANSKY: Should they
14	have mining experience?
15	MR. ALBINGER: I would think
16	mining experience is a big benefit, just
17	based on their knowledge of what's going
18	on underground when they're looking at
19	what they see at the surface.
20	DR. BRUNE: Do you think this
21	person should be certified in a way or
22	demonstrate his or her skills in some kind
23	of a fashion before the operator lets them

1 run the control room? 2 MR. ALBINGER: Well. 3 absolutely. We highly recommend -- in 4 most cases, all of our mines have them 5 come in yearly for refresher with --6 there's usually three guys that are 7 maintaining that system on a regular 8 basis, sometimes five. 9 Once a year, we sit down with 10 that group. It may take a day; or it may 11 take two days, depending on how extensive 12 they want to get. We just give them a 13 refresher on any updates that we have or 14 any questions that they may have. 15 DR. WEEKS: Who do you think 16 should train that person? 17 MR. ALBINGER: Well. I think 18 it's important that the manufacturer 19 trains the individual on how the system 20 operates, but I also believe you have to 21 have a person that's in charge of making 22 the decisions at the mine as far as what 23 happens when the systems go into alarm as

1 part of that crew, as well. 2 MS. ZEILER: If there are no 3 other questions from the Technical Study 4 Panel, then I would like to thank the 5 panel members that came here from AMS 6 manufacturers for the information you 7 brought, particularly for the weather-8 challenged nature of your arrivals. 9 If there are no other 10 questions, I suggest we take our lunch 11 break; and we'd like to come back at 1:00 12 o'clock. 13 DR. BRUNE: Excuse me. We 14 didn't have a chance to talk to Mr. Ketler 15 who just finished his presentation. 16 I don't know if there are any 17 questions. I do have one, if I may ask 18 that. 19 MS. ZEILER: Sure. 20 DR. BRUNE: Let me find my 21 Okay. My question went into this notes. 22 CAL NOW button. I'm curious about this. 23 You said this was not available

1	underground yet. Why is that, and when do
2	you expect that to become available? Do
3	you have the CAL gases in a box and the
4	ability from the surface to run a
5	calibration directly from the surface?
6	MR. KETLER: It's not that it's
7	not available. It's not presently used
8	extensively.
9	The cost of adding the
10	automatic calibration just about doubles
11	the cost of putting a sensor in a
12	particular location. So, if you have X
13	dollars for a sensor you have two X when
14	you put AUTO CAL on it.
15	Clients are invariably cost
16	sensitive. The additional cost would have
17	to be considered as an investment over a
18	period of time and written off, less
19	maintenance costs or whatever.
20	The initial cost is always up
21	front, and it's just it adds additional
22	costs to it.
23	DR. BRUNE: If I ran a mining

1	operation and my CO went to whatever, 10
2	or 15 PPMs above ambient, just to make
3	sure the sensor was working properly, I
4	would want to run a quick calibration.
5	If I found out the sensor was
6	improperly calibrated, I would have a lot
7	more information to tell these guys
8	underground. I might say "Hey, I
9	recalibrated, and something is more
10	seriously wrong than just the sensor is
11	out of whack, but it's not likely to be a
12	nuisance alarm."
13	In my opinion, if I was the
14	operator, that would be valuable
15	information for me.
16	MR. KETLER: Automatic
17	calibration takes about maybe six minutes.
18	So you can calibrate it frequently on that
19	basis.
20	The cost of a calibration is 50
21	cents. It's nothing at all compared to
22	the labor to recalibrate it manually.
23	It's quite easily implemented.

Г

1	DR. BRUNE: Also, would this
2	automatic calibration qualify for the MSHA
3	mandate that legally mandates the 31-day
4	calibration interval; or does somebody
5	physically have go there and look at the
6	sensor and see if it's physically still
7	there?
8	MR. KETLER: It doesn't say
9	that somebody has to go there. It says
10	gas has to be applied, certified gas.
11	I think you read it, and the
12	automatic calibration would fit into that
13	definition. So it's not that it would be
14	precluded. It's just interpretation of
15	the words.
16	The records have to be kept.
17	We keep them in the computer. You have to
18	apply certified gas. We do that by an
19	experienced person. We have somebody who
20	oversees the system that's qualified.
21	That sort of thing.
22	So I think it fits into the
23	definition of the 31-day calibration.

1	MR. MUCHO: Kevin or someone
2	from MSHA, can you kind of confirm that?
3	I think that's a key point. Would that
4	automatic calibration be acceptable as the
5	31-day calibration?
6	MR. HEDRICK: It's certainly a
7	technique that we haven't studied.
8	However, what the requirements are is that
9	the device be calibrated by a qualified
10	person periodically, per the
11	manufacturers' specifications.
12	So, if that method is how the
13	manufacturer specifies that it's to be
14	calibrated and it is done by a qualified
15	person with the proper equipment, I don't
16	think there's anything to preclude it.
17	Once again, we have not had an
18	opportunity to review it because it's
19	something that's not being done in the
20	underground mines.
21	MR. ALBINGER: Kevin, isn't
22	there something in there that states you
23	have to have a visual inspection of the

1 AMS system? 2 MR. HEDRICK: That's right. 3 That's a separate activity from the 4 calibration. 5 They can be done 6 simultaneously, but it's every seven days, 7 I think, for alarm units specifically. 8 DR. TIEN: Do I remember 9 correctly you saying -- of course, MSHA is 10 the 31-day calibration. Does the 11 manufacturer recommend six months? 12 MR. ALBINGER: Quarterly. 0nce 13 every quarter. 14 DR. TIEN: Is MSHA overly 15 conservative, or what? 16 MR. ALBINGER: Yes. 17 DR. TIEN: I just wanted to 18 hear it from you. 19 MR. ALBINGER: Basically, there 20 is really no such thing as being overly 21 conservative; but, on the industrial side, 22 for a lot of the surface applications that 23 we have, quarterly calibration is more

1 than enough. 2 I don't know if anyone else 3 agrees with me on that one. 4 MR. KETLER: I think it depends 5 on the sensors. 6 MR. ALBINGER: Versus 7 electrochemical? 8 MR. KETLER: I'm thinking about 9 carbon monoxide or oxygen. They may want 10 to calibrate one type more frequently than 11 another. 12 31 days is a good target, I 13 It's a compromise on methane, think. 14 which may be a little longer, more stable. 15 Carbon monoxide and electrochemical is 16 subject to aging. Oxygen and hydrogen are 17 subject to everything. 18 You might want to calibrate the 19 oxygen every two weeks, the carbon 20 monoxide every 31 days, the methane every 21 two months, or something like that. 31 days is a pretty good target. 22 23 DR. WEEKS: I have a question

1	for the whole panel, actually. If you
2	added a smoke detector to the CO sensor in
3	the AMS system, what additional
4	information do you get from that? Is it
5	how much utility do you get? Is it
6	worth it to get that kind of information
7	from a smoke detector, in addition to the
8	CO monitor?
9	MR. KETLER: I can answer that.
10	Our smoke box smoke sensor is optical; and
11	it's used quite a few of them for conveyor
12	belt monitoring, fire monitoring,
13	synthetic composite materials that are
14	used generally to decompose into smoke and
15	tar compared to a bursting into flames
16	with a stuck roller or whatever.
17	Generally, a smoke sensor is the alternate
18	fire detection device for that type of
19	belt.
20	I think the CFR 30 allows
21	either a CO or a smoke sensor to be used
22	in those cases. In fact, in most cases.
23	DR. WEEKS: The aim here is

1	early detection of a fire. Which gives
2	you a better early detections? Would it
3	be the combination, or how does that work?
4	MR. KETLER: A combination
5	obviously would be better than either
6	because it would have the benefits of
7	both.
8	There's an additional cost
9	because now you have two sensors and two
10	IO channels and two telemetry events.
11	That adds additional costs.
12	One is a boot-strap sensor, a
13	belt-and-suspenders kind of thing. That
14	would be ideal. Either will work in their
15	own situations; but, as I say, some of
16	these conveyor belts, I understand that
17	they decompose into smoke. I think it's
18	black toxic smoke that's easily detectable
19	with a smoke sensor that generates very
20	little carbon monoxide.
21	So, in that situation, smoke
22	would obviously be better.
23	DR. WEEKS: Any other panel

1 members have an opinion? MR. GRAF: It's our contention 2 3 at AMR that through our own testing and 4 talking to our customers on smoke sensors, 5 that be it the ionization or optically, 6 they're either unreliable or maintenance 7 nightmares. 8 The technology is not out there 9 We are looking into different ways today. 10 of doing it with different gases that are 11 put off on these new types of fire 12 retardant belts. I don't believe that 13 there's that many out there that are 14 actually in service right now. 15 DR. WEEKS: What's the 16 maintenance problem? 17 MR. GRAF: Cleaning the optics, 18 keeping them clean to be more reliable. 19 MR. KETLER: Most definitely a 20 problem, but we've accomplished in the 21 design method of the smoke sensor that it 22 can be readily cleaned in the field, 23 without removing it, as it filters for

1 calibration so the smoke doesn't turn into 2 a gas or anything. 3 It can filter the beam and 4 calibrate the optical density. 0 to 1 5 percent optical density is the range of 6 our smoke sensor. It's set at .2 percent, 7 which is the alarm threshold. 8 Every sensor has its 9 disadvantages. You have a combination of 10 factors in a coal mine. Smoke looks like 11 dust, and dust looks like smoke. That's 12 just a fact of life. 13 If you have a way of cleaning 14 it out if it gets a load of rock dust, you 15 can clean it without a whole lot of 16 It makes it usable. effort. 17 Of course, hopefully, the 18 client trains its rock dusters to put the 19 plugs in the holes before they rock dust. 20 Of course, they don't. 21 DR. WEEKS: Any other panel 22 members have any thoughts on that? 23 MR. KETLER: I'm sorry?

1	DR. WEEKS: I just wondered if
2	there were any other panel members that
3	had any thoughts on that.
4	DR. BRUNE: I know from our
5	experience at NIOSH, we do have with
6	all optical sensors, there are issues with
7	both the mine dust and the float dust
8	that's in the mine. Also, especially with
9	rock dust, belts tend to be heavily rock
10	dusted. So that is always a problem in
11	any optical system. If you get rock dust
12	in the system, the system can compensate
13	to a certain degree; but, eventually, the
14	receptor elements will eventually clog up
15	and need to be cleaned.
16	That always has been an issue.
17	I don't know where the manufacturers stand
18	now, but they have addressed that where
19	they will able to address that in a better
20	way in the future. Certainly, that's an
21	issue with optical sensors and ion
22	sensors.
23	Also, if you have other

1	particles in the air that are fine coal
2	dust, that could also lead to false
3	alarms.
4	MR. MUCHO: Just to follow
5	along, though, that's why NIOSH is in more
6	final stages of looking at an combination
7	of ion and optical smoke sensors because
8	of the downsides of either or, and thus
9	produced a combination sensor that's
10	anticipated to be much more reliable and
11	much more mine worthy and able to deal
12	with rock dust, et cetera. We'll probably
13	talk about that tomorrow.
14	DR. CALIZAYA: This question
15	has to do with location and position of
16	the sensor. How sensitive are the CO
17	sensors to the location of the sensor
18	entry?
19	MR. KETLER: Carbon monoxide is
20	a moving molecule. It gets around. If CO
21	is here, it's going to be over there, too.
22	It's not something that just stratifies
23	like methane, which is a heavy molecule.

1	Carbon monoxide is a mobile
2	gas. If you put a sensor over the
3	conveyor, you probably would have maybe a
4	second or two earlier detection than if
5	you put it safely away from the conveyor
6	somewhere.
7	You have to have a trade off of
8	where you put the sensor. You don't want
9	to put people in harm's way when you
10	maintain the device. So it could in a gob
11	area, in a silo, over a motor, or
12	something like that. So there's a trade
13	off in that respect.
14	This also brings up the
15	possibility of putting automatic
16	calibration in a sensor that's in a
17	hazardous area. If you happen to have a
18	you have to have a sensor over a pond
19	or in a silo or in a gob area, and you
20	don't want to send someone in there to
21	calibrate it, put in the automatic
22	calibration; and that precludes the need
23	for that.

1	DR. CALIZAYA: What's your
2	opinion about this 50 feet per minute
3	that's required?
4	MR. KETLER: 50 per minute on
5	the beltway?
6	DR. CALIZAYA: Yes.
7	MR. KETLER: 50 feet per minute
8	is not moving very fast. That's going to
9	be the length of a football field in about
10	six minutes. It's a very slow walk. So
11	it's not carrying carbon monoxide to the
12	sensor very quickly. It takes forever.
13	It could take, depending on the
14	location of the fire or the incident,
15	until the gas gets to the sensor, it could
16	be six minutes. That would be, what, 20.
17	It could be a long time and probably more
18	than it should be, but it's either that or
19	doubling up on the number of sensors or
20	increasing the air speed. I don't know.
21	50 feet per minute is not very
22	much ventilation. You can't feel 50 feet
23	per minute. Most of our air flow sensors

1	will monitor 50 feet per minute, but you
2	wonder what it's measuring because you
3	couldn't feel it.
4	DR. CALIZAYA: Thank you.
5	DR. BRUNE: Just one more
6	question since we have the manufacturers
7	represented here together.
8	I understand, from talking to
9	old coal miners maybe I'm not one of
10	them yet that the human nose is still
11	the best fire detector; and it is better
12	than all the electronic detectors. I
13	don't know what you gentlemen say to that
14	kind of challenging question. Is the
15	electronic nose coming? Is that getting
16	there, or are we still waiting for that?
17	MR. COON: I'll take a stab at
18	it. For early detection, I think the CO
19	monitor is the monitor of choice because
20	as I mentioned in my presentation, CO is
21	odorless, tasteless. How can your nose
22	detect CO if it's odorless?
23	DR. BRUNE: I understand that.

1	Typically, you don't have just CO. You
2	also have other tar and particulates.
3	MR. COON: That's true. If you
4	have a very clean CO without any presence
5	of any kind of odors with it, your nose is
6	going to be lagging way behind.
7	MR. KETLER: There's nothing to
8	smell in the gases that we monitor;
9	hydrogen, methane, carbon monoxide, carbon
10	dioxide, oxygen. They're all odorless,
11	tasteless gases.
12	So what you would smell would
13	be products of combustion. By the time
14	you get the smell, I think that's much
15	later than you would detect carbon
16	monoxide.
17	DR. BRUNE: So would it be fair
18	to say that with the help of the right
19	array of detectors, you can detect a fire
20	quicker? Let's say in the case one of
21	the arguments for moving toward the face
22	is that the crew that's working on the
23	face will smell it quickly if there's a

1	fire developing on the belt and get that
2	as an early warning.
3	That's what the old coal miners
4	say, that's better than what's available
5	from the gas detection warning systems.
6	MR. GUNNOE: Maybe that's a
7	maintenance issue on the gas detection
8	system.
9	MR. KETLER: The smell is
10	qualitative, not quantitative. We found
11	that in monitoring for propane in certain
12	alternative fuels operations, that people
13	can smell propane; but they can't quantify
14	it. It's desensitizing their nose for
15	future stronger smells. It's not a very
16	reliable way of monitoring smells.
17	DR. WEEKS: Quantification is
18	not that important in this case because
19	what we want to find out is whether or not
20	there's a latent fire. It's an either or
21	kind of question. It's not just a
22	question.
23	One thing that I've always kept

1	in mind is that in one of the fires, that
2	was detected before the AMS system went
3	off. It could be the calibration. It
4	could be lots of things, but that's what
5	happened.
6	I think it's not a question of
7	either or, either the nose or some
8	monitor. I think we need to use our
9	common sense. We have a variety of
10	detection systems out there; CO monitors
11	and people and so on and so forth.
12	They're all important.
13	MR. COON: I can personally
14	attest that in 1986, I had to be on ground
15	helping troubleshoot a system. The
16	operator of the system called underground
17	to indicate that we needed to go to a
18	certain location, that there was a monitor
19	that was seemingly going up.
20	We thought it was part of our
21	problems that we were looking for. We
22	actually get to the belt, and we find that
23	the belt is running off on the pillar

block in the take up generating CO. We
could not see it, and we could not smell
it.
We had to use a hand-held unit
that we had with us and trace it down to
the actual belt that ran off at the pillar
block.
So there's an example that
there was no smoke, there was no odor, yet
we were there; and I witnessed this.
DR. WEEKS: Well, it could go
either way. I mean, we can think; and
machines can detect.
DR. MUTMANSKY: Just for the
Panel's information, we had previous
witnesses that seemed to indicate that
often these incidents can be detected by
the human nose before any of the
electronic instruments would pick up the
CO levels. That was sure to happen over
time, but we're bringing up these
questions because of some of the testimony
that we had heard previously. So that's

1 why the questions have come up. 2 Are there any other -- I guess 3 we have a captive panel here, and it's 4 good that we're able to ask all these 5 questions while you're still captive here. 6 Before we terminate, however, I 7 would like to know if there are any other 8 pressing questions that the Panel would 9 like to discuss at this time. 10 Before we terminate and before 11 Linda tells us what time to get back, I 12 would like to say thank you to every one 13 of the panel members. I know some of you 14 had great difficulty getting here, but you 15 persevered. We really appreciate that and 16 thank you for being here this morning. 17 DR. WEEKS: Are y'all going to 18 be around if we have questions that might 19 come up? We can talk to you about them 20 informally if you stuck around for a 21 while. 22 MS. ZEILER: Okay. Thank you. 23 It's 10 after 12:00. So I

1	would like to suggest we reconvene at
2	1:30. We need to go off site to get
3	lunch.
4	(Lunch break.)
5	MS. ZEILER: I want to thank
6	you for your patience. Mr. McNider is
7	here today to talk to the Panel about the
8	mine tour they had at Jim Walter
9	Resource's Number 4 Mine yesterday and the
10	belt air issues he wishes to present to
11	the Panel at this time.
12	MR. MCNIDER: Well, as I told
13	the group yesterday, here's the rest of
14	the story.
15	Anyway, I'd like to welcome the
16	Panel to Birmingham. I certainly
17	appreciate them taking what we offered, an
18	invitation for the group to come and look
19	at our mines.
20	We've been using belt air since
21	1979. The mine they went in was one of
22	the first petitioned mines to ever use
23	belt air. We've been using it now close

to 30 years, not quite. We're approaching
30 years.
That mine originally, the
petition was for 20 minutes between
sensors, and now we're down to 1,000 feet
and, of course, under the regulation. The
progression was from 2,000 and then it
went to 1,000. So we've probably got as
much experience with belt air as anybody
in the country.
The comments today from me will
be primarily focussed on ventilation.
When you were in Salt Lake City, in the
west, a lot of the focus was on strata
control, two entry.
In the east, the primary focus
is going to be on ventilation and the
requirements for ventilation and why we
need belt air from a ventilation point of
view. Although, strata control is a
consideration. Even though the focus is
probably primarily on ventilation or it
will be on ventilation we cannot

1	overlook the strata control aspects of it;
2	and I will go into that a little bit.
3	We would like also today
4	I'll be doing the part on the ventilation
5	and the strata control. Keith Pylar, who
6	is in our safety department, is going to
7	do a little short talk on his experience.
8	He's been in our No. 7 mine for
9	several years. I'll let Keith go through
10	his history and just let him tell you from
11	his perspective how he sees belt air.
12	Then Randy Watts is our manager
13	of electrical engineering. Randy sat on
14	the panel this morning because Jim Walter
15	designed a lot of our systems ourselves.
16	I believe we're one of the front runners
17	in that.
18	As a company, it's very
19	unusual. Most companies go to the AMS
20	monitoring people to put the system
21	together for them, but we had the
22	capabilities to do that.
23	We do buy a lot of off-the-

Г

1	shelf components, and Randy will discuss
2	that. From an operations point of view, I
3	know you had a lot of questions about the
4	AMS to the manufacturers, and Randy might
5	be able to address some of those from an
6	operations point of view.
7	Again, thanks to the Committee
8	for going to No. 4. I think we had a good
9	visit. Hopefully, you saw the
10	professionalism with which we monitor the
11	mines and the pride we take in using belt
12	air and how we implement it.
13	Then I'd also like to remind
14	the Committee of the comments made in
15	Pittsburgh concerning belt materials and
16	the AMS system, but Randy will expand on
17	that today.
18	Although our mines have been
19	degassed for years, there's still a great
20	need to utilize all available air courses
21	to carry intake air to the face.
22	No. 4 mine, the mine that you
23	were in yesterday, is probably our least

Г

1	gassy mine today. It's been degassed for
2	over 20 years. Even though it's been
3	degassed, we recently applied to MSHA for
4	a plan that we wanted to implement at the
5	mine.
6	We were looking at reducing the
7	air volumes through that plan; but, after
8	a further review when MSHA came in to look
9	at it, we are still going to have to
10	remain with the historical levels of
11	19,500 at the end of the line curtain.
12	Our No. 7 mine is required
13	17,000 at the end of the line curtain.
14	Those are large amounts of air volumes at
15	the face. Like I said, even though we've
16	been under degasification and there's no
17	doubt degasification has lowered the
18	overall gas volume in the mine, there's
19	still a need for high volumes of air.
20	In order to get this much air
21	to the end of the line curtain, the mine
22	must provide at least twice that amount in
23	the last open crosscut. It's not uncommon

1	for us to have 50,000 to 80,000 cubic feet
2	per minute in the last open crosscut and
3	120,000 cubic feet per minute at the
4	return regulators.
5	In order to course that amount
6	of air through the mine, we operate fans
7	that are rated at 15 inches and 1,125,000
8	cubic feet per minute, with 3,500
9	horsepower motors.
10	It's not unusual for us to
11	operate two fans in parallel on each
12	return shaft. As a matter of fact,
13	because of the ventilation needs, all the
14	mines that operate in the Blue Creek Seam
15	that I'm aware of in Alabama, utilize belt
16	air at the face.
17	There's one other mine in
18	Alabama that utilizes belt air that does
19	not mine the Blue Creek Seam, and that's
20	the coke mine that operates in the Cahaba
21	Basin.
22	In that mine that I've got on
23	the screen now, you can see the blue stars

1	are the mines that are the mines that are
2	in the Warrior Cove Basin. They're deep
3	mines.
4	Typically, the cove dips from
5	the Northeast to the Southwest. So, as
6	you go up to the Northeast, you get much
7	shallower. As you go to the Southwest,
8	towards Tuscaloosa, you're getting deeper.
9	The mine you were in yesterday,
10	the No. 4 mine, is about 2,000 feet deep
11	as it mines north. You can see No. 4 mine
12	in the bottom in the green on your screen
13	there.
14	As we go north, as I said, and
15	Northeast, we're getting shallower. The
16	No. 7 mine is to the east of our No. 4
17	mine. The No. 5 mine at the bottom of the
18	screen there is the deepest mine on
19	average. I believe it was the deepest
20	mine on average in North America, and
21	probably one of the gassiest.
22	Our No. 3 mine is the mine to
23	the right of the screen, which is here.

1	Here's No. 4, No. 7, and No. 5. It's the
2	shallowest mine that we operate.
3	North of our No. 3 mine is the
4	Oak Grove Mine. North of No. 4 and No. 7
5	mine is the Shoal Creek Mine.
6	The reason I'm showing you that
7	is just so you can get a relationship.
8	All of those mines use belt air. They are
9	all in the Blue Creek Seam.
10	Probably, the shallowest part
11	of North River, I would guess, is 900 to
12	1,000 feet deep. Also, the same thing for
13	Oak Grove.
14	The North River Mine is the
15	only mine in Alabama that I'm aware of
16	that does not use belt air to face. It's
17	in the Pratt Seam. That's about half as
18	deep. I think North River is probably
19	about 600 feet deep. I'm not sure of
20	that, but I think that's probably about
21	the depth. It has nowhere near the gas
22	that we do operating in the Blue Creek
23	Seam.

Г

1	Also, the Coke Mine, that I
2	mentioned, is a low-seam mine. It's in
3	the Cahaba Basin, and it liberates quite a
4	bit of gas when cutting coal.
5	So the question is: Why belt
6	air? Before I go into that, I mentioned
7	about the needs for the ventilation at the
8	face. As you can see these line curtain
9	lengths, when we line up, this particular
10	one is a yield stable yield.
11	That's our standard pillar
12	configuration at Jim Walter's Mines. This
13	is a pillar configuration at our No. 7
14	mine.
15	The one you were in yesterday
16	was a 125 feet centers on the yield pillar
17	crosscut, and this one is 168. So the
18	line curtain length in this particular
19	mine is 285 feet.
20	So, in order to get the 17,000
21	at the end of the line curtain where
22	you're operating, that's one reason why we
23	require a lot of pressure and a lot of
1	volume in the last open crosscut.
----	--
2	Why belt air? Jim Walter's
3	engineering department utilizes an Ohio
4	Automation Ventilation Simulation program
5	to simulate the ventilation needs for each
6	mine. We modeled the ventilation using a
7	four-entry and three-entry section with
8	and without belt air.
9	As you can see by the
10	simulations, which I will go into here
11	just in a moment, not to use the belt as
12	an air course limits the amount of
13	ventilation that can decourse to the face.
14	To course the amount of air
15	that is needed in these mines requires
16	large pressure differentials from intake
17	to return utilizing all available air
18	courses. To restrict the ventilation on
19	the belt air course with some type of
20	regulator such as a bulkhead, that creates
21	high pressure across the bulkhead. This
22	is a problem to the mine because of the
23	high air velocity that has coursed through

the small opening around the belt that
creates a float and respirable dust
problem.
Also, to restrict belt air
course pressurizes the air course and
creates leakage from the belt to the
primary intake escapeway and contaminates
the escapeway.
Another problem with limiting
the flow of air with a flow on the belt is
the creation of dead spots. When you put
in a bulkhead and you're trying to limit
the air coming from two directions, it's
difficult to manage that.
From my experience when I
first started in the mines, I worked at
No. 3 mine. We had a neutral belt. We
vented it to the return. Believe me, it
was not uncommon to find dead spots in the
belt and high extremely high methane
levels to the point of being a hazard in
the mines. So that is definitely an
issue.

1	The most effective way to
2	ventilate gassy mines that require large
3	quantities of air is to utilize all
4	available air courses and have a positive
5	one-way ventilation on the belt.
6	I'm going to go into the
7	simulations that we used. I wanted to run
8	these. All these simulations were based
9	on 15,000 feet. Now, that sounds like a
10	long distance; but, in today's mines, it's
11	not. We've got some that are designed to
12	19,000 feet.
13	As a matter of fact, in No. 4,
14	the mine you were in yesterday, we've got
15	some that are either approaching that or
16	at that length.
17	The intake airway resistances
18	that we used are from one of our mines.
19	It was a .3 belt airway resistance per
20	1,000 with .337. Return airway resistance
21	per 1,000 was .383. Both regulators would
22	run at 120,000 CFM.
23	I told you the reason for that.

1	If you go 15,000 feet with a yield-stable-
2	yield configuration, the number of
3	stoppings that you have and I
4	calculated that out if you use just 500
5	CFM for stopping, that gives you 60,000
6	cubic feet of leakage. You're doing a
7	good job, with the kind of pressure I'm
8	getting ready to show you in a minute, to
9	control the leakage to that amount.
10	Then the left and last open
11	crosscut, again, is 60,000. So that gives
12	you 60,000 leakage.
13	The first simulation it's
14	going to be a little difficult to see. I
15	apologize. I was hoping that would show
16	up a little bit better.
17	On the left and right
18	regulator, is 120,000; 60,000 at the face,
19	15,000 for the length. As you can see
20	here Jerry, you asked me in Pittsburgh
21	to give you a pressure differential, and I
22	calculated in my head about 10,000 feet.
23	I said it was about six inches.

1	On this one, you can see that
2	it's a 9.33-inch drop. It sounds huge,
3	but I'm telling you it's in that range
4	depending the Rs won't be exact, but
5	these are the model Rs. This is what we
6	use every day to simulate our mines.
7	The intake, I believe had about
8	123,000 and you can see it in your
9	booklets that I gave you and about 116
10	on the belt. That is with a little over
11	50 percent on the intake, and it's closely
12	distributed between the two entries.
13	Now, the next run is showing
14	what, if we put a bulkhead up close to the
15	face and we try to dump that air into the
16	return? What happens on a four-entry
17	section?
18	Well, the first thing is, we're
19	going to kill about four inches negative
20	to try to kill not kill, but to
21	regulate this width to the point to where
22	we can pull air back from the face and
23	then through the regulator and back into

the return.

1

2	We've got about 15,000 CFM. We
3	started out with about 106 on this, and
4	you can see when you put the bulkhead here
5	what it's doing is pressurizing this belt,
6	and the leakage now is in the wrong
7	direction.
8	So, if you put a bulkhead at
9	the face on a four-entry section, what
10	you've done in effect is you've taken in
11	and pressurized the belt. That's what I
12	was talking about earlier. You've
13	contaminated the intake escapeway. That's
14	not what we're trying to achieve.
15	You've also lost air at the
16	face. Where we had 60,000 before, now
17	we've got 24,000; and, on the right side,
18	we've got 57,000. The regulator, in
19	effect, is wide open. So there's no
20	pressure here to put any more air on that
21	section.
22	Basically, that is all that
23	section will do. Where we used both

1	entries in parallel earlier, we had the
2	leakage in the right direction, we had
3	60,000 on the face, and I believe we had a
4	little bit of pressure at the regulator
5	still in the reserve.
6	Now, we're wide open; and we've
7	got nothing in reserve. We've
8	contaminated our intake escapeway.
9	Okay. So let's put the
10	bulkhead at the other end of the section
11	and see what happens there. Well, in this
12	case, we're destroying almost 12 inches of
13	pressure, 11.69. The differential from
14	intake to return on that section is 10.7
15	inches. We've actually lost air at the
16	face.
17	Again, the regulators are wide
18	open, and we're pulling air back down the
19	belt. Our leakage is in the proper
20	direction, but we've lost air in the face.
21	That bulkhead right there and believe
22	me, I've seen this in my career.
23	When you try to limit the air

1	around the belt and, normally, you're
2	going to have the belt running through the
3	bulkhead. We've tried a lot of different
4	ways to control that. It is extremely
5	difficult to control with those kind of
6	pressures. It's a huge dust source. So
7	that's a major problem with trying to
8	regulate the belt.
9	Okay. Next, we went, and we
10	looked at a three-entry section, which we
11	run.
12	Again, the gateway length was
13	15,000 feet. The resistances were the
14	same per 1,000. The right return
15	regulator was 138,000.
16	To explain that, in order to
17	get the and I'll show you on the base
18	case here. We had 90,000 at the face
19	because we're on three entries. We had 60
20	before for a fishtail, but now we're
21	ventilating another place. So that's why
22	that's higher.
23	On this case, you can see it

1	takes about 11 inches to do that in order
2	to get the pressure proper from the intake
3	to the belt. Then we had to limit the
4	amount of air that was actually on the
5	belt. It was 25,000, and 112 on the
6	intake. We've got about 92 at the face,
7	and, like I said, 138. That regulator is
8	wide open.
9	So, with 11 inches, we're out
10	of pressure with a three-entry section;
11	but that does with belt air, we do get
12	the air that we need to operate at a
13	15,000- foot-long section.
14	Now, we put the bulkhead near
15	the face. We're destroying everything
16	is the same. We've just added a bulkhead
17	across and a regulator here to ventilate
18	the air to the return.
19	Now, we're destroying about 2
20	inches of pressure to get that air. We've
21	pressurized the belt again. Now, here we
22	have 90,000, we've got about 53,000 at the
23	face. So we've got a tremendous loss, and

the section is wide open with no available
pressure to get any more ventilation to
the face.
If we take the bulkhead and we
put it back down at the other end of the
section, now we're up about 8 inches
trying to destroy that amount of pressure.
We're ventilating the belt back down into
the return. We've got about 9.3 inches
across from intake to return.
In this particular case, the
intake is loaded up. We've got 145,000
because the intake is trying to course all
the air to the section and back and back
down the belt. We've got 57,000 at the
face with no available pressure.
So with a four-entry or a
three-entry, using belt air at the face,
we're not as efficient. We lose
ventilation, not counting the other
problems that we've created by adding a
bulkhead or a regulation to the belt which
can contaminate this gateway and create a

1	huge dust problem along the belt line and
2	a clean-up problem.
3	All right. So now the question
4	is: Why don't we add an entry parallel at
5	intake so that we can replace the belt
6	line? This sounds logical from a
7	simplistic look, but to add an air course
8	that's parallel with an existing air
9	course does nothing to improve the
10	escapeway capabilities of the mine or the
11	overall ventilation.
12	It does replace the belt as an
13	air course, but the section in the mine
14	requires more additional air to ventilate
15	the belt to the return. It requires more
16	pressure in a mine that's already
17	utilizing some of the largest fans
18	probably in the world.
19	Together with the increased
20	ventilation needs, there's still the
21	question of the escapeway with only a
22	couple of possibilities, one of which must
23	be the intake which is now parallel with

1	another entry, the belt, or the return.
2	So you've got the parallel
3	intake, the belt, or the return as your
4	possibilities for your escapeway. To
5	simply add an entry parallel with the
6	existing intake, the same possibilities
7	exist for escapeway; and no improvements
8	have been made because those two air
9	courses on the intake are in common. So,
10	if you had a fire, it's going to act
11	exactly like if you had one by itself.
12	The question has been asked:
13	Why not separate the entries? Have an
14	intake, a brattice line, an intake, a
15	brattice line, and a belt line. With
16	unbalanced resistances such as the track
17	and utilities in one entry and the other
18	open, deterioration in one but not in the
19	other will result in an unbalanced flow
20	situation where there will be cross flow
21	from one entry to the other and a mix of
22	air from an escapeway point of view.
23	It would be extremely difficult

1	to control an unbalanced flow situation
2	and try to keep those entries right, as
3	far as an escapeway point of view.
4	We also modeled this to show
5	the effects of having a five-entry versus
6	say a four-entry. We modeled it at 15,000
7	feet. Again, we used the same Rs as we
8	used before. We used 120,000 on the left
9	and right, and 60 at the face again.
10	On the base case, in this
11	particular case, you can see that it takes
12	about 7.25 inches to ventilate the face
13	or to ventilate the section; 60,000 at the
14	face, 120,000 at the regulator.
15	In this particular case, we've
16	got about 5 inches. If we need to improve
17	the ventilation, we've got a tremendous
18	amount of pressure to work with.
19	Now, let's say that we take a
20	bulkhead, and we're going this time to
21	regulate this belt to the return. We've
22	got about I can't read that number. It
23	looks like about 8,000 going through the

1 We've got 1.21 inches. bulkhead. 2 So that's getting down more in 3 the zone of what we can control, but we're 4 a little bit less at the face. The right 5 side had the 60, but the left side where 6 we added return air is now about 52,000, 7 and the regulator is out of pressure. 8 We also use more -- it took 9 more air in this system. We've got about 10 the same air in the face, but we've got 11 about 150,000 on the left and about 12 120,000 on the right. So we've got about 13 270,000 versus 240,000. 14 So, even though we were able --15 we were not able to 100 percent accomplish 16 our goal of 60,000 in the face, we did 17 come close. It takes more air on the 18 section, and it takes more available 19 pressure than it did before, 8.63. The 20 other one was about 7.25. So it takes 21 more pressure and more air to ventilate 22 this section versus the other way. 23 One other thing about the

1	Even though the differential may be small,
2	there's already a differential required;
3	and the intake must have at least 50
4	percent of the total air of the section,
5	which means there will be some pressure
6	drop from the intake to the belt.
7	Because the belt is more
8	resistant than the intake, this in most
9	cases is fairly easy to maintain; but to
10	arbitrarily set a number for a minimum
11	could mean that in order to comply, the
12	mine would have to create an artificial
13	means of regulation there again, the
14	bulkhead to create this pressure drop.
15	This, in turn, creates a dust
16	problem; and the ventilation gets more
17	difficult to control. In most cases, the
18	differential between the intake and the
19	belt naturally exist and become greater as
20	the mine develops.
21	We went to a point feed at our
22	No. 4 mine yesterday. It was at the
23	intake shaft in the north. We had the

1	entry probably the point feed, which
2	I'm not sure the exact width, but it was
3	a roll-up door. It looked to be about
4	seven or eight feet. It was approximately
5	two feet off of the foot wall, and we
6	estimated it. We did not measure it, but
7	I'd say we easily had three to four
8	inches.
9	So we had quite a bit of
10	pressure differential. The primary reason
11	for that is because of the belt line
12	layout and the resistance of the belt line
13	versus the intakes.
14	That gets back to the reason
15	for the point feed because as the air on
16	the belt line drops off, then that's the
17	reason you use a point feed to pick it
18	back up.
19	So, in effect, you have a
20	minimum differential down; but to go back
21	and artificially try to create a
22	differential by doing something such as
23	regulation, in my opinion, would be

1 detrimental to the mine.

2	We've got to remind ourselves,
3	why do we have the air in the first place.
4	The air is there because of the needs of
5	the mine. We've got 120,000 at the
6	regulator. If we had a four-inch
7	resection, which we have, and we're trying
8	to utilize the full effect of all the air
9	courses, if we go back and try to limit
10	the velocity or create a minimum drop, I
11	think that would be detrimental to the
12	mine, limiting the velocity on the belt.
13	Oh. one other thing on the
15	,
14	escapeway enhancement. We pointed this
14 15	escapeway enhancement. We pointed this out yesterday. Under the MINER Act,
14 15 16	escapeway enhancement. We pointed this out yesterday. Under the MINER Act, there's already a requirement for
14 15 16 17	escapeway enhancement. We pointed this out yesterday. Under the MINER Act, there's already a requirement for directional cones. We saw those. There's
14 15 16 17 18	escapeway enhancement. We pointed this out yesterday. Under the MINER Act, there's already a requirement for directional cones. We saw those. There's 96 hours of breathable, should a person
14 15 16 17 18 19	escapeway enhancement. We pointed this out yesterday. Under the MINER Act, there's already a requirement for directional cones. We saw those. There's 96 hours of breathable, should a person become trapped, and caches for SCSRs for
14 15 16 17 18 19 20	escapeway enhancement. We pointed this out yesterday. Under the MINER Act, there's already a requirement for directional cones. We saw those. There's 96 hours of breathable, should a person become trapped, and caches for SCSRs for every 30 minutes of walking to get out of
14 15 16 17 18 19 20 21	escapeway enhancement. We pointed this out yesterday. Under the MINER Act, there's already a requirement for directional cones. We saw those. There's 96 hours of breathable, should a person become trapped, and caches for SCSRs for every 30 minutes of walking to get out of the mine.
14 15 16 17 18 19 20 21 22	escapeway enhancement. We pointed this out yesterday. Under the MINER Act, there's already a requirement for directional cones. We saw those. There's 96 hours of breathable, should a person become trapped, and caches for SCSRs for every 30 minutes of walking to get out of the mine. Limiting the velocity on the

1	limit the velocity, but the reason the
2	belt velocities are high in most cases is
3	because of the ventilation needs of the
4	mine.
5	In order to achieve 120,000
6	cubic feet per minute at the regulator for
7	each section split means that the belt has
8	to be utilized to its fullest. To
9	regulate this air course to limit this
10	flow will compromise the ventilation needs
11	of the mine.
12	Regulating this split also
13	creates dust problems and pressurizes the
14	belt to a point that may create leakage in
15	the wrong direction, and this will
16	jeopardize the intake escapeway.
17	That's what I was showing about
18	the bulkhead. Now, that was to reverse it
19	and bring it away from the face.
20	Depending on what that minimum requirement
21	is, it could create the differential from
22	the belt in the wrong direction.
23	Randy will speak about the

1	Atmospheric Monitoring Systems and their
2	effectiveness in higher air velocity
3	conditions.
4	Like I said, we've used belt
5	air in Jim Walter for 30 years. It's not
6	uncommon for us to get a 1,000 feet per
7	minute belt velocity. As a matter of
8	fact, if you think about the face case
9	that I had up there as a four-entry, we
10	had 123,000 in the intake and 116 on the
11	belt.
12	So, if had roughly a 6 by 20
13	entry, that's 1,000 velocity. So, for us
14	to see that is not that uncommon.
15	Why limit the velocity on the
16	belt if the atmospheric monitors will
17	detect heatings at a low prior to actually
18	becoming a fire?
19	The people that were at the
20	mine yesterday, there was quite a bit of
21	talk about bearings that got hot, rollers
22	that could be detected and detected in
23	some of them on main lines and in high

1 velocities. 2 As stated above, when belt 3 velocities are high, it is for a reason; 4 and the reason is the ventilation needs of 5 the face. 6 Respirable dust on the belt 7 lines, another concern in high velocities, 8 has not been a problem and can be 9 controlled through water sprays and proper 10 chutes. 11 In your booklet here, we have 12 all of the dust samples from No. 4 mine, 13 respirable dust samples off the belt line. 14 We had MSHA's attached, and we've got Jim 15 Walter's. 16 The belt samples are a standard 17 of one. These are single-shelf samples. 18 So it's with a gravimetric pump, taking a 19 single shift. This goes back to January 20 of 2000. So it's roughly about seven 21 years of data. 22 The belt standards, where we 23 were over the standard, were seven; but

1	you come back and you do a check on that
2	because it is a single-shift sample. We
3	were not out of compliance any. To my
4	knowledge, we have not been cited on a
5	belt dust respirable dust sample.
6	There were 164 samples taken.
7	The percentages of the samples that were
8	over the standard of one was 4.27, and the
9	average, if you take and include all the
10	over-exposure samples, was .46. If you
11	exclude those, it was .4 as the average.
12	Now, if you take the Jim Walter
13	samples, the belt samples that were over
14	the standard, one is pretty close to what
15	MSHA got. We had about an eight over that
16	length of period.
17	Now, the thing that's a little
18	bit different on the mine samples, if we
19	have overexposed the standard of one, we
20	have to come back with a five check.
21	Under the law, it calls for five
22	consecutive samples.
23	When we went back and we

1	rachackad it wa wara not out of
1	rechecked it, we were not out of
2	compliance any. There were 243 samples
3	taken. The percentage over the standard
4	was 3.29. Here again, it follows what
5	MSHA got really close. The average was
6	.44 including all samples and .4 when you
7	exclude them. So that's pretty much the
8	same thing that MSHA got.
9	So, when you take into
10	consideration that AMS will do the job and
11	respirable dust can be controlled, why
12	limit velocity? You are going to impact
13	the face ventilation. Again, it's a mine.
14	Strata control. As I said
15	earlier, although strata control is a
16	secondary in these mines to the
17	ventilation, as far as the need for belt
18	air is concerned, it's still an important
19	issue. In order to properly handle soft
20	floor conditions and deep cover, the
21	yield-stable-yield pillar configuration
22	was applied to these mines.
23	As a matter of fact, the first

1	mine that was developed for Jim Walter was
2	in our No. 5 mine, the one that I told you
3	was the furthest to the south and the
4	deepest.
5	The yield pillars are designed
6	to yield, while the stable pillar is
7	designed to support the cover load and
8	transfer loads from mining of longwall
9	panels. This can be compared to standard
10	conventional pillars.
11	This can be accomplished while
12	at the same time narrowing the span of
13	wall-to-wall section compared to standard
14	conventional pillars.
15	The system has worked well and
16	has been adopted as our primary pillar
17	system for section development. When we
18	need to add entries, such as in the mains,
19	we must be careful in how this is done.
20	We cannot simply add an additional yield
21	pillar entry that might be in parallel
22	with another yield pillar because the
23	yield pillars support no load. If the

1	span becomes too great for the main top,
2	then deterioration in the roof will
3	happen.
4	This can cause significant
5	problems for the mine. If a stable pillar
6	is added, then the overall width of the
7	section becomes great because of the size
8	our stable pillars at this depth; and
9	development for section advance is
10	diminished greatly.
11	If you'll think back to the
12	size of the stable pillar that I had
13	earlier, then you can see, to add another
14	one of those, what that would do to the
15	overall section.
16	Because of ventilation, we
17	typically drive four entry sections for
18	longwall development so that we can have a
19	fishtail ventilation. To add another
20	entry with a stable pillar would slow
21	section development for longwalls to such
22	an extent that it could impact the
23	economic viability of the mine.

So it would be highly
questionable how the economics would look
for the mine if we tried to add a stable
pillar. Earlier on, like I said, it
really doesn't enhance the ventilation.
As a matter of fact, it's a detriment to
the ventilation if you course the belt air
back.
One other thing I wanted to say
is that we've got a long history with belt
air. We've also had numerous fires in our
mines. Our No. 5 had spontaneous
combustion in it.
Bill Francart's been down and
looked at our monitoring systems numerous
times. Bill has seen firsthand the impact
of having an AMS system can have as far as
safety and having a baseline reading in
the mine.
Once you come into a fire
situation, one of the first things we try
to do is evaluate our intakes and restore
our AMS systems because they are critical

to you. You can add numerous sensors of
whatever you might want to look at, and
that can greatly enhance the overall
safety of the mine.
To my knowledge, we've been
using belt air for 30 years, roughly, in
our mines; and I don't know of anyone
that's been injured or where we've had a
problem utilizing belt air. In my
opinion, it has definitely been an overall
asset to the mine.
That's all I have. I was going
to let Keith talk, and then Randy. We'll
be glad to answers question when we get
through; or I can answer them now,
whichever way the Panel would prefer.
DR. MUTMANSKY: One quick
question.
The dust samples that you've
shown in your booklet here are interesting
in a sense that most of your dust samples
on the belt are relatively low .2, .3,
something like that.

Г

Then, you have these over
standards, some of which are really quite
high, like 3.95, 2.66, and so forth. Is
there a reason for that? Is there an
explanation as to why those happen to be
very high?
MR. MCNIDER: I know you can
get excursions with a gravimetric pumps.
Everybody that's used them I mean, it
happens.
This could be where rock dust
or something that was an excursion from
the norm that might have happened that I
can't explain, or it could be simply
something with the evaluation of a sample
cassette itself.
That's one reason I wanted to
put it in there and I highlighted it for
the Panel, to show you that.
Normally, when they're high
sometimes you'd see it would be 1.1, 1.2,
and be slightly out. There are a lot of
times you get it so far off the norm where

1	it would be as high as 3 milligrams. Is
2	that a real situation or not? I can't
3	tell you.
4	That's why you come back and
5	you do checks behind that, because it is a
6	single-shift sample; and, with gravimetric
7	pumps, that can be a problem.
8	DR. WEEKS: I've got a couple
9	of questions about the samples, too, just
10	for the sake of information.
11	Are these all designated area
12	samples?
13	MR. MCNIDER: Yes.
14	DR. WEEKS: Where exactly were
15	they taken?
16	MR. MCNIDER: I believe they
17	were by the belt tailpiece.
18	DR. WEEKS: And they are eight-
19	hour samples, or are they 12-hour samples?
20	MR. MCNIDER: They would be
21	eight hours. Yeah. Let's say the
22	standard today.
23	DR. WEEKS: These were for

1	compliance purposes?
2	MR. MCNIDER: Yes.
3	DR. WEEKS: Okay.
4	MR. MCNIDER: By the way, Jim,
5	those are off the MSHA web page. I think
6	any of you guys could call those up and
7	get them.
8	That was for our No. 4 mine. I
9	did not do both mines. So I'm not sure
10	about No. 7.
11	DR. TIEN: How would you like
12	to handle the questioning? Do you want
13	the other two gentlemen to do their
14	presentation first and come back?
15	MR. MCNIDER: Yeah. Let's do
16	that, and then we'll come back.
17	DR. TIEN: Okay. Sure.
18	MR. MCNIDER: I will turn it
19	over now to Keith, and he is going to make
20	a couple of comments, and then we'll go
21	from there.
22	MR. PLYLAR: Good afternoon.
23	My name is Keith Plylar. I'm currently a

1	safety associate at Jim Walter Resource's
2	No. 7 mine.
3	I've been employed there
4	approximately 27 years. I've served on
5	the UMWA Health and Safety Committee. I
6	was for there about 18 years at that place
7	prior to taking the safety associate's
8	job.
9	I've been a big proponent of
10	mine health and safety for miners for
11	several years, probably a couple of years
12	prior to getting on the committee. I've
13	been a big advocate for monitoring of belt
14	lines.
15	I've spoken with committees
16	before. When we started out with our
17	Petition for Modifications, the 2,000 feet
18	on the monitoring of our belt lines, I was
19	a big proponent to change that to get it
20	down to 1,000 feet.
21	Like I said, again, I guess
22	I'm just here today to say that in my
23	experience, I believe that we can mine

1	coal with the safe use of belt air because
2	we've been doing it for several years.
3	I also think there's advantages
4	that we normally don't look at from using
5	belt air. We always concentrate on the
6	disadvantages of it, I think, instead of
7	looking at some of the advantages.
8	That's another thing I want to
9	talk a little bit about. As some of the
10	people said today, with our Monitoring
11	System we have, we've been able to detect
12	and pick up smoldering situations,
13	bearings going out on rollers, hot rollers
14	or even a belt getting out of alignment
15	and picking it up before it becomes a
16	fire.
17	Any time you can get that early
18	detection and get the notification to the
19	people that are working nearby or get some
20	action to the problem, that enhances the
21	safety of the miners at the mine.
22	Without this system, without
23	the Monitoring System, if you've got a

belt line that's isolated or you've got a
belt line that' in a neutral entry, then
how big of a fire or how much of a flame
or how much CO do you get before you would
actually be notified of it?
Most of y'all can remember
this. When I started in the mine, we had
the old heat-sensor-type devices on the
belt line. Luckily, I never saw it; but I
can imagine a belt line completely an
entry being completely engulfed before you
got any warnings off of those systems.
Enhancements we've come a long way
today with our Monitoring Systems.
The other thing that I think is
a big advantage of using the belt air on
the face is that even though it's not
dedicated as an escape way, it gives you
another entry to get out of the mine if
something does happen.
Currently, in our mine, we use
an intake escapeway separated from the
belt and return on the return escapeway.

1	We maintain them, clearance and
2	everything. If something happened and you
3	did get a contamination into your primary
4	and then it got so bad it went into your
5	return, it does give miners another way,
6	another means of escape off that section.
7	With all that said, the key to
8	it all is monitoring that air. That's the
9	biggest thing. If you've got people or
10	operations that are not going to maintain
11	separation or that are not going to
12	maintain monitoring or that don't maintain
13	maintenance on the AMS system, then that's
14	a whole set of different problems. That's
15	not a problem with belt air.
16	Today, I was hearing some of
17	the people; and some of the Panel was
18	asking about the maintenance of our
19	systems, who works on the AMS systems and
20	who installs them. In our mines right
21	now, I would say we have some of the best
22	people there are that are qualified and
23	dedicated to doing that job.

1	They install the systems, and
2	they maintain them underground. They're
3	hourly employees that have had training,
4	and they have electrical backgrounds.
5	Before they get the job, they have to take
6	a test to see if they're qualified to step
7	in. Then, they actually do the training
8	and learn more on the system.
9	We know today each system that
10	you put in a mine is only as good as the
11	people that maintain it. It's only as
12	good as what efforts you put into
13	maintaining it.
14	Again, the early detection of
15	having someone there at the mine site
16	around the clock 24 hours a day is
17	important so they can notify someone to
18	start th withdrawal of the system.
19	I just think we're looking at
20	going backwards if we start looking at
21	trying to isolate these belt entries. If
22	you think about like I said earlier,
23	you have very little limited air on those

entries.

1

2	You know yourself if you're not
3	using the air off that belt to ventilate
4	your work in sections, you're not going to
5	be dumping a lot of it because you're
6	going to need it at the face. That's what
7	Tommy was talking about.
8	So, in our mines, you do
9	increase the likelihood of a build up of
10	methane in there, which brings on a whole
11	set of problems in itself for getting into
12	the explosive range.
13	Another thing, how much
14	attention are people going to pay to that
15	entry, as far as inspecting it properly,
15 16	entry, as far as inspecting it properly, checking it, and making sure everything is
15 16 17	entry, as far as inspecting it properly, checking it, and making sure everything is maintained? Are you going to go
15 16 17 18	entry, as far as inspecting it properly, checking it, and making sure everything is maintained? Are you going to go specifically by the regulations at that
15 16 17 18 19	entry, as far as inspecting it properly, checking it, and making sure everything is maintained? Are you going to go specifically by the regulations at that time?
15 16 17 18 19 20	entry, as far as inspecting it properly, checking it, and making sure everything is maintained? Are you going to go specifically by the regulations at that time? So I guess to sum a lot of it
15 16 17 18 19 20 21	entry, as far as inspecting it properly, checking it, and making sure everything is maintained? Are you going to go specifically by the regulations at that time? So I guess to sum a lot of it up today, again, we have been working
15 16 17 18 19 20 21 22	entry, as far as inspecting it properly, checking it, and making sure everything is maintained? Are you going to go specifically by the regulations at that time? So I guess to sum a lot of it up today, again, we have been working around it for over 20 years. We haven't
1	flip side of that, it has actually helped
----	--
2	us to keep from having belt fires from the
3	heating of the rollers and the hot spots.
4	As far as the nuisance alarms,
5	when we first started off, we had a lot of
6	problems with them, with diesel equipment
7	or whatever. We actually had a track belt
8	together at one time. They've come a long
9	way.
10	People actually have designed
11	our system to actually pick up and do away
12	with nuisance alarms.
13	So, once again, just to
14	reiterate, I definitely believe that we
15	can use belt air safely today. There
16	again, it's only as good as the people
17	that are running the operation.
18	Thank you.
19	MR. WATTS: My name is Randy
20	Watts. I've been working for Jim Walter
21	Resources for 31 years. The current
22	position I have is Manager of Electrical
23	Engineering.

1	I want to talk to you a little
2	bit about the JWR Mine Wide Monitoring
3	System. First of all, I guess the first
4	statement that I'll make is we are sort of
5	in a unique position in that we are not a
6	manufacturer of Mine Wide Monitoring
7	Systems or AMS systems.
8	We don't make any of our
9	sensors; and, therefore, I don't have any
10	reason to try to promote one sensor over
11	another sensor, other than what we've
12	found to work. That's the only thing I
13	will be speaking of, is our experiences
14	with the different types of sensors.
15	As far as the system goes, we
16	did design our own system. That came
17	about primarily because of some of our
18	experiences with the early systems.
19	As Tom mentioned before, we've
20	had quite a bit of experience with Mine
21	Wide Monitoring Systems because our early
22	petitions required these AMS or CO systems
23	to be installed to monitor the belt lines.

1	Actually, this slide says mid
2	'80s; but, according to Tom's information,
3	1979, I believe, was the first petition
4	that we filed. We started monitoring
5	these belt lines since then.
6	Some of our early experiences
7	with these system caused us to look into
8	other areas. In 1990, we designed our own
9	system and had the system approved and
10	installed that in all of our mines.
11	I want to talk a little bit
12	about the system itself. I'm going to try
13	not to be repetitive, but some of the
14	things that I'll be mentioning are similar
15	to the other systems that were described.
16	I guess maybe some of the things that I
17	can comment on and will try to is some of
18	the questions that the Panel asked to the
19	other vendors at AMS systems.
20	In our control room, on the
21	surface, we have a control room with an
22	operator that is in the control room 24
23	hours a day, seven days a week.

1 I'll apologize for some of the 2 photographs here. It's not real good 3 quality on some of the photographs. I 4 took them in a hurry and tried to put 5 together something that would at least 6 show what we're doing. 7 In the room here, you can see 8 various computer screens. There's one 9 over on the left and there's one to the 10 left of the operator, and then you also 11 see some video monitors on the back wall 12 back here. 13 This system uses standard PCs. 14 We wrote our software to run on these PCs. 15 It uses a SOL database to store all the 16 information. 17 As far as the hardware 18 underground, each device underground has 19 its on address. So it's scanned by the 20 system. Our system is pretty fast in 21 scanning these devices. 22 With the current load that we 23 have on the system right now, we can make

1	a complete scan or scan every address on
2	the system in about one to two seconds.
3	So we're checking not only the value or
4	the CO reading at each of those sensors
5	every one and a half seconds, but we're
6	also checking the status to make sure that
7	those sensors are actually working as
8	they're supposed to.
9	We have the capability of
10	32,000 points. We also have a redundant
11	system in the fact that we have two
12	computers that are essentially sitting
13	there running all the time, with one
14	computer doing all of the scanning. If
15	something were to go wrong with that one
16	computer, we could very easily switch over
17	to the other computer.
18	Sensors. As I mentioned
19	before, we do not manufacture our own
20	sensors. We buy our sensors from all of
21	the vendors that were represented here
22	today.
23	We have primarily standardized

1	on a couple of sensors that are
2	smart-sensor type. They communicate
3	directly with our system, and they have a
4	lot of features for calibration,
5	subcalibration, and monitoring themselves
6	to make sure that they are operating in
7	good condition.
8	So, even though we don't
9	manufacture the sensors ourselves, I think
10	that we've had a lot of influence on the
11	sensor manufacturers because we have asked
12	for quite a few improvements in their
13	sensors through the years; and they have
14	been very good to work with us and have
15	met the things that we've asked for in
16	most cases.
17	We also use our system to
18	monitor other devices, and I put this
19	slide up here to show you that we monitor
20	our conveyor belts, our fans, our pumps,
21	our hoists. Just about every major piece
22	of equipment underground, we bring that
23	into our Monitoring System.

1	A lot of times, the information
2	that we get from these other devices can
3	be just as valuable as the information
4	that we get from the CO sensors. So we
5	try to use the term "Mine Wide Monitoring
6	System," rather than just "AMS system"
7	because our system does monitor the
8	atmospheric conditions; but we also
9	monitor all these other devices.
10	Just to point out for reference
11	here, this card right here is the fiber
12	trunk extender, and up here is a multi-
13	function card. This particular outstation
14	right here would be typical of a station
15	that would be connected to the system
16	without any type of PLC or any other smart
17	device on it. It would just be a station
18	that's monitoring several parameters.
19	Very quickly, here is the
20	system layout. Up in the control room,
21	you have the computers running the
22	software for the Monitoring System. Down
23	the shaft is a fiber optic cable, and then

1	underground is a fiber optic backbone.
2	One of the other, or maybe two
3	of the other vendors mentioned in their
4	presentations the fact that the
5	communications are the part of your
6	system. That is a very true statement.
7	We, just like some of the other
8	vendors mentioned, try not to tolerate any
9	errors on our system. We expect to see
10	100 percent communication all the time.
11	Now, we don't always achieve
12	that, but the guys that you will see in a
13	minute that work on these systems, when
14	they start seeing a few errors popping up
15	every once in a while, they know
16	something's wrong; and they immediately go
17	to start checking those devices and try to
18	find that problem before it becomes
19	something that actually is going to affect
20	your communication.
21	We use fiber optic cable as our
22	backbone. We've been using that since
23	about 1994. We have quite a lot of

1	experience with this. Our system is very
2	fast and very tolerant to noise, and
3	that's primarily due to the fact that
4	we've had this fiber optic backbone
5	installed.
6	Each one of these boards that
7	are labeled "FTE boards" here, they are
8	sort of an interface between the fiber and
9	the cable. Once you get to the belt line
10	itself, the CO sensors have to be powered.
11	They also have to have communication.
12	It's at that point that you
13	break out of the system, break out the
14	fiber and go to cable and pick up all of
15	these sensors that are along the belt.
16	The system would not be
17	effective at all if it were not for the
18	people that we use to monitor and to
19	maintain the system. In our control room,
20	as I mentioned before, we have control
21	room operators with all the tools.
22	They have the mine map, they
23	have computers, they have the video, they

1	have two-way communications, and they have
2	access to the people that they need at any
3	time to make sure that they can make good
4	decisions about what the system is doing
5	at the time.
6	These operators are in the room
7	24 hours a day, seven days a week. To my
8	knowledge, they are all certified mine
9	foremen; and they have all been trained in
10	the operation of the system. We feel like
11	we've got some pretty good control room
12	operators at this time.
13	They have a pretty busy job
14	when they're in there and things are busy
15	during the day with the normal operation
16	of the mine. They take care of it very
17	well.
18	Also, we have at least one CO
19	technician per shift at each mine site.
20	These men are UMWA employees. They're
21	also very skilled at what they do.
22	They've received training.
23	One thing that I will say about

Г

1	your UMWA employees and I will say this
ב ר	with utmost confidence those men are
2	
3	dedicated, and they believe in what
4	they're doing. It's because of that, that
5	they do such a good job of keeping this
6	system up.
7	They are very responsible in
8	the things that they do. They have a
9	pretty big job to keep up with
10	calibrations and making sure that the
11	system is operating correctly and making
12	sure that we have the system moved up.
13	The mine is very dynamic place,
14	and there's always a sensor that has to be
15	moved to make sure that we're meeting the
16	requirements of the law.
17	One thing that I mentioned a
18	while ago is that you've heard several
19	terms. You've heard the system referred
20	to as a CO System, and Atmospheric
21	Monitoring System, a Mine Wide Monitoring
22	System.
23	In our system it sort of is

the Atmospheric Monitoring System is
obviously, the reason we put the system in
was to monitor these belts; but we've also
expanded it and gotten a lot of benefits
by carrying it on to a Mine Wide
Monitoring System.
We keep that part of the system
separate, though, in the fact that we have
one screen that the operator keeps up all
the time. This is a screen that shows the
status of all the CO sensors on all the
belts underground all the time. That
screen stays up all the time, and he can
look over at any time that he wants to and
see what the status is.
Each one of these little blocks
that shows the value there is color coded
so if any of those sensors went into an
alarm level, it would immediately notify
him visually, in addition to the fact that
the system is going to set off the alarms.
He has this just as a backup.
He doesn't have to do anything else except

Г

1	turn his head and look at the screen, and
2	he can see the status of the CO sensors.
3	As far as Mine Wide Monitoring
4	System, this would be a typical screen
5	that would be created to watch the status
6	of some of other devices in the mine. It
7	could be as simple or as complex as they
8	want to make it. Their tendency is try to
9	keep the screen simple; and, therefore,
10	they lay the mine out in a very simple way
11	there.
12	That's the status of the belts.
13	You can also see the status of the bunker.
14	There are also other parameters there;
15	such as, water pressure, water gallons per
16	minute, and air pressure from compressors.
17	There's a lot of information
18	contained on this screen. We will point
19	out one other thing right here. As I
20	mentioned awhile ago, sometimes this
21	information can be just as valuable as the
22	information that you get from the CO
23	sensor.

Г

1	In this particular case right
2	here, I just happened to take the
3	photograph at a time when this N10 belt
4	right here had been turned off. It's a
5	little hard to view from your standpoint
6	because you don't know the legend, but the
7	operators have it to where they have it
8	memorized where they don't have to look at
9	it.
10	This little red dot here
11	signifies that this belt was turned off by
12	remote. Also, in addition to that, I have
13	these two lines right here that I cut
14	off the name of that particular spot right
15	there, but that is N10 belt right there.
16	What it's telling me in those
17	two squares right there is that 79 is the
18	first out code which they have a page
19	that they can go to and it tells what that
20	code is and that's what actually
21	stopped the belt. Then, the block next to
22	it is the current status of the belt, and
23	that shows a 20.1.

1	What that's telling them is
2	that the remote switch at the tail piece
3	of the belt is the one that actually
4	stopped that belt. So not only do we know
5	that the belt stopped, we know that it
6	stopped because someone pulled the remote
7	switch; but we also know that that remote
8	switch is on the tail piece of that belt;
9	and that's where the stoppage occurred.
10	Now, had this been an unplanned
11	stoppage of this belt, the control room
12	operator would have immediately begun
13	investigating what the problem was.
14	So I think there's an added
15	level of safety right there in the fact
16	that certain things go on. These people
17	are on top of everything that's going on
18	at the mine, not just the CO that's on the
19	belts.
20	One of the questions that was
21	asked a few times, and I don't really know
22	how to answer it maybe specifically
23	because there are a lot of variables that

1	would go into determining how the CO
2	sensor is going to respond in a belt entry
3	that has what you might consider high
4	velocity.
5	How much CO is it liberating?
6	Where is the CO being liberated in
7	relation to the structures and the air
8	flow that's going through there? So a lot
9	of things can happen that might change the
10	way this might respond.
11	Obviously, the more air flow
12	that you have there, the more the CO is
13	going to be diluted. So the only thing
14	that I could think of to do is to maybe
15	give you a few examples of things that
16	have happened in our mines that might give
17	you a little insight into how sensitive
18	these sensor really are.
19	This first example here is one
20	what I've marked "case one." Several
21	years ago, one of our mine sites began
22	noticing elevated readings on their CO
23	sensors along the main line. You know,

1	it's typical of a fire or some real
2	problem that you will see CO begin to go
3	up on one sensor, and then the next sensor
4	will begin to go up, and then so on down
5	the line.
6	That's exactly what began to
7	happen in this case. It never reached the
8	alert level, but the levels were going up.
9	So the control room operator immediately
10	launched an investigation, and what they
11	determined was they could smell a little
12	smoke. They tracked it, and they went all
13	the way back, it was coming into the
14	intake shaft.
15	The final determination was
16	made that this air was actually coming
17	down the shaft. The smoke was actually
18	coming down the shaft, and it was coming
19	from a forest fire that was several miles
20	away.
21	So, with just the smoke in the
22	air coming down the shaft, all of the
23	sensors along that mine line where the air

1	velocity was as high as it could be, were
2	all starting to go up.
3	Actually, before that day was
4	over, every sensor in the mine or
5	practically every sensor in the mine
6	showed an elevated level from its normal
7	level.
8	The control room operator
9	caught it. Even though this was well
10	before any of the sensors even went into
11	the alert levels. So the system is very
12	sensitive, and these sensors that we're
13	talking about have come a long way since
14	the early sensors that were put in.
15	In another case, we use shaft
16	heaters sometimes to deice or prevent ice
17	from building up in our shafts when the
18	weather is cold.
19	We had a very similar situation
20	the first time that we used one of these
21	shaft heaters. We turned it on, and we
22	immediately began seeing CO going up on
23	all of these main line sensors. The

1	operator launched the investigation, as he
2	should have; and the determination was
3	that the shaft heaters were causing this
4	problem.
5	I'm not sure how to quantify
6	how sensitive these are, but these are
7	very minute values of CO that are going
8	down through here. Even in these high
9	velocity entries, these sensors were
10	easily picking them up; and the operators
11	were easily identifying that there was
12	some sort of problem going on.
13	One of the questions also asked
14	by the Panel was have there been any cases
15	where men might have detected the smoke
16	before the sensors did, and I'll be honest
17	with you and say that that has happened a
18	couple of times in our mines.
19	In one or two particular cases
20	that I can recall, we were testing some
21	new types of belts or new belts at that
22	particular time that were supposed to be
23	more flame resistant. Those belts when

1	heated did not produce as much CO. They
2	produced a lot of smoke, but there wasn't
3	a lot of CO in those particular belts.
4	So we had a couple of cases
5	there to where there was smoke in the
6	entry, and men had found it before we
7	picked it up with the sensors. That also
8	prompted us at that time to try smoke
9	sensors. We did not, from our experience,
10	have very good success with those smoke
11	sensors.
12	That doesn't mean that some day
13	that technology might come around and
14	might be something that obviously, if
15	there's good technology out there, we
16	would try to use it; but that particular
17	time, we didn't get a very good success or
18	very good results from those smoke
19	sensors. They tended to go into an alarm
20	condition after just a couple of days
21	operating underground.
22	Also, we've had a couple of
23	places where possibly changes in the air

1	screen you know, somebody has moved a
2	piece of equipment or moved a sensor or a
3	sensor has fallen from a roof or whatever.
4	There's been a couple of instances where
5	the sensor nearest the CO liberation
6	didn't go off before someone walked
7	through the area.
8	So we have had a couple of
9	cases where people had found the problem,
10	but the CO system alarm went into alert
11	level later on. A person was there first,
12	the CO system did its job. It just didn't
13	react quite as quickly as the man did.
14	Several others have testified
15	and spoken to the fact that we have
16	detected many hot rollers. We've detected
17	these hot rollers on all the belts, not
18	just the belts going to the sections. We
19	have detected these on main line belts.
20	I don't know what percentage it
21	is; but it's a very large percentage of
22	the time that these were detected very
23	early, before you could even you have

1	to really search for the source. It's not
2	like just walking up and you see a flame
3	or something. You have to really get in
4	there and search to find where the CO is
5	being liberated.
6	Emergency situations. I won't
7	take too much time to talk about that, but
8	it is a very important situation.
9	Obviously, in an emergency, you
10	need information and you need it
11	accurately and you need it to be there as
12	soon as possible. We've had a few
13	conditions to where we've had the system
14	tested under emergency-type situations.
15	This is where having a system
16	like this gets you the double benefit, the
17	fact that not only are you monitoring for
18	CO, but you also have all of this other
19	information available to you that might
20	help you to make a better decision about
21	what's going on in the mine at that
22	particular time.
23	We have monitored for many

1	different conditions. We've had a lot of
2	special geological conditions that we've
3	had to set up special sensors for. We've
4	been able to do that, and I think we've
5	been able to do that successfully in all
6	cases to help make the mine safer by
7	monitoring.
8	One reason that I put this
9	picture up there for was to just kind of
10	show you what the operator might see in a
11	condition where there's alarms going off.
12	If you see down here in this area, these
13	are all of the alarms that are currently
14	active. They're all showing up in red.
15	This particular case right
16	here, I had them set off all of the
17	section alarms for a function test. So
18	they were doing a function test. So
19	you've got this long line of alarms going
20	off all at one time.
21	As he clicks on each of these
22	alarms again, the photograph is not
23	very good over here on this side not

1	only does he know that he has a point-end
2	alarm, but over here on this side, it's
3	telling him where that point is. There's
4	a detailed description of what the point
5	is and any other information that you want
6	about that point.
7	It's also telling you what the
8	level is at that particular time, and it's
9	also - the alarm will not stop sounding
10	until he actually physically acknowledges
11	the alarm by clicking his mouse on the
12	point.
13	So he can't ignore it. It's
14	not something that's going to go away by
15	itself; and, even after he has
16	acknowledged it, it stays in this alarm
17	box and stays red as long it's above the
18	alarm value. So it still does not go away
19	visually, even though he has acknowledged
20	that he knows it's present.
21	Some others have also commented
22	about the conventional way of ventilating
23	the belt. Of course, Tommy has talked

1	extensively about that. I'm not a
2	ventilation person, but I do know that
3	under the current regulations, that if you
4	use the conventional method for
5	ventilating the air, it does not require a
6	Monitoring System on these belts.
7	Personally, I think that that
8	would be a step backwards because I think
9	that in many situations, you might allow a
10	situation to get to the point where it
11	would be a much harder fire to fight. You
12	may get into a more serious situation by
13	not detecting the fire early enough.
14	Also, I think that we might
15	be limiting ourselves in what we might
16	accomplish in the future because many of
17	the advances that we've made in technology
18	in the mines is because we've had to do
19	this type of monitoring. We've had to
20	look at these sort of things.
21	We've learned a lot by
22	monitoring things in the mine. Had we not
23	been in this situation where we've been

1	required to monitor these things, we might
2	not have been at this point.
3	I think that we might in the
4	future be limiting ourselves in some way
5	if we don't continue to push this
6	technology forward.
7	In conclusion, I won't speak
8	too much. I just want to make sure that
9	we're all make sure that I make the
10	statement that I believe that the system
11	has made the mines safer. I think that
12	the Mine Wide Monitoring System is
13	something that we need to continue doing.
14	I think that belt air is a safe way of
15	ventilating the working faces.
16	We need to continue monitoring
17	in this way. I think the Monitoring
18	System allows this to be done safely.
19	Again, I can make the same
20	statement that Tommy and some of the
21	others have made; that is, with all of our
22	experience over almost 30 years of doing
23	this, we haven't had any problems related

Г

1	to the Monitoring System and the fires
2	caused by this belt air. I think that's a
3	pretty good track record, as far as the
4	experiences we've had on that.
5	Thank you.
6	DR. TIEN: Very interesting and
7	informative testimony. I have a question.
8	What does your structure look
9	like, your organizational structure? Who
10	runs the system?
11	I know Tommy might be a user.
12	You interacted with Randy quite a bit.
13	I'm just curious because you mentioned you
14	have a CO technician in each mine. What
15	other people do you have, and so forth?
16	MR. WATTS: Each mine site has
17	basically its own Monitoring System. We
18	don't monitor anything centrally. So
19	their organization is at the mine-site
20	level.
21	So there would be a supervisor
22	that is in control of making sure that the
23	system is all meeting all the

1	standards. All the control room operators
2	would report to him. The control room
3	operators are there 24/7.
4	We typically have four control
5	room operators. They work seven days on
6	and seven days off for staffing that.
7	Then, at least one CO technician, UMWA
8	employee, is on site per shift.
9	DR. TIEN: What's the
10	relationship between them and you?
11	MR. RANDY: With me? I just
12	provide technical assistance for keeping
13	the system operating properly.
14	DR. TIEN: How does Keith fit
15	into the interplay?
16	MR. PLYLAR: I'm there on a
17	daily basis as a safety supervisor. I
18	interact with them to make sure if they
19	have any problems, they will let us know.
20	I just oversee the system.
21	They take care of the system on a daily
22	basis and make sure it's maintained,
23	calibrated, checked, and monitored and all

1	that.
2	During the period of the
3	daytime, we're constantly in and out of
4	the control room. We are on the screens
5	when we're outside.
6	That system they're set up
7	usually to handle it all themselves right
8	there from the control room to the
9	technicians that actually go in the ground
10	and do the calibrations.
11	DR. TIEN: Well, it looks like
12	the system has worked. All three of you
13	have worked very effectively because you
14	want them to work and because of your
15	expertise and so forth.
16	Are there others, Keith and Tom
17	and Randy, in 30 years to step into your
18	shoes when you retire?
19	MR. PLYLAR: From my
20	perspective, that's one of the ongoing
21	problems of the mining industry, is to
22	make sure that you continually train these
23	folks to bring them in and not wait until

1	you get to the point where we're all gone
2	and then start training them. You have to
3	continuously train as you go along.
4	I think that's that would be
5	in any area of the mines, to make sure you
6	do that continuous training as you go.
7	MR. MCNIDER: One of guys that
8	traveled with us yesterday was a young CO
9	electrician or technician. I think the
10	guys worked under him. He's been in the
11	mines nine years.
12	So we are in the process of
13	training, but there's a large gap between
14	Keith and Randy and I and that level.
15	We're like everybody in the mining
16	industry. We are scrambling to try to
17	bring people on and train them.
18	As a matter of fact I think
19	this is what you were getting ready to
20	say we started a training program where
21	we're trying to bring in young people that
22	show inclination in that area and get them
23	trained. In electronics and a mine-wide

1	system like you said here. It would be
2	all inclusive. The monitors, the PLCs.
3	In Randy's comments, he said
4	today you're liable to see just a
5	you're just as likely to see a computer
6	going underground as you are a pick and
7	shovel. That's true. Probably more
8	likely.
9	DR. TIEN: It looks like you
10	grew up with the system, or the system
11	grew up with you guys.
12	MR. WATTS: I will make one
13	other comment. Early on, we did have to
14	spend a lot of time with the system, but
15	guys that have been working on the system,
16	these UMWA guys, have pretty much stayed
17	with it.
18	These guys are dedicated, and
19	you don't have to go tend to a lot of
20	problems. They pretty much take care of
21	99 percent of everything themselves. It's
22	a rare case that we have to go deal with
23	something.

1	DR. TIEN: Thank you. I have
2	some other questions for Tommy, but we'll
3	come back to that.
4	DR. WEEKS: I've got a number
5	of questions about the AMS operator
6	training. Let me just lay them all out,
7	and you can sort of answer them as you
8	want to.
9	It basically has to do with
10	selection of training of the AMS
11	operators. You mentioned they're all
12	certified mine foremen. Why is that? Do
13	you think it's better to take an
14	experienced miner and train him on the AMS
15	system or take someone that's more
16	computer oriented and teach them about
17	mining? Where's the balance there between
18	expertise in dealing with the system or
19	expertise in mining?
20	Another question is: What do
21	the operators have authorities to do? If
22	they get an alert alarm that comes up,
23	what can they do? Can they evacuate a

section? Can they shut down a belt, or
would they have to call the mine
superintendent; and that person makes the
decision? How does that play itself out?
Also, do you have much turnover
amongst your operators? Those are just
questions about the training and the
selection.
There was a question raised
earlier from one of the company reps. He
said "Well, the first thing is to find
somebody who really wants the job." Do
you agree with that?
MR. MCNIDER: In our minds, the
guys in the control room like Randy
said, it's Mine Wide Monitoring System.
They actually do a lot towards running the
mine. They are heavily responsible for
what goes in the ground every day.
Do I think they have the
authority to withdraw the mine?
Absolutely. I think it came out you
may have asked that question yesterday to

1	one of our control room operators. The
2	reason we feel like our person needs to be
3	certified they are mine foremen, and
4	they are certified under the State of
5	Alabama because we need them to be
6	knowledgeable of what goes on in the mine,
7	not just sit up there and review what's on
8	the screen, but to actually understand the
9	day-to-day activities.
10	So that's why we I think all
11	of our people are certified. Isn't that
12	right, Randy? I don't think we have
13	anybody that's not certified, as far as
14	the control room operators.
15	As far as turnover goes, as far
16	as our technicians and our control room
17	operators, we have not had a large
18	turnover, have we?
19	MR. WATTS: Technicians
20	especially. They tend to get into these
21	jobs, and it takes a pretty good while
22	for them to gain an understanding of the
23	system.

Г

They take a lot of pride in
what they do. You don't typically have a
whole lot of turnover in these jobs.
One thing Tommy was alluding to
is our control room operators. They are
also the responsible party in all these
areas (inaudible.)
DR. WEEKS: Do you have
occasional unannounced fire drills to test
the system, you know, the machinery and
the people and everything? Do you do that
sort of thing?
MR. PLYLAR: We do quarterly
fire drills. Part of that system
incorporates with the CO room operator.
We'll give them a planned thing, and they
call the operator.
As far as the understanding
your question, does the CO operator
initiate it? No, not necessarily. What
they do is on their functional test, when
they do the functional tests and stuff,
they won't give advanced notice. They'll

1	call up and have them set the system off
2	to see if they react to it.
3	DR. WEEKS: That's what I was
4	wondering, whether someone like one of
5	y'all would say "Okay, we're going to test
6	the system and see how it works," and not
7	tell anybody about it, just push a button
8	and see if people responded.
9	MR. PLYLAR: We have done that
10	in the past; but, to say it's on a set
11	pattern, no.
12	Like I said, when they do their
13	functional test, they're supposed to
14	document then this crew or this crew
15	called back and ask them why it was; and
16	then they'll tell them.
17	MR. MCNIDER: As far as whether
18	we'd rather take an experienced miner with
19	very little computer skills or take one
20	with computer skills and then you know,
21	which one would come first, that's a hard
22	one for me to answer.
23	I don't know, Randy, if you've
1 got a better feel or not. 2 All our guys are certified. 3 They do come out of the mine. They're 4 people that have actually operated 5 sections. 6 So I guess that I would answer 7 that first and foremost to me that it's a 8 certified person; but then they've got to 9 have the skills to operate the systems. 10 As you could see in our control 11 room, there's a lot going on. It's fairly 12 complicated. 13 So I'm not sure about how that 14 part comes in, Randy. 15 MR. WATTS: I think that's 16 probably pretty accurate. They have to 17 have the mining experience first; but the 18 system, as far as normal operation of the 19 system, doesn't require a whole lot of 20 computer expertise. Basically, they need 21 to know a few things about the system. 22 We have other people that are 23 there all the time that support them, like

1	our technicians, our CO technicians, and
2	our chief electrical guys. They would
3	take care of any problems that they have.
4	The control room operators
5	don't have to know the inside workings of
6	the system. They don't have to know how
7	that data gets in and out of the mine
8	site. They don't have to know how to
9	troubleshoot that system.
10	They just have to know, okay,
11	"I've a problem," and be able to recognize
12	what type of problem that is and get the
13	appropriate people to handle that.
14	So the mining experience is
15	very valuable. It should be that the
16	person is not totally computer illiterate.
17	I mean, we need people in there that have
18	some computer skills; but I'd say that the
19	mining part of it makes a lot more sense
20	to have that first.
21	DR. MUTMANSKY: Tommy, back in
22	DC, in our first meeting, you told me that
23	you had been using flame resistant belts

in your mines for quite a long time, and
that you eventually got rid of them all.
I would like to hear your
rationale for doing that because I think
it's very important. This is an AMS
problem, but it's something that you have
referred to in the past. I think it's a
good time to get your thinking on that.
MR. MCNIDER: I'm glad you
asked that. The CEO of our company came
to address the three members of the panel
that came to the mine yesterday.
The point that he wanted to
make and we as a company wanted to make is
that we are not adverse to more a
higher specification belt than a 2G belt.
We use the type of belt that's NCB 158.
The belt that was our primary used belt
was PVC.
The problem was that it was not
it did not meet the application of the
mine from a durability point of view.
From a lot of the operational side, the

1	belt just would not hold up. That was the
2	reason that we eventually went away from
3	it on the PVC side, because it just did
4	not perform.
5	It created so many other
6	problems underground from an operations
7	point of view that it outweighed what we
8	were trying to gain from the
9	belt-specification side.
10	Then, in '92, the BELT spec
11	came out, and we went to that higher grade
12	belt. It was a rubber belt where they
13	added a specific compound in it to meet
14	the fire requirements of the BELT spec.
15	What happened with that belt
16	was that we had numerous points where the
17	belt would run out of alignment a little
18	bit, and we would get shavings from the
19	belt that would drop onto the foot wall
20	and create alarm situations. I mean, it
21	happened numerous times. It was to the
22	point that it was more of an operational
23	hazard than it was a benefit to the mine.

1	He got asked yesterday whether
2	he if a higher specification belt came
3	out, would he try it or would he use it;
4	and the answer was "Yes." However, it's
5	got to meet the operational needs of the
6	mines. In other words, it's got to be
7	durable enough to where it will hold up to
8	the rigors of the underground.
9	So we're not opposed to a
10	higher specification belt. As a matter of
11	fact, I think he would absolutely promote
12	it, and we would use it provided it will
13	also provide the operational needs of the
14	mine.
15	That was where we had the
16	problem with it. It met the higher flame
17	retardant aspects, but it did not provide
18	what we needed from the operational side.
19	DR. WEEKS: I've got another
20	question. Do you think that the AMS
21	system should have an independent power
22	source from the rest of the mine? The
23	question was raised during the break. The

issue is, if there's a mine emergency, one
of the first things to be cut is the power
to the mine.
It would be useful to acquire
the information from the AMS system during
the mine emergency. So the way to do that
is to have an independent power source.
MR. MCNIDER: Are you talking
about underground?
DR. WEEKS: Yes. What are your
thoughts on that?
MR. MCNIDER: Well, from an
emergency point of view, Jim, that's a
good question. I'll let Randy go into the
AMS part of it.
I can tell you one of our first
things to achieve is to try make our main
line intakes and get to a point where we
can restore power to a certain part of the
mine where we've actually gone in and
we've made it. One of our first things is
to try to establish that AMS system back
because it is invaluable to you from an

1 emergency point of view. 2 You can monitor methane. You 3 can monitor oxygen. You can monitor CO. 4 I mean, you can --5 DR. WEEKS: If it has an 6 independent source you, don't have to 7 worry about --8 MR. MCNIDER: I don't know what 9 that leads to. Randy, you can answer 10 that. 11 MR. WATTS: That is something 12 that we have considered and probably would 13 be a little farther along with it except 14 for working with some of these other 15 tracking and communication issues that 16 we're having to deal with. 17 I think that would be something 18 that would be very useful. Of course, the 19 system has a back up in cases where the 20 power has to be removed completely. Ιn 21 those cases, we would want the system to 22 be either intrinsically safe or have some 23 means of getting that power restored

1 again. 2 I think it would be beneficial. 3 We've looked at it, and we probably will 4 look at it again pretty soon. 5 MR. MCNIDER: I think the 6 answer is: Yes, we would like that. 7 I know from my point of view, 8 when I'm looking at actually trying to get 9 back in the mine, yes, I would like to 10 have it. 11 So, eventually, Randy, you guys 12 have looked into that aspect of it. 13 DR. WEEKS: I guess the 14 limiting factor is whether it could be 15 maintained in a permissible fashion. 16 MR. WATTS: Yeah. It's going 17 to require approval through the approval 18 process, that's kind of where we got hung 19 up on it the last time we pursued it. 20 DR. CALIZAYA: : I have two 21 questions. Both of them are for Tommy. 22 I was checking your diagrams, 23 the three system, four and five. In some

1	cases, you used the belt in three for
2	intake. In other cases, you used only
3	two. What makes you how do you decide
4	on that?
5	MR. MCNIDER: Well, what I was
6	trying to do was demonstrate three
7	different things. One, was what I called
8	the base, where I was trying to show that
9	if you use belt air in a three-entry, a
10	four-entry, and a five-entry section, this
11	would be your available air at the
12	section. This would be your regulator,
13	which we held at 120 because that's
14	typically what we'd have at regulator for
15	a 15,000-foot-long section. Would you
16	have any reserve pressure or not?
17	Then, the next step would be to
18	direct that air off of that belt line just
19	to show that we would have to take that
20	air to a return entry and show the impact
21	that it has on the face and show what some
22	of the other detriments are.
23	When I put in there "why belt

1	air," that's part of what I was talking
2	about. I was trying to summarize ahead
3	what those models were showing. If you
4	put a bulkhead in here, it creates a huge
5	pressure drop.
6	You have to let the belts run
7	through it. Therefore, you've got a dust
8	source. It also pressurizes the belt,
9	which contaminates your escapeway.
10	That's what that model was
11	showing. The other one was putting the
12	bulkhead back at the mouth of the section.
13	The reason I was showing it at the mouth
14	was because then the flow is in the right
15	direction, the leakage is in the right
16	direction away from the intake to the belt
17	line; but the face air is heavily
18	impacted.
19	We have no reserve in the
20	regulators, at all. So, in effect, we
21	cannot ventilate a working section 15,000
22	feet long, either three- or four-entry
23	without belt air. We cannot do it.

1	I'm telling you and this is
2	one thing that Mr. Richmond addressed
3	yesterday. These mines they are
4	designed with the use of belt air, and it
5	would probably shut these mines down if we
6	were not able to utilize the belt line as
7	an air course.
8	Then, I went into the five
9	entry because I wanted to address, okay,
10	let's add an entry. When you add an
11	entry, you think well, I'm going to get
12	escapeway enhancement. You don't, because
13	it's parallel and it acts as one entry; or
14	you try to separate it. Then you've got
15	imbalance because of the resistance
16	values.
17	So that was the line of
18	thinking, the way this was laid out.
19	DR. CALIZAYA: : Okay. The
20	next question is related to the air
21	velocity. In the figures that you have
22	here, for the belt entry, you have high
23	velocity, at least at the very beginning.

1	Near the face, that one drops
2	significantly.
3	MR. MCNIDER: Right.
4	DR. CALIZAYA: I think
5	yesterday we were at the face with belt
6	air. It was reasonably you could feel
7	the speed of the air.
8	MR. MCNIDER: Right.
9	DR. CALIZAYA: What velocities
10	are we talking about, in general?
11	MR. MCNIDER: Well, we've got
12	two different sets the mine you were in
13	yesterday was our No. 4 mine, which has
14	been degassed for years. When we were up
15	there on that section, I would estimate we
16	had about a 300 velocity, probably, at the
17	front of the section.
18	If you had 300, that entry was
19	probably at least between seven and eight
20	feet high by 20 feet. That's 140. So, if
21	it was 300, that's still 50,000-something
22	on the belt. So, if you had 50,000 in the
23	intake, you've got 100,000.

Back at the back, you're going
to have twice that amount. So, rather
than a 300 velocity, you've got at least a
600 velocity.
In our No. 7 mine, that mine
you remember me pointing out the twin
seam? That's the reason the higher entry.
In our No. 7, we single seam. So we have
a little bit less height, but we also have
a little bit greater demands.
We're required more air at
No. 4; but, at times, we have excursions
at No. 7 that requires a little bit more
of a demand. So the velocities can be
even a little bit higher in No. 7,
especially because of the restrictions in
the area.
DR. CALIZAYA: One last
question regarding pressure drop. Based
on your figures, the pressure between the
beginning of the entry and the face is
about two inches; but the pressure across
intake and return is in the order of 10.

1	MR. MCNIDER: Right.
2	DR. CALIZAYA: If I'm not
3	mistaken, all your stoppings were of the
4	same kind.
5	MR. MCNIDER: Yes.
6	DR. CALIZAYA: I'm guessing
7	that the highest pressure is near that.
8	MR. MCNIDER: Let me walk
9	through that just a minute. When you
10	start out and you've got the intake and
11	you've fed onto the belt line, you know,
12	like when we had the point feed; or if you
13	start out at the mouth when you first
14	start out, as you go further away, that
15	resistance in that entry is starting to
16	drop off. The resistance between that and
17	the intake is climbing.
18	There's a higher resistance on
19	the belt than on the intake, either
20	because you've got the belt line in there
21	and a single entry, open entry that has
22	just the tracking. In the mains, it's a
23	multiple entry.

1	The belt line is building in
2	pressure loss quicker because the
3	resistance is higher and it's dropping off
4	in air volume. Therefore, the negative
5	between the intake and the belt is
6	starting to increase.
7	Now, the model we ran was just
8	simply showing that we created an
9	intake and a return just to demonstrate to
10	you what an 15,000-foot-long entry would
11	do.
12	When you get in a real mine
13	situation, you start out where you have a
14	huge pressure drop, or it may be very
15	small and starting to change based on the
16	resistance between the two entries on the
17	ground. That's where the point feed comes
18	in.
19	If it's starting to climb, if
20	you don't have an intake like another
21	shaft, under normal conditions, if you
22	have multiple entries, you would still
23	need to point feed that belt to pick it up

1	occasionally because that pressure drop
2	usually is growing as you get further
3	away.
4	The belt line is still trying
5	to get its air through the leakage. It's
6	actually hard to control.
7	DR. MUTMANSKY: One more
8	question, and then you're off the hook,
9	Tommy.
10	DR. BRUNE: Actually, my
11	question goes to Keith, and not to Tommy.
12	Keith you've done a nice job
13	pointing out some of the advantages of
14	belt air, and I also appreciate that your
15	perspective is from the mine-workers point
16	of view.
17	Would you know of any
18	disadvantages that it has to take to the
19	face?
20	MR. PLYLAR: Of the belt air?
21	No. I guess over the years, my only
22	concern with the belt air was the
23	Monitoring System. Now, when we started

1	out with Petition for Modification, we
2	were only sensing 2,000 feet.
3	So I actually think in the Blue
4	Creek Seam, as everyone else calls it, I
5	think it's a disadvantage not to have it
6	that, that amount of air to get your
7	section to render harmless the gases. So
8	you've to weigh it out.
9	You can get statements from
10	where it's more dusty or everything else.
11	If you get down and look at the pros and
12	cons of it and the benefits, I think your
13	benefits outweigh the other one.
14	The whole key factor to it all
15	is proper separation and proper
16	monitoring. That's the key to it right
17	there. I think there are regulations and
18	plenty of them that cover that already.
19	DR. CALIZAYA: Thank you.
20	DR. MUTMANSKY: Linda, how many
21	speakers do we have still remaining
22	MS. ZEILER: We have several in
23	the NMA block grid. I was going to

1	suggest we take a ten-minute break so we
2	can get ready.
3	Those that have Power Point
4	presentations need to come and see Kevin
5	on the break; and we can load it all on
6	one computer; and that will expedite the
7	process.
8	DR. MUTMANSKY: Okay. Thank
9	you.
10	(Short recess.)
11	MS. ZEILER: I think we're
12	ready to start again.
13	Okay. This afternoon we have a
14	group from the National Mining Association
15	and the Alabama Coal Association to speak
16	to the Panel.
17	First up will be Bruce Watzman,
18	who is the Vice President of the National
19	Mining Association.
20	Bruce.
21	MR. WATZMAN: Thank you, Linda.
22	Mr. Chairman and Members of the
23	Panel, in the interest of time, we're

Г

1	going to try to compress as much of our
2	presentation as we can possibly do.
3	On behalf of the members of the
4	National Mining Association and the
5	Alabama Coal Association, we appreciate
6	the invitation time to be here today.
7	We especially appreciate the
8	time that some of the members of the Panel
9	took to go underground and visit Jim
10	Walter Resources' mine yesterday. It's
11	critically important that you have a sense
12	and a visual appreciation for how we
13	conduct our business and why belt air is
14	so critically important.
15	On behalf of NMA specifically,
16	let me thank you for inviting NMA to
17	appear at each of the public meetings. As
18	you know, we declined until this time to
19	afford the Panel the opportunity to hear
20	from operators using belt air safely and
21	effectively to provide a safe work
22	environment for their miners.
23	The Salt Lake City Hearings and

1	the testimony you will hear following me
2	today, we belive, accomplish this
3	objective. The question "why belt air,"
4	we believe, is settled.
5	Belt air has been and continues
6	to be a safe practice to improve the
7	working conditions for miners working at
8	the face. Operators demonstrated at the
9	Salt Lake City Hearing the absolute
10	critical necessity and safety advantages
11	of using belt air to reduce the number of
12	injuries required to sufficiently dilute
13	and render harmless methane and dust away
14	from the working face.
15	You will hear more about this
16	today from Jim Poulsen who testified at
17	the Salt Lake City Hearing that has come
18	here today to respond to some of the
19	questions that Dr. Weeks had.
20	In non-two-entry situations,
21	it's demonstrated by the testimony
22	presented earlier by Jim Walter Resources
23	and others who will follow me who will

1	demonstrate that belt air is equally
2	essential to control methane and dust
3	where ventilation resistances preclude
4	doing so in its absence.
5	While it should not be a
6	consideration in this group, as many in
7	this room are probably aware, some in
8	Congress believe that belt air should be
9	absolutely unequivocally prohibited. They
10	do so without a factual basis or rather on
11	emotion alone.
12	Your decision will be driven by
13	facts that prove, we believe without
14	question, that belt air can and has been
15	used safely and has enhanced miner safety.
16	The focus has been and the
17	question that's been asked is: Why is
18	belt air necessary? We think it's equally
19	proper to ask the question: What if no
20	belt air, and what is the factual basis
21	for advocating this view?
22	The record of these proceedings
23	is clear. The positive attributes of the

1	use of belt air have been shown. They've
2	been shown in the testimony that's been
3	presented and the research results that
4	have been presented to you better
5	ground control, enhanced ability to dilute
6	and render harmless methane, better dust
7	control, the use of advanced technologies
8	to provide early warning to miners in the
9	event of a fire in the mine.
10	Contrast this to a record
11	devoid of a basis for prohibiting the use
12	of belt air. Some point to negative
13	consequences, but we're at a loss to try
14	to quantify this.
15	Some have talked about
16	increased dust concentrations on the face
17	where air ventilated through the belt is
18	brought to the face, but NIOSH research
19	has shown these increases to be
20	inconsequential. In fact, operators are
21	required to maintain strict limits of the
22	dust concentrations of the air coursed
23	through the belt air that has been brought

1 to the face. 2 In closing, I would only draw 3 your attention back to MSHA's presentation 4 at the least hearing where they presented 5 the findings of the Aracoma Report, a 6 tragic event where two miners lost their 7 lives. 8 MSHA concluded for that is that 9 12 miners escaped because belt air was 10 used to ventilate the face. This should 11 be all the basis required to for you to 12 find that belt air is a safe practice that 13 has and will continue to improve the 14 working conditions for miners working 15 underground, the goal that we all strive 16 for each and every day. 17 Thank you for the time. 18 With that, Linda, I'd like to 19 turn it over to the other industry 20 presenters, in the interest of time. 21 MS. ZEILER: Okay. Thank you, 22 Bruce. 23 Our next speaker will be

1	Dr. Pramod Thakur, the manager of Coal
2	Seam Degasification for CONSOL Energy.
3	MR. THAKUR: Chairman Mutmansky
4	and Members of the Technical Safety Panel,
5	I thank you for the opportunity to speak
6	to you about the merits and demerits of
7	using the belt air for face ventilation.
8	Many of you know me; but, for
9	the benefit of others, I am a Mine
10	Ventilation Engineer by education and
11	training, and I have specialized in the
12	area of coal seam degasification,
13	respirable particulate control, and
14	occasionally mine fire control.
15	Since I worked with most of the
16	members on the panel for a long time, you
17	know very well my life's work has been
18	devoted to improving mine health and
19	safety.
20	Seventeen years, two months,
21	and two days back, my idol, Jack
22	Stephenson of Jim Walter Resources and I
23	commented on this subject in Reston,

1	Virginia and have strongly advocated the
2	use of belt air for face ventilation to
3	make mines safer.
4	The changes in the coal mining
5	industry during this period compel me
6	today to say, in even stronger terms, that
7	we need the belt air at the face.
8	Most of you know CONSOL is the
9	largest producer of underground mine coal.
10	We are mostly longwall producers. We do a
11	good job of degasification, but even then
12	we need some air.
13	My perspective would be to tell
14	you that even if I've taken the gas out of
15	the coal seams, they still need a certain
16	amount of air.
17	Tommy did such a good job of
18	explaining how the air is conducted, but
19	my ventilation department does a similar
20	job, and they tell me they need all the
21	three or four entries that we have for
22	delivering air to the longwall face.
23	Except for the past two years,

1	the price of coal declined in both real
2	and nominal terms in the last 20 years.
3	The underground coal industry survived
4	because of nearly 250 percent improvement
5	in productivity and a substantial
6	improvement in safety.
7	The most important innovation
8	that led to higher productivity and safer
9	mining is the longwall method of mining.
10	The second most important innovation is
11	coal seam degasification, but for which
12	mines in Alabama and Southwestern Virginia
13	could not be economically viable
14	undertakings.
15	Today more than 50 percent of
16	all underground mined coal is produced by
17	longwall mining. Driven by safety and
18	economic priorities, the trend for panel
19	sizes and mining equipment in the coal
20	industry is to continue to go forward
21	pushing production capacities and
22	productivity to new levels.
23	Today, it would be quite

1	realistic to plan longwall panels that are
2	1,000 to 1,200 feet wide and 10,000 the
3	15,000 feet long containing more than 2 to
4	4 million tons of raw coal. Such longwall
5	panels have many benefits.
6	The main benefits are:
7	Improved safety and reduced injury rate
8	because of improved longwall to
9	development coal ratios and fewer longwall
10	moves; improved recovery of coal in the
11	ground; and improved productivity and cost
12	per ton.
13	On the other hand, these large
14	panels introduce some concerns; for
15	example, ground control, ventilation and
16	methane control, respirable dust control,
17	and escape from the face in case of an
18	emergency.
19	I submit to the Panel that a
20	careful consideration of these four issues
21	can provide us an answer to the question
22	of whether to use the belt air for face
23	ventilation or not.

1	Ground control.
2	Ground control is a function of
3	the local geology, the depth of the coal
4	seams, as well as the longwall face
5	length. The coal industry throughout the
6	world has used one, two, three, and four
7	entry systems to develop the longwall
8	panels.
9	In very deep European mines,
10	single entry is the norm. In Western
11	U.S., ground control issues do not permit
12	more than two-entry development. In
13	Eastern U.S., three- or four-entry
14	development is common that use yield
15	pillars and a stable pillar to support the
16	gateroads.
17	Making the development section
18	any wider, as Tom indicated, will slow
19	down the development section advance
20	beyond economic limits. Thus, we need to
21	bring all the air needed to the longwall
22	faces using these three or four entries.
23	Usually, in thicker, moderately

1	gassy seams, three entries suffice while
2	in thin but very gassy mines, four entries
3	are needed that use yield-stable-yield
4	pillar design.
5	Let's talk about ventilation
6	and methane control. My job is to take
7	the coal from the coal seam, measure the
8	gas content, predict the amount of gas
9	that's going to come out, recommend
10	degasification, design the degasification,
11	and tell the ventilation department how
12	much air they will need. That is what I
13	intend to do.
14	They tell me that if I need
15	that much air, I have to use the belt air
16	in the face, just like Tom explained.
17	In a recent article, I have
18	discussed this subject in great detail.
19	Somebody in Pittsburgh claimed that all
20	coal seams are gassy, but they vary in
21	their degree of gassiness.
22	Unfortunately, I don't have a
23	Power Point presentation, but I'll walk

1	you through, and I will paint a picture
2	with my words.
3	Degasification and ventilation
4	needs for longwall faces are different in
5	different coal seams. I divided all the
6	coal seams into three categories; mildly
7	gassy, which is less than 100 feet of gas
8	per ton; moderately gassy, anywhere from
9	100 to 300 like you have in the Pittsburgh
10	area; and highly gassy, the mines in
11	Alabama and Southwestern Virginia.
12	We don't do any degasification
13	in mildly gassy mines. The only mine I
14	had like that was Shoemaker. In all other
15	mines we do pre-mining degasification,
16	during the mining, as well as post mining.
17	In moderately gassy mines, they
18	remove 50 percent of the gas before
19	mining; and we require about 40,000 air at
20	the tailgate. Air in the bleeders is
21	anywhere from 150 to 250,000 CFM air.
22	In highly gassy mines, we
23	remove 70 to 75 percent of the gas from

1	the seam before mining. We need at least
2	60,000 air at the tailgate, and 250 to
3	350,000 air in the bleeders. This same
4	width has a very high degree of
5	degasification. That's more gas than all
6	the mines Jim Walter Resources' mines
7	produce. That's one mine.
8	On a 1,000-foot-wide face, it's
9	been our experience that we lose 65 to 70
10	percent of the air in the gob. If the
11	belt entry is isolated, there will be
12	further loss of intake air. We need every
13	single entry we have to fill get the air
14	to the face. Insufficient air on longwall
15	faces can cause gas layering leading to
16	face ignitions and, sometimes, fire or gas
17	explosion.
18	MS. ZEILER: Dr. Thakur, I'm
19	sorry to interrupt you; but we need to
20	adjust your microphone.
21	MR. THAKUR: Thank you.
22	Can you hear me now?
23	Air requirements in a

Г

1	development section are lower than that
2	for the longwall panels.
3	The Jim Walter folks did such a
4	good job on it, that I don't want to
5	belabor the point.
6	To sustain a development of
7	10,000 to 15,000 feet, we need the highest
8	ventilation essential quotient that this
9	amount of air that's needed in the face
10	divided by the amount of air you have at
11	the mouth of the longwall that is
12	multiplied by 100. So that's a very high
13	percentage, 50 to 55 percent at least.
14	If belt air entry is used as a
15	secondary intake, it will reduce air
16	leakage and enables the operator to
17	achieve the highest VEQ. Again, this can
18	be easily verified by ventilation
19	simulation.
20	There's another reason why we
21	need the belt entry. Eastern coal, as you
22	know, is very high in methane. Methane
23	accumulations and gas layering in belt

1	entry is a distinct possibility in Eastern
2	U.S. coal mines.
3	Using the belt air at the face
4	will enable a larger quantity of air to
5	flow through the entry and eliminate any
6	danger of gas layering.
7	Respirable coal dust. Somebody
8	already mentioned that. There was a
9	question that was of concern. Well, if
10	the air is going over the belt and the
11	velocity is high, one of the drawbacks of
12	using belt air at the face is a potential
13	increase in respirable dust concentration.
14	It is possible if proper dust control
15	measures are not used.
16	However, actual records
17	indicate the mines where they use the belt
18	air at the face have been able to comply
19	with the legal requirements. Keeping the
20	coal dust wet and the air velocity below
21	1,000 feet per minute will minimize this
22	problem.
23	Last, but not least, detection

Г

1	of fire and escape from the section. All
2	belt entries are protected by CO
3	Monitoring Systems, but using the belt air
4	at the face provides a redundant detection
5	system.
6	Someone asked the question, can
7	the nose be duplicated electronically? I
8	doubt very much whether you can duplicate
9	the nose. The nose is very sensitive.
10	There are some compounds that come out
11	from coal heating. Some you can detect
12	them with your nose at one in a billion,
13	even one in a trillion parts per minute.
14	There are no instruments now that can go
15	that low.
16	Also, it has to be a special
17	nose. I have one of them. So I know.
18	Spontaneous combustion or an
19	incipient fire can be smelled at the face
20	long before a CO monitor alarm can be
21	relayed to the face.
22	There's one more thing I want
23	to say from when I talked to DR.

1	MUTMANSKY. CO alone doesn't tell you that
2	you have a fire. There's a lot of things
3	in the mine that can give you a false CO
4	reading, especially if you've hot air like
5	in Alabama and Virginia. They have
6	propane.
7	These things are detected
8	through the handheld CO monitors and other
9	monitors working on similar principals out
10	of here. In my 33 years in CONSOL
11	many, many times I have been called at
12	midnight, "We have a fire, come over
13	here." We go down and see 300 parts per
14	million. When you take a sample and
15	analyze it, it's basically 5 PPMs or 1 or
16	2 PPMs higher than the background.
17	I ask the Panel to put your
18	faith in that and nothing else. It's a
19	good alarm system. If your dog is
20	barking, something is there. Go out and
21	check. The dog may be hungry or whatever
22	else, but it doesn't mean a fire.
23	Air traveling in the same

1	direction as water flow provides a safer
2	and faster access to water lines in an
3	emergency. Emergency people and equipment
4	can get closer to the trouble area, and
5	water line integrity can be better
6	maintained if the belt air is flowing to
7	the face.
8	Belt inspection, maintenance,
9	and visual detection of hot spots becomes
10	a lot easier if larger volumes of air are
11	flowing through the belt entry. If the
12	belt air is used at the face, it provides
13	an additional intake escapeway.
14	For extended longwall panels
15	with a length of two to three miles, it is
16	a distinct advantage. Such escapeways,
17	when equipped properly with breathable air
18	and lifelines, can considerably improve
19	the chances of a safe exit from these
20	sections, in case of an emergency like a
21	fire.
22	In summary, I'd like to say
23	continued success of underground coal
1	mining depends on safe and efficient
----	--
2	mining techniques; for example, longwall
3	mining.
4	I know it can solve longwall
5	mining, entire degasification, and selling
6	insurance in South Dakota.
7	Ground control needs dictate
8	that development sections can have only a
9	limited number of entries; usually, two,
10	three, or four; but no more.
11	Ventilation simulation can show
12	that even with the largest available fans,
13	it would be essential to use all available
14	airways to provide the necessary volumes
15	of air to the longwall faces.
16	Adequate respirable dust
17	control techniques must be used to prevent
18	any dust pick up in the belt entry. Air
19	velocity in belt entries should not exceed
20	1,000 feet per minute, in my opinion.
21	Dust pick up will start around 800 feet
22	per minute if the coal is moist.
23	All belt entries should have a

1	reliable CO Monitoring System. Again,
2	it's just an alarm, a dog barking. You've
3	got to go verify what it is, take a
4	sample, and analyze it. The index I live
5	by and die by is not the CO index.
6	My old friend Don Mitchell used
7	to tell me to watch both. You watch the
8	trend of CO, as well watch the ground
9	ratio. If both are increasing, you've got
10	trouble.
11	All escapeways should be
12	provided with lifelines, and
13	self-contained self rescuers, and
14	breathable air. Needless to say, training
15	is very good for them.
16	So I would say belt air can be
17	and should be used to ventilate working
18	faces because it makes underground coal
19	mining and escape from longwall face fires
20	much safer.
21	Thank you. If there are any
22	questions, I'll be glad to answer them.
23	MS. ZEILER: Thank you very

Г

much.
The next speaker will be David
Decker. He's the General Manager of the
Brooks Run Mining Company, a subsidiary of
Alpha Natural Resources.
MR. DECKER: Good afternoon.
My name is Dave Decker. I work with Alpha
Natural Resources. On behalf of my
company and the National Mining
Association, I appreciate the opportunity
to address the distinguished panel and
provide comments relative to the use of
belt air in underground coal mines.
I have a couple of tough acts
to follow here. Nonetheless, I hope I can
make some important points to you. My
comments are certainly more general than
the previous two presenters you've seen,
but I think they are important.
Alpha Natural Resources is a
relatively new company compared to most in
the Eastern United States. We mine on
properties that have historically been

1	mined by the more traditional larger
2	mining companies that have since either
3	been acquired by other companies or simply
4	gone out of business.
5	While we are a young company,
6	we are not unlike nearly every other
7	operator in Central Appalachia in that
8	most of us are all mining reserves that
9	are either immediately adjacent to, above,
10	below, in between, and in some cases
11	through old works.
12	That creates a tremendous
13	strain on resources; not just
14	economically, but from the practical
15	aspect of engineering coal mines to
16	successfully mitigate the associated
17	issues that come with that.
18	The ability to use belt air to
19	ventilate our active faces provides one
20	area of flexibility that enhances mining
21	in a mature coal field.
22	For a quick overview, we have
23	operations in Kentucky, Pennsylvania,

1	Virginia, and West Virginia. We mine,
2	prepare, and sell approximately 25 million
3	tons a year by operating 38 deep mines, 27
4	surface mines, and 10 preparation plants.
5	All of our deep mining is room-
6	and-pillar-type mining. We use single and
7	supersection continuous miner fleets using
8	continuous haulage and shuttle cars to
9	transport the coal back to the belt line.
10	Our mining height ranges
11	anywhere from three foot to eight foot;
12	and not all of that is coal, I might add,
13	just to be clear on that.
14	Face ventilation is provided by
15	sweeping air or fishtail-type ventilation
16	schemes by splitting the intake air to
17	either side of the faces. So that depends
18	on the type of face operation. Typically,
19	our operations are outcrop access or drift
20	mines, although we do have some slope and
21	shaft access mines.
22	We use both positive or blowing
23	ventilation pressure and exhausting

Г

1	negative pressure at these mines. Ten of
1 7	our mines currently use belt air interface
2	to supplement the primary intakes. We
2	to supplement the primary intakes. we
4	nave four of these in Pennsylvania, using
5	both continuous haulage and shuttle cars.
6	Continuous haulage, by its very
7	nature, makes it almost impossible not to
8	use belt air in the face. Some of the
9	mines have more than one unit mining in
10	different locations. In one of our mines,
11	Kingwood in Northern West Virginia, has
12	four individual units running full-out
13	supersections.
14	All of these seams, with the
15	exception all these mines, with the
16	exception of two of them, are in gassy
17	seams. In order to provide the required
18	volumes to these active faces, we need to
19	use belt air. The inability to do so
20	would render these boundaries uneconomical
21	to recover.
22	When we have mining going on
23	around older works and, unlike the

1	previous two speakers, we are closer to
2	the surface we need the capability to
3	reduce the number of airways. It's not
4	all just a function of the volume of the
5	air, but sometimes it's mitigating
6	geology.
7	Again, if we were unable to
8	make use of belt air interfaces, we would
9	have to drive the additional airways to
10	overcome the resistance to ventilate. In
11	essence, an additional split. More
12	entries, in turn, creates a Catch-22
13	situation where we start to reach the
14	critical span of the overlying rock
15	strata; and it becomes hard to control the
16	entries.
17	From that aspect, it's not just
18	a matter of having the area in the room to
19	do it, even in lower cover. In many
20	cases, where we have to squeeze in between
21	old works or sometimes in addition to old
22	works, we have to mitigate the undulation,
23	rolls in the seams, and address a pressure

Г

1	bulb from an overlying or an underlying
2	barrier panel that presents problems to
3	us.
4	Again, additional entries
5	become extremely difficult, and they are
6	not without expense when keeping them open
7	out by us. When we get the greater
8	depths, going outby and maintaining all
9	the entries, it's a major problem for us.
10	As some of the presenters
11	coming up next will say, they have some of
12	the similar issues that we have. Again,
13	in younger coal mines, you have numerous
14	inconsistencies in the seam conditions.
15	Roof conditions, problematic
16	outlying, or maintaining more than seven
17	to nine entries, in good conditions, we
18	can do that. Again, that's the exception,
19	not the rule.
20	Belt air allows you more volume
21	pressure for use in the face. Monitoring
22	systems, I don't think there's any doubt
23	that those are impressive tools that we

1	can use in addressing the use of belt air.
2	It allows us to use the air in
3	the face behind the face curtain, instead
4	of trying to balance between all the
5	entries that we would have to drive. With
6	continuous haulage especially, it is
7	extremely difficult to keep the belt air
8	out of the face.
9	In roof issues associated with
10	the greater widths with more entries, if
11	we can use the belt air, we don't have to
12	provide a greater volume. We have more
13	pressure to use at the face, less total
14	pressure, less leakage between our
15	airways, and a better balance.
16	In conjunction with the use of
17	these CO systems, I believe it's a safe
18	way of ventilating coal mines; and it
19	provides a higher pressure and volume
20	where it's needed the most, at the mine
21	face.
22	Thank you for your time. Any
23	questions?

1	DR. MUTMANSKY: Mr. Decker, in
2	a room and pillar mine where you have the
3	options of either using belt air at the
4	face or using other systems, have you ever
5	done an economic analysis of a mine ahead
6	of starting the mine, where you're
7	beginning to plan the mine and you do an
8	analysis where you investigate the costs
9	of the mine throughout its lifetime using
10	belt air at the face with the necessary
11	costs of adding an AMS system to the mine
12	versus a mine where you don't use the belt
13	air at the face but are not required to
14	use an AMS system?
15	MR. DECKER: I'm like the guys
16	from Jim Walters. I think the use of AMS
17	systems is prudent irregardless. I like
18	the notion of being able to monitor things
19	other than CO.
20	Now, we don't have them in all
21	of our operations, of course. To answer
22	your question specifically, I have not;
23	but I lean toward the use of the

1 Monitoring Systems period. 2 DR. WEEKS: I have a question. 3 I think the original thinking behind the 4 prohibition against using belt air to 5 ventilate face is that if there's a fire 6 in the belt, the smoke goes to the face; 7 and belt fires are not uncommon. 8 How do you -- when you go to 9 start using belt air, how do you deal with 10 that particular problem?

11 The AMS system is going to 12 detect fires, but it's certainly not going 13 to prevent them. So, if you've got a fire 14 in the belt and you're using that entry to 15 ventilate the face, what then? How do you 16 deal with that?

MR. DECKER: Our outside person would detect an issue from an alarm. We would be in contact with our people underground, and they would go back to the primary escapeway and look over into the beltway and try to determine the cause of the fire. We can access it from the

1 outside and go toward it. 2 If it's not known and the smoke 3 goes to the face, obviously, we would have 4 the same issue. We'd call or communicate 5 with others outside and draw on our people 6 from elsewhere in the mine or at the face 7 to go back at different locations and 8 assess the situation. 9 DR. WEEKS: You know, if the 10 belt entry were not used to ventilate the 11 face and if there's a fire in the belt 12 line --13 MR. DECKER: Without an AMS? 14 Without an AMS system, you're saying? 15 DR. WEEKS: No. I'm just 16 saying if the belt entry is not used to 17 ventilate the face and there's a fire on 18 the belt. I mean, I think the whole 19 reason behind the prohibition was that you 20 didn't want that smoke to go to the face 21 where the miners are. 22 MR. DECKER: Right. 23 DR. WEEKS: I mean that's

1	another way of preventing the smoke from
2	going to where the miners are.
3	MR. DECKER: It would have to
4	be detected on an inspection that happens
5	throughout the shift and addressed
6	accordingly, based on the location, of
7	course, and the relative positioning of
8	our outby people in the face, wherever it
9	might be closest.
10	MR. ZEILER: Thank you, Dave.
11	Our next speaker is
12	DR. BRUNE: I have one more
13	question, Dave. If you would, just
14	briefly explain why in the case of a
15	continuous haulage system it is almost
16	impossible to route the belt air away from
17	the face. I think we'd like to hear a
18	little bit more about that.
19	MR. DECKER: You have a breach
20	system that extends from the miner back to
21	right on top of the belt line. As that
22	carrier on top of the belt, the Long John,
23	moves back and forth, it advances up and

1	down and through curtain on a continual
2	basis. It's very difficult to seal that
3	air off.
4	DR. BRUNE: Okay.
5	MS. ZEILER: Our next speaker
6	is Patrick Leedy, the Manager of
7	Engineering for Lone Mountain Processing,
8	Incorporated, a division of Arch Coal.
9	MR. LEEDY: Okay. Good
10	afternoon. My name is Patrick Leedy, and
11	I'm the Manager of Engineering for Lone
12	Mountain Processing, and Lone Mountain is
13	a division of Arch Coal.
14	I'm a graduate of Virginia Tech
15	with a BS in Mining Engineering. I am a
16	Registered Professional Engineer.
17	During my career, I've worked
18	at several coal operations; and several
19	have used belt air. I appreciate the
20	opportunity to stand before this panel
21	today and speak about the use of belt air
22	at Lone Mountain Processing.
23	I wanted to respond, before I

1	start into my presentation, to DR. WEEKS'
2	question to Mr. Decker just a minute ago
3	about the prohibition on belt air.
4	It's my recollection that the
5	belt air prohibition was put into effect
6	before the AMS systems were available or
7	to the point that they are now, and I
8	would think that that was one of the
9	reasons for that prohibition at that time.
10	We didn't have a way to monitor for fires
11	on the belt line, as we do now. Due to
12	that, I think that makes a big difference
13	now.
14	Okay. As I said, Lone Mountain
15	Processing is a division of Arch Coal. We
16	operate three underground coal mines in
17	the State of Kentucky and one preparation
18	plant and rail load out in the State of
19	Virginia.
20	The coal is actually belted up
21	the mountain, through the mountain, and
22	back down the mountain across the state
23	line into Virginia.

All three of our mines are
continuous miner room-and-pillar-type
operations. We basically drive a main
line system, and then we develop panels
and retrieve those panels off our main
lines.
We use five sections, and we
use sevens sections total. Five of those
sections utilize continuous-haulage bridge
systems. They are generally mined at a
height of about five feet.
Our other two sections utilize
shuttle-car haulage, and they're generally
a height of about 15 feet. You can see
that on the slides here.
We have an employment of around
375 people, and we draw employees from the
areas of Eastern Kentucky, Southwest
Virginia, and East Tennessee.
We are a multi-seam operation.
As you can see on the lithologic section
that's shown on the slide, we mine in the
all Owl, the Darby and the Kellioka coal

seams.

1

2	As you can see on the slide,
3	the Owl seam is located quite a ways down
4	in the lithologic column of the area we're
5	located. You've got the Owl seam here,
6	and then about 50 feet below that, we've
7	got the Darby seam. Another 50 feet below
8	that, we've got the Kellioka seam.
9	There's mining in all three of
10	those seams, plus the Harlan seam, which
11	is shown below that. That's been mined in
12	a lot of places in the area.
13	The Darby Fork Mine, which is
14	our mine, is operating in the Darby seam.
15	Out Huff Creek Mine is operating in the
16	Kellioka seam. The Clover Fork Mine is
17	operating in the Owl and Darby seams
18	combined.
19	That's an area where our Owl
20	and Darby come together. Generally,
21	they're 50 feet apart; but, in that area,
22	they come together to make the coal seam
23	that I mentioned that was about 15 feet in

1	height.
2	Then, we have a neighboring
3	company that's not part of our company.
4	They are a neighboring company, and they
5	operate in the Owl seam. They are on top
6	of our mines.
7	If you will look at the next
8	slide, you can see the mine layout that's
9	shown on the map here. What's in the blue
10	is our neighboring company, the company
11	that neighbors us. They're operating in
12	the Owl seam in the northern part of our
13	reserve area.
14	Our Darby Fork Mine is shown in
15	the red colored workings, and the Huff
16	Creek Mine, operating in the Kellioka
17	seam, is in the gray and black workings
18	that you can see. That's on the bottom.
19	Down in this area, is our Clover Fork
20	Mine, and it's operating in the Owl and
21	Darby seam.
22	You can see how all the
23	workings are stacked one on top of the

1	other, especially in the panels. You can
2	see across there, there, and there. We've
3	actually got three coal seams with
4	workings stacked one above the other.
5	So our layout is constrained by
6	previous mining. Whatever has been
7	previously mined and whatever is mined
8	now, the mining underneath or above that
9	is going to have to follow the same
10	pattern.
11	Our typical method of mining is
12	to drill five-entry panels with full
13	length, and we recover the pillars during
14	retreat mining. You can see, in this more
15	detailed look at the maps, the upper seam.
16	I think this is probably where
17	the Owl seam was mined up and retreated
18	back, and then the Darby has followed it
19	up and then retreated back. Then, the
20	Kellioka, at a later date, will follow
21	underneath that.
22	Those are separated by a
23	barrier pillar. The barrier pillar,

that's an area where you can have sever
stresses. For the panels above and below,
you have to stay within the subsiding
shadow of those panels; or you're going to
risk some pretty severe stresses out in
those barriers.
Let's talk about ventilation
constraints. Both our Darby Fork and Huff
Creek Mines typically employe a five-entry
layout, as shown. When possible, we use
return on each side of the section, as you
can see here and here.
Then, we have a belt line, of
course. Then, we run an entry that is
common to the belt line. That's used for
our roadway. We use rubber tire diesel,
man trips, and then we use one single
intake entry.
Why do we have to have the
roadway in a separate entry from the belt?
Well, the biggest reason is because we use
continuous-haulage bridge systems where
the haulage system comes out of the base

1	and connects to the tail end of the
2	conveyor belt; and there's no room to get
3	the man trips by there. So that's the
4	biggest reason that we have to use a
5	separate roadway for the belt entry.
6	Another reason is for supply
7	storage, other things such as that, which
8	we need to store in the neutral entry
9	there, the neutral belt entry. So, for
10	those reasons, we have to we're limited
11	to really only one intake entry.
12	DR. TIEN: Did you say you use
13	continuous haulage?
14	MR. LEEDY: Yes.
15	DR. TIEN: Is the entry
16	crosscut from 45 degrees?
17	MR. LEEDY: They are in 45s,
18	yes. That's just a typical layout that's
19	shown. Typically, we do mine a 45.
20	We do mine 90, at times; but,
21	generally, it's a 70-degree crosscut.
22	Okay. As I've already said,
23	the bridge sets only allows for one entry

1	for intake air using the five-entry
2	system.
3	At our Darby Fork Mine, again,
4	in the Darby seam. I mentioned we have
5	the Owl seam up above, and then the Darby,
6	and then the Kellioka seam.
7	The Darby generally has several
8	areas that have sandstone very close to
9	the coal, plus it's operating in cover
10	depths of cover as great as 1,500 to 2,000
11	feet. So it's prone to bumps in certain
12	areas. You can see that on this map that
13	I've shown.
14	We tried a six-entry system
15	back in 2003 and had a severe bump in this
16	location. One of the reasons that
17	during the investigation, one of the
18	reasons that was attributed to the bump
19	was the width of the panel. So, for that
20	reason, we limit the panel width to five
21	entries.
22	Can we increase the number of
23	entries? We don't feel we can and keep

1 bump control where it needs to be. 2 Also, in our Darby Fork Mine, 3 we have a history of areas that contain 4 sandstone roof and in the coal seams in 5 several other places where we have limited thickness of the seam. 6 7 The seam in those areas may be 8 reduced from -- a normal seam height is, 9 say, 50 inches or so. It may be reduced 10 to 24 inches of thickness. It's very hard 11 to cut the roof for it. A lot of times 12 you'll have real hard floors to go along 13 with that. 14 As you can see on the map in 15 these red and yellow areas through here, 16 we have some low coal and sandstone here. 17 through here, and down in this area. What 18 does that do? That lowers the mining 19 course and causes additional resistance to 20 our ventilation system. 21 Okay. At our Huff Creek Mine, 22 as I said previously, each of these seams 23 must remain in the footprint of the other.

1	So Huff Creek has got to remain in the
2	footprint of the overlying Darby workings.
3	Again, this necessitates using a
4	five-entry layout.
5	Also, at Huff Creek, they have
6	a large area of sealed works. Oftentimes,
7	we must skirt around those existing old
8	works while staying in the footprint of
9	the Darby seam. So this created areas
10	where we may only have three entries or
11	four entries, and it's caused some
12	bottlenecks in our ventilation system.
13	There's a couple of examples
14	here. You can see where we've got a
15	three- entry system. Here's four entries
16	here. This is actually our main line
17	system that we're using for the section
18	that comes up and out.
19	As you can see there, it goes
20	back to the working station. So, with
21	those three entries, we are very
22	constrained there.
23	There are additional

1	restrictions on both the Huff Creek and
2	the Darby Fork Mines. They've been in
3	operation since the early '90s. I think
4	they started in 1991. Their working
5	sections are deep. They are four to five
6	miles from the slopes and shafts.
7	This entry length that you're
8	going to have from the slopes and shafts
9	further adds to the ventilation
10	resistance.
11	Just a quick summary of some of
12	these constraints we've had. We've had
13	mining within the footprint of a previous
14	mine. We only had one entry available for
15	intake in a five-entry system. Bump
16	prevention does not allow for widening of
17	our panels. Reduced coal thickness and
18	sandstone roofs are in the Darby seam.
19	A lot of times, we have to
20	skirt around old works while staying
21	within the shadow of previous mining; and,
22	as I just said, there's also distance that
23	we've mined underground away from the

slopes and shafts.

1

2	So what do we do to have enough
3	ventilation to ventilate the sections?
4	We're using belt air at those two mines,
5	at Darby Fork and Huff Creek. By this use
6	of belt air, again, we provide additional
7	entries; and those entries, in turn,
8	provide higher volumes of air at the
9	working face.
10	What's the key to using belt
11	air safely? We feel that fire prevention
12	and preparedness is a big key to using
13	belt air and using it in a safe manner.
14	Number one, we make sure that
15	well, we have a CO system, of course, a
16	CO Monitoring System. It remains
17	operational during continually each
18	shift. It's installed along the belt line
19	of each mine.
20	We have, of course, an operator
21	that monitors that outside. The operator
22	can communicate with the sections any time
23	there's an alarm that needs attention.

1	We do preshift and on-shift
2	examinations of all our belt lines.
3	Again, that's each shift. Those are going
4	to identify any areas of concern, any
5	hazardous conditions that we may have
6	along the belt lines.
7	We have fire suppression
8	systems at each drive. Again, those are
9	heat activated to where they will
10	automatically make a they are fire
11	deluge systems. So they are going to try
12	to put out the fire at the first sign of
13	heat that activates those.
14	We have fire fighting boxes
15	where those are located at each belt
16	drive. The hoses are connected with
17	nozzles on the end. All we have to do is
18	pull them out of the box and hook them up
19	to the water line, and they're ready for
20	someone to fight a fire.
21	We, of course, perform regular
22	servicing of our drives or take-ups and
23	head and tail pulleys. That's keeping our

areas clean of dust, oil, grease build up,
and helps prevent any bearing failures
that would possibly cause heating. Of
course, if we have coal spills, we
promptly clean those up.
So, again, we feel like
preventing a fire and being prepared for a
lot of the fires is certainly a key in the
safe use of belt air.
Something I didn't list on here
but something that we also do is our
safety drills with our section crews. We,
of course, practice fire fighting, but
also evacuation drills in case there was a
fire. So we do have evacuation drills
with the crews to show what to do in case
there was a fire in the belt line.
I mentioned that Darby Fork and
Huff Creek do use belt air, but we also
have the Clover Fork Mine, and it does not
use belt air. As I've already said, it's
got a mining height of about 15 feet; and
it's mining faces are not that deep.

1	We haven't had the need to use
2	belt air at that mine. So we don't use it
3	there.
4	Are there any alternatives to
5	belt air? I was thinking of a couple of
6	things and wondering if we could do these.
7	One is upgrade our main fan. Each one our
8	mines are ventilated by an eight-foot
9	Jeffrey fan that's powered by a 500
10	horsepower motor.
11	A fan upgrade would supply more
12	air at the source. The problem is
13	delivering it to the working sections.
14	What are some obstacles we
15	would have? Number one, the distance
16	underground to the working face. Number
17	two, numerous stoppings, overcasts, and
18	the associated leakage with that. Number
19	three, a limited number of entries.
20	Number four, limited entry height in areas
21	where we've got sandstone. Number five,
22	stoppings at the shaft or slope bottom
23	that may not withstand the increased

1 ventilation pressure. 2 What about additional air 3 Someone could say "Add some air shafts? 4 shafts to the back of your property." 5 Much of our cover is 1,500 to 2,000 feet. So that's a very deep area to install 6 7 additional shafts. 8 Much of the surface is very 9 remotely located to put -- say, if we put 10 a fan there, it would be very difficult to 11 get electrical power to that. Due to our 12 ever changing seam conditions and 13 uncertainness of mining two certain areas, 14 preselecting a shaft location is very 15 difficult. 16 In summary, belt air has Okay. 17 been used successfully to help ventilate 18 the working faces of the Darby Fork and 19 Huff Creek Mines. We know of no other 20 viable alternative that exists to supply 21 ample air to the section. 22 Through the use of a CO 23 Monitoring System and the other fire

1	prevention measures that I outlined, the
2	welfare of our personnel are protected.
3	So we highly recommend that belt air
4	continue to be available to ventilate
5	working faces.
6	I will be glad to take any
7	questions.
8	DR. BRUNE: In your schematic,
9	you have two entries common with the belt;
10	the belt entry, what you called neutral,
11	and only one entry isolated intake.
12	How do you manage to keep the
13	isolated intake pressurized over the belt
14	to avoid or to prevent the belt that's
15	contaminated with smoke from migrating to
16	the intake?
17	MR. LEEDY: We do have doors
18	that we have to install along our belt
19	line from place to place, you know, as
20	need be. To keep that from happening,
21	we'll put a door there to slow down the
22	air going to that.
23	DR. BRUNE: Okay. So you do

1	introduce additional resistance in the
2	belt entries?
3	MR. LEEDY: That is correct,
4	yes.
5	DR. TIEN: Is there a reason
6	you use fishtail as opposed to
7	MR. LEEDY: We do that
8	sometimes. Using the continuous haulage,
9	our ventilation is much more effective
10	using the fishtail ventilation, as far as
11	dust control goes.
12	Also, for our roof boulders,
13	the dust control is much for effective for
14	our roof boulder operations using the
15	fishtail ventilation.
16	There are areas where we do
17	have to use the sweep ventilation, from
18	intake coming up the right side and return
19	coming down the left side, generally.
20	DR. TIEN: Even with an
21	additional set of stopping lines?
22	MR. LEEDY: With additional set
23	of stopping lines?

1	DR. TIEN: Yes. To use the
2	fishtail, you've got return on both sides.
3	To isolate the belt and track, it looks
4	like you have
5	MR. LEEDY: I'm not sure I
6	follow what you're saying.
7	DR. TIEN: You have this set of
8	stops here. I'm talking about with the
9	fishtail, you have an additional set of
10	stoppings. Do you think it's worth the
11	additional cost?
12	MR. LEEDY: Right. The
13	fishtail does require another stopping
14	line, exactly. Right. We do feel like
15	it's beneficial to do that.
16	DR. MUTMANSKY: Are you using
17	the continuous haulage system, even in the
18	high coal mine that you have, whatever the
19	name of that one is?
20	MR. LEEDY: No. In the high
21	coal mine, we have three sections in it.
22	Two of the sections two of the sections
23	are high coal, and the other section is in

1	the lower seam only as the seams split
2	apart. We're using the continuous haulage
3	on the low section and the shuttle cars on
4	the two sections.
5	Any other questions?
6	DR. WEEKS: I want to get
7	around to responding to what you said at
8	the outset of your comments. I think it's
9	a very useful discussion to have, and I
10	have a couple more specific questions for
11	you.
12	To start, at the Darby Fork
13	Mine, you said that limiting the panel
14	would help to control the occurrence of
15	bumps. This is an issue that a lot of
16	operators in Utah raised, as well.
17	It makes sense, frankly; but
18	it's not convincing because there's really
19	insufficient detail. There's no data kept
20	on bumps, when a bump occurs.
21	I just wondered if you have
22	data, like "We did it this way, and we've
23	got so many bumps. We did it that, and we

1 got so many bumps." 2 It would simply be much more 3 convincing if you have some real 4 information about what the concrete 5 improvements were doing it one way versus 6 another, in terms of these bumps. I think 7 that was the problem with the operators in 8 Utah, as well. 9 Do you have any more detail on 10 that? Do you keep records on that sort of 11 thing? Is that stuff that you could share 12 with us? 13 MR. LEEDY: No. I really don't 14 have any records specifically that would 15 show that; but I will say that in the 16 investigation, the resulting -- you know, 17 in the conclusions from the investigation. 18 I guess these were investigations done by 19 both consultants that we had hired plus 20 MSHA Tech Supporters. 21 I think the modeling that they 22 did showed that the increased width did 23 contribute to the bump. They ran the

1	models using I forget the name of the
2	simulation program that they used to model
3	that.
4	DR. WEEKS: Was that Agapito?
5	MR. LEEDY: No. There was
6	another one we consulted with.
7	MR. MUCHO: Jim, let me comment
8	on the bump statistics. There is a bump
9	database with statistics that was put
10	together by NIOSH that's available. We
11	can get that for you. That was kept over
12	statistics kept on the bumps that occurred
13	over the years.
14	The key points from that have
15	been researched by a number of people; and
16	conclusions were reached as to the impact
17	of overburden, impact of strong strata,
18	the interactions of a number of those
19	factors.
20	So there's a quite a library of
21	research, really, which has ended because
22	we developed mine designs that have fairly
23	well addressed these issues in the United
1	States. It's not the issue that it once
----	---
2	was, but we can get a lot of that data
3	research and so forth along with the bump
4	database information.
5	DR. WEEKS: Some of the
6	information that we saw in Utah was
7	modeling data, which is one it's one
8	source of information.
9	The other is real data, which
10	is the actual occurrence of these events
11	in the field. If the database is real
12	events, that would be quite useful to see
13	that and see that in relationship to
14	different methods of mining.
15	If it's modeling data well,
16	as I said then, if that's the best we've
17	got, that the best we've got. That's
18	simply not the same.
19	MR. MUCHO: That was the
20	original approach, really, was to use the
21	empirical data, Jim. We found that
22	generally bumps don't occur at
23	overburdened depths of less than 1,000

1	feet or, 1,300 sometimes. We started to
2	see the impact of the strong strata and
3	how that impacted bumps, how the two
4	interacted together.
5	So that was the original
6	approach, and really modeling and those
7	kinds of approaches have been more recent
8	looks to kind of verify a lot of the
9	empirical looks that were done early on.
10	DR. WEEKS: Well, yeah. Okay.
11	I'd like to get that data, if you can put
12	your hands on it, Tom.
13	MR. MUCHO: We can get NIOSH to
14	supply that data. So Linda ends up with
15	that assignment.
16	DR. WEEKS: The other question
17	I had was from your discussion of fire
18	prevention preparedness.
19	Have you considered using belt
20	material that is more resistant to burning
21	than the material that is currently used
22	as a method of fire prevention?
23	MR. LEEDY: I would I'm not

1	sure about the answer to that question. I
2	think we would certainly consider it if
3	the strength characteristics of the belt
4	was up to where the current belt we use
5	now is. If we can get a stronger belt
6	that had higher fire resistance, I'm sure
7	that's something that we'd consider.
8	DR. WEEKS: Right. That's what
9	the other folks at Jim Walter said. I
10	certainly agree with that. It would have
11	to be able to conform; but, in order to
12	prevent belt fires, it would be useful to
13	have belts that didn't burn.
14	MR. LEEDY: I agree.
15	DR. WEEKS: Let me go back to
16	the comments that you made at the
17	beginning. Let me just pursue this.
18	As I mentioned before, the
19	original reason for prohibiting the use of
20	belt air was to prevent fire and smoke
21	from going to the face. You said that was
22	before AMS systems came along. That's
23	certainly true. I think the AMS system is

1	definitely a step forward in mine safety.
2	The question is: Does it
3	prevent smoke from going to the face?
4	Does it, in fact, prevent belt fires?
5	There's very little evidence that it does.
6	In fact, if we look at the frequency of
7	belt fires over the past 20 years, it's
8	virtually unchanged.
9	So whatever is being done to
10	prevent belt fires, whether it's this list
11	of things that you mentioned or belt
12	material or AMS systems or whatever, it
13	doesn't appear to have much impact upon
14	the occurrence of belt fires.
15	So that's just a problem, if
16	we're going to prevent fires rather than
17	merely detect them. When I was talking
18	about occurrence of reportable fires; that
19	is, 30 minutes or more, there is very
20	little reliable information about fires
21	that are not reportable, primarily because
22	they're not reported.
23	So I don't see the solution to

Г

1	that problem, and I don't see what the AMS
2	system does to it doesn't appear to
3	have much affect on the occurrence of belt
4	fires.
5	MR. LEEDY: It should provide
6	early warning.
7	DR. WEEKS: Right.
8	MR. LEEDY: By doing so, the
9	section crew would be contacted to
10	evacuate; and then they evacuate out the
11	primary escapeway.
12	DR. WEEKS: But what do you
13	view as early warning? If a fire burns
14	for 30 minutes, and thereby becomes
15	reportable, surely we can do better than
16	wait 30 minutes before you know what I
17	mean? It's a problem.
18	MR. LEEDY: I guess if the CO
19	is I would think CO is the main
20	concern, as far as injury or fatalities
21	for smoke coming up on the section. As
22	we've heard previously, those CO detectors
23	are going to detect even minute levels

1 very quickly. 2 DR. WEEKS: Considering that is 3 the case, then early detection should lead 4 to early control. 5 MR. LEEDY: Right. 6 DR. WEEKS: It doesn't seem to 7 have worked. 8 MR. LEEDY: I don't know why 9 that would be. I don't think that would 10 be the case at our mines. 11 DR. WEEKS: Maybe a closer examination of the data on the belt fires 12 13 over the past several years would reveal 14 more about why that they occur; but, if 15 we're going to use belt air and the 16 expectation is that we're going to prevent 17 belt fires by early detection, I don't see 18 it happening. I don't quite know what to 19 do about it. 20 One thing to do about it is to 21 improve standards of belt materials so 22 that they don't burn. 23 MR. LEEDY: And then doing your

1	maintenance along the belt system. That
2	will allow doing the maintenance will
3	allow bearings to run hot and will keep
4	the spills cleaned up and that kind of
5	thing.
6	DR. WEEKS: But maintenance is
7	obviously a key issue, and it's required
8	now regardless whether there's belt air or
9	anything else.
10	MR. LEEDY: Right.
11	DR. WEEKS: It's like
12	maintenance is like motherhood. You
13	should love your mother. You should
14	maintain your mine. The point is
15	everybody pays lip service to it, but
16	there are a few mine operators that don't.
17	It just creates a problem for the whole
18	industry.
19	DR. TIEN: Jim, I'm just
20	wondering if it is true that the number of
21	fires the frequency over the past 20
22	years remains relatively similar; but, if
23	you look at the coal production, it has

1	actually doubled or at least increased
2	dramatically.
3	So, as for performance, are we
4	doing better; or are we doing just as bad?
5	DR. WEEKS: I think we're
6	doing the same. I don't think the coal
7	production is a useful denominator in this
8	particular instance.
9	DR. TIEN: Well, if the coal
10	production has doubled or whatever the
11	percentage of increase is, you must have
12	increased that many activities of that.
13	If there is a constant number of fires
14	I'm just wondering and thinking in that
15	direction.
16	DR. WEEKS: Let me be specific.
17	It's not the number of fires. It's the
18	number of mines per thousand mines because
19	the number of mines has gone down.
20	The straight number of fires
21	has gone down, but so has the number of
22	mines. So, if you calculate that in terms
23	of the number of fires per thousand mines,

Г

1 it's about constant. 2 The best way to do it would be 3 the number of fires per miles of belt. 4 You could get more sophisticated or 5 however you want, but, you know. 6 DR. TIEN: Well, that's right, 7 per mine. Our mine is getting bigger, 8 too. It used to be a mile-long mine. Now, 9 it's a five-mile long mine. 10 DR. MUTMANSKY: May I suggest 11 to the Panel Members, that that's a good 12 topic to take up in subcommittee in 13 upcoming weeks. 14 It's basically a philosophical 15 question. It's a good question to bring. 16 It's a good thing to study and take a look 17 at, but maybe we should let Patrick off 18 the hook on this one because it's 19 something we have to decide. 20 MR. LEEDY: We do have several 21 other speakers. 22 MR. MUTMANKSY: In that case, 23 we probably should move on. Thank you

very much.

1

2	MS. ZEILER: Our next speaker
3	is Greg Dotson, Mine Manager at Mingo
4	Logan Coal Company of Arch Coal.
5	MR. DOTSON: Good afternoon
6	ladies and gentlemen, Member of the Panel.
7	I appreciate the opportunity to come and
8	provide some comments related to the topic
9	of belt air in the face.
10	When I sat down and looked at
11	what I was going to present today, I sat
12	down and decided there were three major
13	topics that I wanted to touch on that I
14	thought would be significantly improved by
15	using belt air in the face. Those are:
16	The overall mine ventilation, the roof
17	control, and the belt inspection and
18	maintenance.
19	When we're talking about the
20	overall mine ventilation system, we're
21	talking about how much air is actually
22	being delivered by the belt entry, which
23	is limited by more air being directed to

1	the working face by the intake, which is
2	pretty much what this is.
3	Also, the belt entry is not
4	used as a primary escapeway in the mine.
5	So that affords two opportunities. Your
6	belt entry can be used as an escapeway, as
7	well as a primary escapeway.
8	In addition, I believe that the
9	use of belt air for face ventilation
10	results in a more efficient ventilation
11	system, as well as giving you additional
12	methane dilution in the mine.
13	We talked a little bit about
14	carbon monoxide monitoring and atmospheric
15	monitoring. I think everybody here in the
16	room agrees that there is an added benefit
17	to using AMS systems.
18	That gives you an opportunity
19	to detect carbon monoxide, methane, and
20	other harmful poisonous gases, as well as
21	giving you an opportunity to get early
22	detection in case there is some type of
23	thermal event of obstacle or issue in your

belt entry.

1

2	In addition, there's something
3	that I skipped right here. Utilizing belt
4	air for face ventilation does add
5	additional fresh air to the intake of your
6	actual working face, rather than diverting
7	it to the return. So that's air that you
8	can use to render harmless and sweep away
9	harmful gases and dust.
10	Back to the atmospheric
11	monitoring. We utilize atmospheric
12	monitoring at the Mountaineer II Mine. We
13	have trained qualified personnel at our
14	operation. They are there 24 hours a day,
15	seven days a week.
16	We also have audible and visual
17	devices on the working section to advise
18	our workers in case there is some type of
19	event that they need to be notified of.
20	Again, that's back to the early detection.
21	Also, their AMS system monitors
22	our intake airways. Again, it gives an
23	opportunity to have early detection.

1	In summary, as far as our
2	overall ventilation, I think the usage of
3	belt air in the face does a couple of
4	things for us. It gives us additional air
5	to help dilute the methane and harmful
6	gases and things like that; and it
7	enhances our ventilation system.
8	As far as roof control, the
9	first thing I want to talk about is that
10	as our coal reserves are being depleted,
11	the industry is continuously having to tap
12	into reserves that have more geologic
13	challenges.
14	That could include things like
15	deeper cover, overmining, undermining,
16	rider seams, weaker floor, weaker roof,
17	and a lot of other different issues. In
18	doing so, one of the major ways to combat
19	these geologic challenges is to minimize
20	the number of entries and increase the
21	pillar and narrow the entry widths.
22	In doing that, it becomes very
23	necessary to utilize belt air so that you

1	can achieve the required volumes to dilute
2	the methane and sweep away harmful gases
3	and sweep away the dust.
4	This is a typical geologic
5	cross section at the Mountaineer II Mine.
6	We intend on mining this seam, which is
7	the Cedar Grove seam, as well as this
8	mixture of seams, which is the Alma seam.
9	The inner burden between these
10	two seams is approximately 35 feet. In
11	areas where second mining is going to be
12	conducted, longwall mining, remnant
13	pillars are going to be left, barriers are
14	going to be left, and things like that.
15	It becomes essential to
16	minimize the number of entries while
17	you're developing under the remnant pillar
18	barriers to sustain the roof in this seam.
19	Not only that, you can see this is kind of
20	a hodgepodge of splits of the Alma. It's
21	the Alma 1, 2, 3, 4, all the way down to
22	the Alma 6.
23	The seam that we are

1 predominantly mining or the split that we 2 are predominantly mining is the Alma 2 3 through Alma 4. So you can see we've got 4 a rider seam that pretty much continuously 5 lays over our reserve, as well as a hanger seam underneath us. 6 7 In areas where we've got low 8 cover or extremely high cover, it's 9 essential to build a narrow entry and take 10 as few entries as possible to maintain 11 adequate roof control and to minimize 12 floor (inaudible.) 13 In addition, as far as roof 14 control, without the use of the belt air 15 for face ventilation. additional overcasts 16 and additional rockwork would have to be 17 required to sustain our ventilation 18 system. 19 We believe that that increases 20 the exposure of our employees to hazards 21 related to excavations, highs, overcasts, 22 and explosives. 23 Now, I'll talk about belt

1	inspection and maintenance. In a lot of
2	mines, the belt entry is often common with
3	the track entry when belt air is used for
4	intake face ventilation. This allows easy
5	access for inspections, detection of
6	problems, cleaning, maintenance, rock
7	dust, and things that we know that we need
8	to do.
9	Without this being common with
10	our other entries, this practice could be
11	compromised and could make maintaining the
12	system more difficult; and we think it's
13	the right thing to do. We want to
14	maintain our system, and we believe that
15	prevention is the correct way to combat
16	issues with belt air.
17	In addition, we've talked about
18	our Atmospheric Monitoring Systems that
19	can monitor for a number of events. Well,
20	there's also another system of monitoring
21	that we believe is your sight, your sound,
22	and your smell.
23	If you're traveling in an

1	entry our belt entry is in the number
2	four entry. Our track entry and hallway
3	is an adjacent entry. You can see that
4	there's no stoppage in between it.
5	As you travel in and out of the
6	mine every day, you have an opportunity to
7	use those three basic senses. You use
8	your sight. You can look right at the
9	belt, and can see if there's an
10	accumulation of float dust or debris
11	underneath the belt that needs to be
12	cleaned.
13	You have an opportunity to use
14	your ears to hear if there's a roller
15	stuck or if the shell on a roller has
16	been damaged or deteriorated, and you can
17	smell to see if there is some type of
18	event occurring up there.
19	So, without the utilization of
20	belt air in the face and keeping these
21	entries common, that would be compromised.
22	Again, we believe that that is a necessary
23	means of early detection.

Г

1	Everybody in the coal mine
2	travels in and out this same travel way.
3	They travel adjacent to our belt entry.
4	So everybody that goes in and out of the
5	mine has an opportunity to use those three
6	things, regardless of the AMS system.
7	Again, I've been going in and
8	out of the mines; and I've heard belt
9	rollers that have sweeping, shells that
10	have been shattered. You get down in the
11	mine and shut the belt down because we've
12	got a problem, and it happens on a routine
13	basis. There's also fire to the belt
14	without knowledge, if this entry is
15	isolated.
16	This also shows our typical
17	ventilation, and these yellow dots here
18	I think you can see them pretty well on
19	your hard copy shows where we do
20	Atmospheric Monitoring along our belt
21	system. As you can see, a lot of these
22	are redone.
23	We've got an inby and an outby

1	at our belt heads. We've got them along
2	our drives and power centers. We've got
3	them along our intake course and up the
4	required 1,000 feet along our belt and
5	intake.
6	So there's a lot of monitoring
7	that goes on throughout our system to give
8	early warning. We believe that
9	Atmospheric Monitoring maintenance and
10	inspection and it being common with our
11	travelway where people can see, hear, and
12	smell it every day is the best means to
13	prevent any issues with your belt entry.
14	This is kind of what it would
15	look like without belt air. Again, a
16	numerous amount of stopping lines would
17	have to be constructed, as well as
18	additional overcasting in this area.
19	What you would have to do for
20	people traveling in and out of this mine
21	that no longer get an opportunity to look
22	at that is that you would have to rely
23	solely on atmospheric monitoring or one

1	person traveling in and out this beltway,
2	one per shift, during your preshift and
3	on-shift examinations. So you're limiting
4	it to one person's opinions versus
5	everybody traveling in and out of the coal
6	mine.
7	Last but not least,
8	miscellaneous topics. Just to reiterate
9	some of the things that you've heard
10	earlier on today, the engineering
11	development in most mines has already been
12	done.
13	It's the same as what we've
14	done at the Mountaineer II Mine. We sat
15	down and did an evaluation. How do we
16	want to design this mine? In how many
17	entries do we want the belt in our mine?
18	All those things were considered.
19	We were fortunate enough early
20	on to be able to design our mine so that
21	we could utilize belt air in the face
22	based on the previous regulations.
23	Most mines are considerably

1	deeper than what we are and have design
2	systems based on the same premise that
3	they were allowed to use belt air in the
4	face. If that was to be changed abruptly,
5	it could significantly impact their
6	operations to the point to where they
7	could possible be shut down temporarily.
8	So, in conclusion, I think that
9	I promote belt air in the face. I think
10	it can be done safely. I think it can be
11	done with early detection. I think it can
12	be done with good maintenance and
13	prevention. Again, my ultimate focal
14	point is prevention.
15	So I appreciate the opportunity
16	again to provide comments, and I'm here to
17	answer any questions.
18	DR. TIEN: I'm sorry, I didn't
19	get your name.
20	MR. DOTSON: Greg Dotson.
21	Thank you very much.
22	MS. ZEILER: Our next speaker
23	is Bill Olsen. He is the Director of

1	Safety for Mountain Coal, also Arch Coal.
2	MR. OLSEN: On behalf of
3	Mountain Coal Company, I'd like to thank
4	the Panel for the opportunity to provide
5	comments related to the use of belt air to
6	ventilate working faces in underground
7	coal mines.
8	Mountain Coal Company is a
9	subsidiary of Arch Western Bituminous
10	Group, which is a subsidiary of Arch Coal,
11	Inc.
12	My name is Bill Olsen, and I'm
13	the Safety Director at Mountain Coal
14	Company's West Elk Mine in Somerset,
15	Colorado.
16	In addition to my comments,
17	Mountain Coal Company supports the
18	previous and post comments from the
19	National Mining Association, Colorado
20	Mining Association, Utah Coal Operators,
21	and the Alabama Coal Association and their
22	related companies.
23	The West Elk Mine faces many

1	geological challenges, specifically deep
2	cover, high horizontal stress, faults,
3	spars, and multi-seam mining. Based on
4	the current mine plan, cover will reach
5	depths of 2,300 feet.
6	Horizontal stress reaches
7	approximately 3,500 PSI. Fault
8	displacement ranges up to 2,300 feet,
9	which also serve as conduits for increased
10	methane and water inflows.
11	Rock spar, typically composed
12	of sandstone, ranges in thickness from
13	several inches to eight feet thick with a
14	hardness of approximately 200 feet of
15	interburden between the active seams.
16	Two of the most difficult
17	challenges at West Elk are related to
18	maintaining methane concentrations at
19	acceptable levels, and reducing the
20	potential for spontaneous combustion
21	throughout the mines.
22	For the methane history of the
23	mine, room and pillar mining began in the

1	F-Seam, the upper most mineable seam, in
2	1982. Fortunately, we did not encounter
3	any methane. In fact, it was rare to
4	detect even 0.1 percent.
5	In 1992, when longwall mining
6	began in the B-Seam, the lower most
7	mineable seam, we encountered large
8	quantities of methane. The majority of
9	the methane was stored in the roof rock
10	and was liberated by caving on the
11	longwall.
12	Methane in the continuous miner
13	sections was typically associated with the
14	faults and spars that we frequently
15	encounter. As mining progressed in the
16	B-Seam, methane liberation exceeded
17	1,000.000 cubic feet per day, putting us
18	on MSHA's five-day spot inspection program
19	in September of 2001.
20	With the increased methane
21	liberations in the working sections,
22	Mountain Coal Company filed a Petition for
23	Modification to allow the use of belt air

1	to ventilate working faces in May of 1990.
2	The primary purpose for filing the
3	Petition was to provide an increased air
4	volume to the working face, thereby safely
5	diluting the methane encountered as well
6	as respirable dust and diesel emissions in
7	the section.
8	MSHA approved the Petition for
9	Modification in May, 1991 and the Petition
10	was implemented in the continuous miner
11	sections and the longwall section in June
12	of 1992. The stipulations in the Petition
13	were fairly close to the requirements of
14	the current belt air regulations published
15	in June of 2004.
16	Using VNET PC for modeling our
17	ventilation system over the past several
18	years, we compared predicted air volumes
19	in the working sections, both with and
20	without the use of belt air. In a typical
21	three-entry longwall headgate, the volume
22	of air provided to the working face is
23	increased by nearly 30 percent when belt

1	air is utilized to ventilate the working
2	section.
3	In mines with elevated methane
4	liberation, the additional air provided in
5	the belt entry is absolutely necessary for
6	methane dilution purposes.
7	We have continuously and safely
8	utilized belt air in every working section
9	since implementation in 1992. Through a
10	combination of vertical degasification
11	holes and a high volume mine ventilation
12	system, we have been able to safely
13	control a methane liberation of between 10
14	and 20 million cubic feet per day.
15	Without the use of belt air to
16	the working sections, we would have
17	struggled to maintain methane
18	concentrations within the legal limits.
19	From this aspect alone, the use of belt
20	air has actually enhanced miner safety in
21	the working sections.
22	In regards to dust generated in
23	the belt entry, Mountain Coal Company

Г

1	agrees with a previous statement made by
2	NIOSH when they provided input on MSHA's
3	proposed rule on belt air that stated:
4	"The use of belt air may have a positive
5	effect on reducing dust levels in the face
6	area."
7	In reviewing MSHA's database on
8	valid operator respirable dust samples
9	that are required to be submitted for
10	designated areas at the section loading
11	points due to the use of belt air, the
12	database indicates 173 samples were
13	submitted by the West Elk Mine from
14	January 1, 2000 to May 18th, 2007.
15	I have provided tables for the
16	sample results. Seven of the initial
17	samples required additional sampling due
18	to exceeding the 1.0 milligrams per
19	million standard.
20	The average of all five
21	subsequent samples for each sampling
22	location was in compliance with the 1.0
23	milligram per million standard. When

1	reviewing the samples above the 1.0
-	milligram per million sample, several were
-	attributed to a damaged transfer point
J Д	that has since been replaced
5	Soveral of the samples were
ر م	
6	also the result of the belt entry being
7	rock dusted. This has also been corrected
8	by modifying the shift schedule to allow
9	rock dusting of the conveyor belts between
10	shifts.
11	In reviewing MSHA's database on
12	samples collected at the section loading
13	points by MSHA, 97 samples were collected
14	during the same time frames. Grouping of
15	MSHA sample results is indicated in the
16	second table on page two of the document I
17	have provided to the Panel.
18	In reviewing available records
19	at the mine, the last citation related to
20	exceeding the designated area dust
21	standard was in October of 1997 when the
22	sample results averaged 1.1 milligrams per
23	million.

1	To Mountain Coal Company, this
2	indicates that belt air can be safely used
3	to ventilate the faces without
4	contributing excessive dust to the working
5	section.
6	The second difficult challenge
7	at West Elk is spontaneous combustion.
8	This is not unique to West Elk Mine, but
9	is common in the North Fork Valley with
10	several other western mines having similar
11	propensity for spontaneous combustion.
12	The B-Seam and E-Seam currently
13	being mined at West Elk indicate a
14	moderate susceptibility to spontaneous
15	combustion with a self-heating temperature
16	ranging from approximately 120 degrees
17	Fahrenheit to 180 degrees Fahrenheit.
18	West Elk has incurred two major
19	mine fires in the B-Seam as the result of
20	spontaneous combustion. One occurred in
21	2000, with the second occurrence in 2005.
22	As the result of these mine fires, we were
23	out of the mine for a period of

1	approximately six months and three months
2	respectively.
3	In addition, we have
4	encountered minor heating events in
5	pillars that did not result in mine
6	outages.
7	The use of belt air at West Elk
8	has allowed us to lower the main mine fan
9	operating points and ventilation
10	pressures. For the air volume needed to
11	control methane liberation, our four main
12	mine fans operate at pressures ranging
13	from approximately a 9.0 inch to a 10.9
14	inch water gauge.
15	However, if we were not
16	utilizing belt air in the sections, the
17	fan pressures would have to be increased
18	to over 15 inches in order to maintain an
19	equivalent air quantity in the section
20	that is necessary to control methane
21	liberation.
22	We believe the increased
23	pressure differential, specifically across

1	our pillars and gobs, increases the
2	likelihood for spontaneous combustion to
3	occur as the air passes through the
4	natural cleats and fractures of the
5	pillars and within the caved area where we
6	unfortunately have a demonstrated history
7	of spontaneous combustion.
8	We believe that both of our
9	mine fires were the result of
10	significantly changing the pressure
11	differential across the gob area.
12	To further reduce the
13	likelihood of spontaneous combustion, we
14	have reduced the sizes of our longwall
15	districts, modified our mining plan such
16	that we progressively seal the gob as we
17	mine, and minimize the pressure
18	differential across the gob.
19	As we begin longwall mining in
20	the E-Seam, we hope to further minimize
21	the potential for spontaneous combustion
22	in the gob by utilizing a modified
23	bleederless system.

In addition to safely
controlling the methane and reducing the
potential for spontaneous combustion, the
use of belt air provides additional
protection, including the following:
Early detection, even prior to detection
by the AMS of heatings such as hot
conveyor rollers.
Although it is very subjective
for detection purposes, we have had
several instances where employees detected
such heatings with the sense of smell.
Their quick investigation to the cause of
the smell may have well prevented an
escalation of a heating into a mine fire.
The AMS carbon monoxide sensors
are much better in detecting fires at the
incipient stages when compared to
point-type heat sensors still utilized in
mines where belt air is not used. The
sensors have proven to be protective for
smoldering and flaming coal-type fires
whereas point-type sensors rely on latent

fire properties.

1

2	Fire fighting capabilities in
3	the belt entry are enhanced when belt air
4	is utilized. This allows fire fighting to
5	be conducted from the upwind side with the
6	air flow and water flow in the same
7	direction, minimizing the potential for
8	damage to the water supply line.
9	Although air changes could be
10	made where belt air was not in use to
11	provide similar protection in the event of
12	a mine fire, such air changes could have
13	detrimental effects on personnel trying to
14	escape based on their knowledge of
15	existing ventilation practices.
16	Use of belt air in the working
17	sections allows for the alternate
18	escapeway to be on intake air, rather than
19	using a neutral or return air split for
20	escapeway purposes.
21	In closing, I would, again,
22	like to thank the Panel for the
23	opportunity to provide comments on the use

1	of belt air. Like many other underground
2	coal mines, West Elk has safely utilized
3	belt air for many years. We have been
4	successful in controlling the methane and
5	have reduced the potential for spontaneous
6	combustion.
7	We agree with MSHA, NIOSH, the
8	Advisory Committee, and academia who
9	universally state that belt air can be
10	safely used to ventilate working faces,
11	and in fact state that the use of belt air
12	provides potential enhancement of miner
13	safety.
14	The use of belt air improves
15	the overall quality and quantity of
16	section ventilation, directing affecting
17	methane control, dust control, diesel
18	emission control, spontaneous combustion
19	mitigation, and fire detection and fire
20	fighting capabilities.
21	We encourage the Panel to
22	support its continued use. Thank you.
23	MS. ZEILER: Our next speaker

Г

1	will be Jim Poulsen, Manager of Safety at
2	Utah American Energy, Incorporated.
3	MR. POULSEN: Okay. I would
4	like to tell you that I hopefully am the
5	last speaker.
6	MS. ZEILER: One more after
7	you.
8	MR. POULSEN: Okay. Good
9	afternoon. I would like to thank the
10	Technical Study Panel, MSHA, my fellow
11	colleagues, and others for the opportunity
12	to present comments regarding belt air,
13	concerning the safety of the underground
14	miners in America.
15	My name is James Poulsen. For
16	the last 30 years, I have worked at
17	Peabody, Energy West, Valley Camp Coal,
18	and Skyline Mine in various management
19	positions; and I was an underground
20	employee.
21	Right now, I am currently the
22	Manager of Safety for Utah American
23	Energy, Incorporated, which is a

1	subsidiary of Murray Energy Corporation.
2	I am also a member of the International
3	Society of Mine Safety Professionals, and
4	I am a Registered Certified Mine Safety
5	Professional.
6	Utah American currently
7	operates five underground coal mines,
8	employing 500- plus employees from within
9	Utah and the surrounding states. Three of
10	the five Utah American Mines are currently
11	in full production. Aberdeen and West
12	Ridge are currently utilizing belt air at
13	the working face in combination with the
14	two-entry longwall mining system.
15	Crandall and South Crandall
16	Mines successfully used belt air to the
17	working face in the past, but are not
18	doing so at the present time.
19	Utah American has currently
20	commenced ground work on an additional
21	property named "Lila Canyon." Use of belt
22	air at the working face utilizing a
23	two-entry mining system will be necessary
1	for the safety of our employees at that
----	--
2	operation, also.
3	We consider the safety of our
4	employees to be a value which we will not
5	compromise. We believe it is our moral
6	and ethical responsibility to protect the
7	health and safety of all our employees,
8	which is what brings us here to day.
9	I cannot emphasize enough that
10	changes to the current belt air standards
11	would be very harmful to the safety of our
12	underground miners.
13	I personally have been involved
14	with the use of belt air at the working
15	face at many operations and openly and
16	willingly testify from a safety
17	perspective that ground control, dust
18	control, dilution of dangerous gases, and
19	overall miners' safety is improved when
20	belt air can be utilized at the working
21	face.
22	Previous testimony and numerous
23	studies have shown that use of belt air

1	definitely increases the efficiency of the
2	Mine Wide Ventilation System. This
3	additional air increases dilution of
4	methane and respirable dust, reducing
5	worker exposures to these hazards.
6	Some questions have been raised
7	about increased dust levels with the
8	increased ventilating pressure or
9	currents. MSHA and NIOSH data, testing,
10	and operator sampling substantiates that
11	the use of increased belt line ventilation
12	provides an enormous reduction in
13	respirable dust and increased gas
14	dilution.
15	It is a well-known fact that
16	concentrations of respirable dust are
17	inversely proportional to the air quantity
18	used to dilute them. If you double your
19	air quantity, your dust concentration is
20	cut in half.
21	In Salt Lake City, Panel Member
22	Dr. Weeks, requested sampling data with
23	regards to dust concentration and belt

1	line entries. That information has now
2	been provided to the Panel, which appears
3	on the chart on the following page
4	entitled "Belt Line Samples."
5	In todays Western US Mines,
6	1,500 to 3,000 feet of cover is
7	commonplace. To control the adverse roof,
8	pillar outbursts, and bouncing conditions
9	and enhance worker safety, two-systems
10	were developed. At these depths, studies
11	and experience have proven that it is just
12	not good practice to develop more entries
13	than absolutely needed. The less entries
14	you have, the more likely you are to be
15	able to control the ground and bouncing.
16	In Salt Lake City, Dr. Weeks
17	asked for some comparisons of two-entry
18	mining systems compared to the multiple-
19	entry mining systems. The following chart
20	entitled "Comparison of Two-Entry versus
21	Three-Entry Gateroads," compiled by the
22	Utah Mine operators, has been developed
23	and submitted as requested.

1	What you see there is a list of
2	mines utilizing the two-entry method with
3	a total of 921,929 feet of gateroads with
4	17 reportable roof falls. That translates
5	into .018 reportable roof falls per 1,000
6	feet.
7	Down below you can see that the
8	same mines reported their three-entry
9	gateroads, which is at 749,696 feet. They
10	had 62 roof falls, which shows you .083
11	roof falls per 1,000 feet. So there is a
12	considerable difference there in the
13	number of roof falls from three-entry to
14	two-entry.
15	Operators desiring to utilize
16	two-entry systems had to file a petition
17	pursuant to Section 101(c) of the Federal
18	Mine Safety & Health Act. If granted,
19	these petitions obligated the operator to
20	a multitude of additional requirements.
21	Unquestionably, the most rigorous
22	requirement contained in the petition is
23	the use of the AMS systems.

1	Other common petition
2	requirements for two-entry development
3	were: Automatic fire suppression systems
4	on diesel equipment, tracking and
5	monitoring of equipment entering and
6	leaving the sections, diesel
7	discriminating CO sensors no greater than
8	1,000 feet apart in the intake and belt
9	line extending 4,000 feet out by the
10	section, two separate and independent
11	means of communication (one was in the
12	intake and one was in the belt line) and
13	phones no greater than 1,000 feet apart,
14	additional SCSR's stored at the headgate
15	and tailgate (prior to the additional
16	requirements of the MINER Act of 2006),
17	fire fighting outlets extending into the
18	intake escapeway every 300 feet, trained
19	mine monitor system operators on duty on
20	the surface 24/7, and sometimes even
21	operator use of a PED system when entering
22	the section.
23	Some mines had various other

1	requirements, but all of these
2	requirements improved miner safety.
3	Previous testimony has
4	described the functions of AMS systems.
5	So I won't go into detail about their
6	capabilities. In Salt Lake City, Mr.
7	Wendell Christiansen offered comments
8	regarding today's AMS systems. Given the
9	performance of these systems, it would be
10	foolish for this Panel to do anything
11	which discourages their use in our mines.
12	The use of belt air at the face
13	carries with it the requirement to use CO
14	sensors rather than the more common but
15	far less reliable point-type heat sensors.
16	I offer to you my opinion that
17	a mine approved to use belt air along with
18	the accompanying requirements, including
19	state of the art AMS systems with CO
20	sensors, provides a safer and healthier
21	environment for miners than a similar mine
22	which does not use belt air, but does use
23	point-type sensors.

Г

1	In my 30-plus years of mining,
2	I believe the AMS system is one of the
3	most important devices introduced into the
4	mining industry to improve overall worker
5	safety.
6	At the end of this document is
7	the basic Conspec operator training
8	requirements, entitled "Exhibit A" and
9	Friction Factors and Infrastructure
10	Resistances entitled "Exhibit B" which
11	were requested by the Panel in Salt Lake
12	City. They are also included for
13	submission.
14	Congress, MSHA, NIOSH, mine
15	operators, individual miners, and many
16	others had a hand in propagating the
17	current belt air rules. As far as I know,
18	the current belt air rules have not been
19	shown to be a contributing factor in any
20	of the disasters which tragically occurred
21	in this country during 2006, not even in
22	the Aracoma disaster, which involved a
23	belt-line fire.

1	We would encourage this
2	committee to acknowledge the previous
3	experience and endorse the current belt
4	air rule.
5	DR. WEEKS: Well, I have never
6	fully appreciated the statement "Be
7	careful what you ask for." You know the
8	rest.
9	Anyway, aside from that, thank
10	you for providing this. This is quite
11	interesting.
12	I especially appreciate your
13	including in the data on roof falls, the
14	feet of the gateroads. I believe that
15	makes the data that much more meaningful.
16	MR. POULSEN: In addition to
17	that, keep in mind that this is only
18	gateroad development, too.
19	DR. WEEKS: Right. I
20	understand that.
21	Having been provided this data,
22	I feel I am at liberty to cross-examine
23	you. If you will give me your phone

1	number, I will call you about that.
2	I do have a couple of questions
3	on the dust data. The final column that
4	you have here is the dust weight. I take
5	it that's the difference between pre-
6	weight and post-weight?
7	MR. POULSEN: Yes. The pre-
8	weight and the post-weight.
9	What we do is let me explain
10	this table a little bit better for you.
11	This is in-house sample results, and we
12	request from the Agency to use dust
13	casettes for in-house sampling.
14	Then, what we do is a side-by-
15	side sampling. One of the cassettes is
16	the one that's to be sent to the Agency as
17	required. A lot of times, I will sample
18	with another dust cassette just to weigh
19	the actual results and make a calculation
20	of how much dust I am actually seeing
21	there.
22	As you know, we submit a sample
23	to the Agency, and it takes weeks or

1 months before we actually know what 2 concentration that it was. 3 This gives us an immediate 4 result, and I can actually make 5 corrections immediately if we have a 6 problem where we are out of compliance. DR. WEEKS: So this is the 7 8 backup sample? 9 MR. POULSEN: Yes, this would 10 be a backup. 11 DR. WEEKS: In the last column, 12 you listed weight. Is that weight or 13 concentration? 14 MR. POULSEN: That would be 15 concentration. I'm sorry. 16 DR. WEEKS: That would be cubic 17 meter. 18 MR. POULSEN: Yes. 19 DR. WEEKS: Okay. I will have 20 a look at it. Thank you. 21 MR. POULSEN: These are all DA 22 samples, too. 23 DR. WEEKS: Yeah. I notice you

1	make a comment on page five "In my 30-plus
2	years, I believe the AMS system is one of
3	the most important devices," et cetera.
4	I don't think you would find
5	anybody on this panel or anywhere that
6	disagrees with that, but that's not the
7	issue before the Panel, whether or not the
8	AMS system is beneficial.
9	The issue is whether or not
10	belt air ventilation is safe and how it
11	can be done safely, and so on and so
12	forth. I think there's a lot of
13	confusion. We all do it. We sort of
14	equate the AMS system with belt air. They
15	are independent and separate creatures.
16	It just became quite apparent,
17	when I read that, that absolutely that's
18	true, but the issue before us really is
19	about belt air. It's not about the AMS
20	system. They're clearly related, but they
21	are different.
22	MR. POULSEN: I believe someone
23	stated here earlier that I believe one of

1	the greatest things we can do as operators
2	is prevention. Regardless, prevention.
3	MS. ZEILER: Thank you, Bill.
4	Our next speaker is Gary
5	Hartsog, who is the President of Alpha
6	Engineering Services. Gary will be the
7	final speaker for the NMA/Alabama Coal
8	Association.
9	We have one speaker after that
10	before we conclude.
11	MR. HARTSOG: My name is Gary
12	Hartsog. I am the President of Alpha
13	Engineering in Beckley, West Virginia.
14	Alpha Engineering is an
15	engineering consulting firm that has
16	provided engineering services to the
17	mining industry for the past 16 years.
18	Our work is mainly in deep coal mines
19	dealing with mine design, ventilation,
20	mapping, and system design.
21	I am a Registered Professional
22	Engineer and Surveyor and a graduate of
23	West Virginia University with BS Degrees

1	in Mining Engineering and Business
2	Administration. I have been involved for
3	over 30 years in designing and operating
4	coal mines for the safe and efficient
5	mining of coal.
6	For 15 of those years, I worked
7	at longwall mines, many using belt air in
8	the working faces. I have helped develop
9	the 101(c)Petitions for Modification and
10	help today administer ventilation plans
11	and systems to use belt air in the working
12	faces.
13	I greatly appreciate the
14	opportunity to stand before this
15	distinguished Panel today to present some
16	of my experiences and thoughts concerning
17	the use of belt air in the working faces
18	and use our clients' experience as
19	examples.
20	My purpose here today is to
21	offer this Panel comments on how the use
22	of belt air that has been used to
23	ventilate conveyor belt entries is

1	important, sometimes critical, to the coal
2	mining industry.
3	For many years, there was a
4	prohibition against using belt air to
5	ventilate the working faces. As
6	technology developed, improved, and became
7	more dependable, belt air was allowed to
8	be used to ventilate working faces so long
9	as there was a heightened vigilance
10	against fires in the conveyor belt
11	entries.
12	Belt air is not necessary to
13	ventilate the working faces in every coal
14	mine in the United States. In fact, there
15	are relatively few underground mines that
16	need to use belt air in the face.
17	In many coal mines that use
18	belt air to ventilate the working faces,
19	it is generally a very important component
20	to a safe and healthy working environment
21	by providing additional airflows, allowing
22	greater pressures to be used in
23	ventilating gobs and other improvements in

1	augmenting the safe operation of the mine.
2	I would list these mines in the
3	categories as follows. This is not an
4	exhaustive list, and it emphasizes mainly
5	the eastern coal fields, leaving some of
6	the special circumstances of the western
7	coal fields that have two-entry
8	development, for others to address.
9	First, there is the development
10	for longwalls. Longwall gate development
11	consists of driving three- or four-entry
12	panels for some distance until a block of
13	coal has been isolated for mining with the
14	longwall. Some of our clients develop
15	gates that are in the 10,000- to
16	18,000-foot deep range. Since these
17	gateroads can become quite long, they
18	become difficult to ventilate, especially
19	if there's significant methane liberation.
20	The use of belt air in the
21	working face allows the leakage to be
22	minimized between the intake and the belt
23	entry and therefore delivers more air to

1 the working faces. 2 Let's say that we have a 3 three-entry panel where the air is coursed 4 up the intake and a split of the air 5 ventilates the working face while another 6 split ventilates the belt outby to the 7 mains. Something like you see on the 8 screen. As some of the air flows outby in 9 the return and belt entries, the 10 increasing pressure differential results 11 in the increase of leakage from the intake 12 to the other two entries. 13 In some cases, the intake to 14 the section may be over 100,000 CFM at the 15 section mouth; and, due to leakage, less 16 than 15 to 25,000 CFM may reach the split 17 point. That would not be adequate flow to 18 ventilate both the entries and the faces. 19 If the belt air is allowed to 20 be used in the faces, the flow of the belt 21 entry air is in the same direction as the 22 intake; and the pressure differentials are 23 minimized, similar to what you are looking

at on the screen now.

1

2	Under this scenario, there can
3	be significantly more, maybe double or
4	triple, the air reaching the face.
5	Therefore, the belt entry and the faces
6	are both ventilated with greater, safer,
7	and more desirable quantities of air.
8	Second, there are those mines
9	who need maximum airflow for the purpose
10	of diluting and carrying away methane.
11	This can be a longwall or a
12	room-and-pillar mine. In deep mines,
13	especially where there is split or
14	fishtail ventilation, it is necessary to
15	get large quantities of air to the faces
16	for methane dilution and control of
17	respirable dust.
18	Due to haulage and supply
19	constraints and requirements in the faces,
20	it is not unusual for there to be as many
21	as three or four haulage or belt air
22	entries in mains or panels. These entries
23	must be adequately ventilated to prevent

1	stratification of methane, for the belt
2	conveyor as well as for any diesel
3	equipment that may be in use.
4	When belt air is not used in
5	the faces, significant return capacity is
6	used on the section just to ventilate the
7	haulage and belt conveyor entries. This
8	reduces the amount of airflow available
9	for the face operation.
10	In addition, when this
11	belt-haulage air is not used to ventilate
12	the faces, it is more difficult to
13	ventilate two continuous miners operating
14	using split ventilation because of the
15	additional distance the air must be
16	conveyed to the far end of the working
17	section by curtains, and the air tends to
18	leak into the belt-haulage entries and to
19	the return rather than traveling to the
20	faces, as shown in these screens.
21	Third, there are those mines
22	where distances and pressure differentials
23	required for ventilating gob areas on

1	second mining makes it extremely difficult
2	to make the belt air go outby to another
3	return. This can be in either a
4	room-and-pillar or a longwall mine, as
5	shown here.
6	There are many cases where the
7	pressure requirements to keep the gob
8	adequately ventilated are so great that
9	the air, once it goes to the section
10	loading point, cannot be induced to travel
11	outby to the mains in the belt entries.
12	For example, in a longwall, if
13	adequate pressure to pull the belt air
14	outby to the main returns were available,
15	the leakage from the intakes to the belts
16	would be so great that inadequate airflows
17	would reach the working section.
18	In another example, in many
19	second mining situations, it is
20	advantageous to make all the entries
21	leading to the working faces intake so
22	that all the air will go through and/or
23	around the gob, like you see here. This

1	helps with allaying respirable dust and
2	makes the ventilation at the section
3	simpler. It also delivers more air to the
4	working section.
5	This eliminates the potential
6	for air from the gob to pull out into the
7	working section. All of these are
8	significant safety features when
9	ventilating a unit on second mining and
10	ventilating an active gob.
11	Fourth, there are those mines
12	in the early development stages between 30
13	CFR part 77 and 30 CFR Part 75. When a
14	mine is starting from a slop or shaft
15	bottom into a virgin area, those first
16	developing areas are very hard to
17	ventilate. Invariably, there is a gray
18	area between the end of Part 77, which
19	applies to shaft and slop development, and
20	Part 75, which applies to normal mine
21	development.
22	In order to move from Part 77
23	to Part 75 as quickly as practical, some

1	mines use belt air in the faces for this
2	period of time and then switch to a
3	permanent ventilation system that does not
4	use belt air to ventilate the working
5	faces.
6	The reason for using belt air
7	in these situations is that the mine is
8	typically on smaller, temporary fans with
9	limited delivery capabilities; such as,
10	tubing or small bore holes, until all the
11	mine openings are connected and the main
12	ventilation system is placed in service.
13	In these cases, every bit of
14	airflow is needed in the faces because of
15	the limited flows that are available. As
16	more US coal mines are developed below
17	drainage, this approach to starting a new
18	mine will become more important.
19	Fifth, additional quantities of
20	airflow cannot always be met by driving
21	additional entries. For example, the
22	number of entries in may be limited by
23	ground control concerns; such as, deep

1	overburden use of vield pillars or
2	multiple seam mining that result in heavy
-	stress zones.
4	In those cases, overall mains
5	or panel widths cannot be increased due to
6	safety concerns for roof falls during
7	advance and outbursts and abutment falls
8	during retreat mining. So a limited
9	number of entries must use a small
10	corridor between stress zones.
11	Other cases also occur where
12	the number of entries must be limited.
13	For example, when working in low-coverage
14	areas and when mining around and in the
15	vicinity of old workings
16	In conclusion not every mine
17	will use helt air to ventilate the working
18	faces However to some mines it is very
10	important that this method of ventilation
20	he available for the safe systematic
20	mining of coal
21	It is obvious from the previous
22	examples that the use of helt air in the
25	

1	faces is more prevalent in the deeper
2	mines that develop greater distances or
3	must handle higher levels of methane.
4	However, there are also other mines that
5	need the belt air option where the number
6	of entries is limited by over mining and
7	under mining and other factors.
8	The technology for detecting
9	hot spots or fires in conveyor belt
10	entries has made huge advances since it
11	was first introduced in the 1970s. In
12	fact, CO monitoring systems for belt air
13	monitoring have been the backbone for much
14	of the mine monitoring, tracking,
15	communications, and data systems in
16	development and use today.
17	That technology today is a tool
18	that allows operations managers, design
19	engineers, and safety professionals to be
20	confident in design, support, and
21	operation of mines where belt air is used
22	in the faces.
23	The use of belt air in the

1	faces is not for every mine. It is,
2	however, an extremely important tool and
3	an option that needs to be freely
4	available with proper monitoring and
5	safeguards for all mines, and most
6	especially for those mines with the more
7	difficult conditions and greater distances
8	to ventilate.
9	MS. ZEILER: Thank you, Gary.
10	We do have one final speaker who signed up
11	in advance for public-input hour today.
12	That speaker will be Dave
13	Maguire from Goodyear. You may remember
14	Dave because he was part of the Conveyor
15	Belt Manufacturers Panel for the Technical
16	Study Panel Meeting in Pittsburgh.
17	MR. MAGUIRE: You'll be glad to
18	know I've only got about 15 minutes.
19	My name is Dave Maguire. I'm
20	the Director of Technology for Goodyear
21	Engineer Products. We make a few conveyor
22	belts.
23	This is just a follow-up to the

1	March presentation. I know there were
2	some questions and data that we said we
3	would get in the near future. So here we
4	are.
5	These are the items. We wanted
6	to confirm that we mentioned we talked
7	about halogen-free conveyor belts, which
8	are the materials for flame-resistant
9	conveyor belts that would meet the BELT
10	the Belt Equipment Laboratory Test that
11	NIOSH and MSHA developed.
12	We have further smoke analysis
13	on both halogenated and halogen-free
14	belts, both in the BELT unit; the Cone
15	Calorimeter, which is an accepted test
16	method in other industries; and then also
17	ASTM E662 of the Boeing Standard; some
18	static conductivity results; and drum
19	friction.
20	Just to refresh, we talked a
21	little bit about most standards for
22	conveyor belts only deal with flame
23	resistance at both ignition and

1	propagation. We're proposing you should
2	at least consider both smoke density and
3	toxicity.
4	As we talked about, a lot of
5	industries do both flame resistance and
6	smoke resistance as part of standard
7	because it's generally the smoke that can
8	kill people.
9	Just a little refresher, again,
10	there are two ways that you can make them
11	flame resistance. You can either do it
12	with halogenated materials, which are
13	typically fluorinated or brominated
14	materials. They're very effective for
15	propagation resistance. They tend to be
16	lower in cost than alternate materials,
17	but they do produce thicker smoke and
18	toxic gases when they're heated.
19	For halogen-free materials, you
20	do need higher levels for propagation
21	resistance. Other industries have gone
22	towards them in a big way. They are cost
23	affective, and they produce significantly

1	less smoke and toxic gases when heated.
2	There's nothing unusual about
3	these materials. They are off the shelf,
4	and they are available. So it's not some
5	mysterious materials that we're dealing
6	with here.
7	This is the data on five of the
8	most common sizes of belts that are used
9	in U.S. mines. I labeled the belt as belt
10	type by the number of plies of fabric; two
11	plies, three plies, and four plies. Then
12	the belt reading is plies per inch and
13	width.
14	So, typically, it's two-ply
15	400, three-ply 600, three-ply 750,
16	four-ply 800, or four-ply 1,000.
17	The BELT test specifies that
18	after you burn the belt five minutes
19	I'm going to show you some video clips of
20	some of these samples a certain section
21	of the belt has to remain. This test
22	involves a nine-inch wide by a five-foot
23	long piece of belt. You burn it in the

BELT equipment.

1

2	It doesn't specify how much has
3	to be left. Okay. It could be an inch,
4	two inches. I've just put up here greater
5	than six inches.
6	As you see in these examples,
7	they're generally anywhere on the
8	halogen-free belts that we tested, these
9	are typical results anywhere from 25 to
10	30 inches of belt remaining. So at least
11	half the belt remains after the
12	five-minute test.
13	That was one of the questions
14	that you wanted me to come back with. Can
15	I confirm that the halogen-free belts meet
16	the BELT test. The answer is yes.
17	This is a sample of one of the
18	belts burning on the BELT unit. It's a
19	little video clip. This is the BELT test.
20	It goes on for five minutes. I have
21	obviously shortened this.
22	What I've shown is the
23	smokestack that's at the end of the

1	gallery, just to give you an example of
2	the amount of smoke that comes out in the
3	five-minute test.
4	This is getting to the end of
5	the five-minute test. The burner is off.
6	That's typically when you get the most
7	smoke, when the actual flame goes out.
8	Then, as you see, it can die down.
9	DR. WEEKS: What's the air
10	velocity there?
11	MR. MAGUIRE: 250, per
12	specified. It's 200 or 300.
13	MR. MUCHO: What's the diameter
14	of that stack, roughly?
15	MR. MAGUIRE: It's about a
16	foot. I'm getting that it's 10 inches,
17	about 10 inches.
18	I can tell you it's a new one.
19	The other one got corroded.
20	So that shows the halogen-free.
21	You notice that very little smoke came out
22	there.
23	This now is a halogenated belt.

1	This meets the standard, as well. Again,
2	I've shortened the video clip. It's
3	burning for five minutes. This is pretty
4	typical. You don't see very much smoke at
5	the start; but, after you get into it two
6	or three or four minutes, you'll start
7	seeing a lot more smoke here compared to
8	the halogen-free.
9	You might see a jump here when
10	you move on. Here we go. We're getting
11	toward the end of the five minutes.
12	Significantly more smoke is generated, but
13	this belt does meet the requirements.
14	There's about 20 inches left or 25 inches
15	left of the belt on that.
16	Then, when the flame goes out,
17	you'll start see a lot more smoke. It
18	eventually dies down, though. See the
19	amount of smoke generated from part of the
20	halogen-free materials.
21	We're getting to the end of the
22	task here. Okay. So a couple of video
23	clips to show the difference between

1	halogen free and halogenated. These are
2	rubber belts, by the way.
3	Then, what we did is we've
4	instrumented the actual this is getting
5	toward the smokestack. The smokestack is
6	up here. We instrumented with smoke
7	density at photoelectric just to measure
8	the actual smoke density. You can get a
9	relative number. With halogen-free, we
10	were getting in the order of 25 percent.
11	Whereas, with halogenated, it eventually
12	got to 100 percent in the flaming
13	conditions.
14	So just to show that you can
15	take the BELT unit, and you can instrument
16	it for smoke density. We also have an
17	apparatus coming in to also measure carbon
18	monoxide and HCL. That's up and running.
19	A lot of industries use
20	accepted task methods. I mentioned some
21	of the previously. I'm not going to show
22	pictures of the equipment. The cone
23	calorimeter, ASTM E1354, is a test that's

1	used by other industries to measure both
2	the flammability resistance of the
3	products and also give you some
4	information on carbon monoxide and HCL and
5	smoke density.
6	You generally use a three-inch
7	by three-inch sample of conveyor belt.
8	It's obviously on a laboratory scale. I
9	show this to show the differences in
10	what's happened with halogen-free convevor
11	belts versus halogenated.
12	I think the interesting one si
13	carbon monoxide. Generally, we're getting
14	three times less with halogen-free
15	materials when it's burning HCL was
16	hasically zero PPM part per million for
10	Halogen-free: a level of 300 with
18	halogenated. Then the smoke density is
10	of the order of two to three times. The
20	average smoke release is two and a half
20	average smoke release is two and a nati,
21	tue
22	DD MUTMANSKY, What are these
23	DR. MUTMANSKY: What are those

1	units?
2	MR. MAGUIRE: Good question.
3	This is actually the carbon monoxide is
4	the amount of carbon monoxide that's yield
5	per kilogram. So that's .03 kilograms of
6	carbon monoxide per kilogram of the
7	product.
8	This is you can go to
9	actually meters squared by meters squared
10	by surface area. This is just the way the
11	cone calorimeter does it. This gives it
12	those meters squared by kilogram. So it's
13	a volume.
14	DR. BRUNE: Shouldn't it be
15	meters cubed?
16	MR. MAGUIRE: It actually comes
17	out meters squared. It's the surface area
18	of the sample divided by the sorry
19	the surface area of the smoke divided by
20	the width of the sample. In this, total
21	smoke is the meters squared released
22	divided by the meters squared of the
23	product.

1	DR. TIEN: How would you
2	measure these smoke areas?
3	MR. MAGUIRE: This is a
4	calculation that's done. I'll dig out the
5	test method and show it to you and get
6	it to you, but that's the calculation it
7	comes out as.
8	DR. MUTMANSKY: That's fine.
9	It's a strange set of units. That's okay.
10	If it's standard.
11	MR. MAGUIRE: Standard is
12	standard. The cone calorimeter is
13	probably the most standard piece of test
14	equipment you use for measuring heat
15	release with gas analysis and then smoke
16	density. It's generally used by all
17	industries. I'm showing it as relative
18	comparison on these conveyor-belt samples.
19	This one might be a little bit
20	easier. This ASTM E662, and this gives
21	you do it both smoldering and then when
22	it's flaming after four minutes.
23	Here we're doing optical

1	density. It's a comparative. It gives
2	photoelectric. Again, you see a lot
3	the same sort of difference. It's a
4	little bit higher. This is a
5	halogen-free. This would be a halogenate
6	material when it's smoldering, and then
7	this the current 2G belt, and the current
8	standard is used.
9	Then, when it's flaming, smoke
10	density again, you see the same
11	differences. Halogen-free, significantly
12	less smoke compared to the halogenated
13	version of that, and then 2Gs in the
14	middle.
15	Toxic gases. Again, it's a
16	pretty similar difference. This is gas.
17	This is PPM. It may be a little bit
18	easier to understand here. BELT,
19	smoldering, the value of 10, and then 2G
20	and halogenated at O to 50.
21	Then hydrogen chloride, huge
22	difference, obviously between halogen
23	free, 2G, and the BELT. Obviously, if you

1	want to go to something like a BELT
2	standard, this hydrochloric acid, if you
3	do nothing, will increase significantly
4	because they're going to be more flame
5	resistant than the current 2G.
6	DR. WEEKS: It seems almost
7	axiomatic that the halogen-free belt is
8	not going to have any hydrogen chloride in
9	there to begin with.
10	MR. MAGUIRE: Yes.
11	DR. WEEKS: There are other
12	toxic gases that come off there that
13	wouldn't show up, you know.
14	MR. MAGUIRE: Yeah. Well,
15	generally, what we have done is, we have
16	looked at other industries that are
17	addressing both smoke and flammability.
18	Certainly, the BELT test does something to
19	address ignition and propagation.
20	When we're looking at smoke
21	density and toxicity, we're going to other
22	industries, both in the rubber and
23	plastics. Generally, the gases they look

Г
1	at after smoke density are carbon
-	monovide carbon diovide bydrochloric
2	acid and hydrogen cyanide
3	aciu, anu nyurogen cyaniue.
4	I didn't want to put too much
5	up here. We have HCL. Generally, with
6	halogen-free you see no HCL. With
7	halogenated materials, you see trace
8	amounts, as well. Not huge, but in the
9	order of five, ten, fifteen parts. I
10	think we showed that many, many years ago.
11	Are there other gases? The
12	halogen-free, I'll give you a little hint.
13	A lot of what is done to reduce the to
14	improve the flame resistance is water
15	release. So water is pretty dry.
16	Then, is the flaming again.
17	You see the same differences.
18	So what we have done is we've
19	done both the BELT comparing halogenated
20	and halogen-free. Of course, also the
21	cone calorimeter. Then, also, this
22	standard which measures gas analysis.
23	Then the ASTM E662.

1	Static conductivity was brought
2	up as well in drum friction, other areas
3	that could cause a fire. Basically,
4	halogen-free, when you're dealing with
5	rubber materials, you have no problem
6	meeting the static conductivity levels.
7	Most international standards
8	are 300 mega ohms maximum, and these are
9	negligible. Rubber is very easy to get.
10	Very low static conductivity.
11	Drum friction, again, is
12	another nice feature of halogen-free-type
13	materials. Generally, most standards I
14	showed the video of the drum friction
15	previously. You run it through the belt
16	for two yards on a frozen idler, and you
17	should get a maximum.
18	They don't want you to go above
19	325 centigrade. These are very low
20	levels. Some of the lowest we've ever
21	seen with rubber, in the area of 100 to
22	120 to 150 centigrade maximum.
23	DR. TIEN: Which one is more

1 desirable, higher or lower? 2 The lower MR. MAGUIRE: Lower. 3 the temperature the better. 4 People have done -- there's two 5 ways that people have done the passive drum friction that other standards have 6 7 Either you keep the temperature adopted. 8 below 325 so coal dust doesn't ignite or 9 that allows the belt to melt and break. I 10 don't personally like that one, but that's 11 okay. 12 Again, if you're going to have 13 a frozen pulley and you allow the belt to 14 break, your going to cause (inaudible.) 15 Static conductivity, obviously, 16 the lower the better. 17 So this is what we would 18 recommend in our conclusion. Obviously, 19 halogen-free materials significantly 20 reduce smoke density and toxicity when 21 smoldering or burning. They comfortably 22 pass the BELT and static conductivity and 23 drum friction.

1	We strongly recommend the smoke
2	density and toxicity should be added as
3	part of our flammability standard for
4	conveyor belts. Drum friction static
5	conductivity should also be added, as
6	well.
7	That's what I had.
8	DR. MUTMANSKY: Dave, the last
9	time you gave us a little bit of cost
10	comparison. I don't recall what it was.
11	Would you just sort of repeat that for us,
12	please?
13	MR. MAGUIRE: Well, I
14	skillfully said that I'm not allowed to
15	talk about costs or prices because I'm a
16	technical guy. Certainly, moving from 2Gs
17	to the BELT tests, belts will cost more.
18	You're going to be using more flame-
19	retardant material. So the cost of the
20	belts will increase.
21	I really cannot say anymore
22	than that, as I think the other conveyor
23	belt manufacturers did, as well.

1	MR. MUCHO: Dave just to be a
2	little picky here on a point. In the
3	conclusion, you talk about the
4	halogen-free reducing smoke density and
5	toxicity when smoldering or burning.
6	That's sort of a double-edged sword in a
7	way.
8	We talked a little earlier
9	today about smoke detectors, and, in the
10	future, we think maybe we can actually get
11	some smoke detectors that will be pretty
12	reliable in our minds. If we can use that
13	and combine that with CO detectors in some
14	form of belt fire detection, actually,
15	smoke coming off early in the smoldering
16	stage is not necessarily a bad thing. It
17	gives us a precursor and prewarning and
18	gives us time to act and react and know
19	that we have a problem.
20	So it's sort of nice that we
21	don't get a lot of CO and smoke off in the
22	smoldering stages; but, if, in fact, it's
23	working against our fire detection

1 systems, it is not a good thing. 2 MR. MAGUIRE: Yeah. I think 3 that's a good point. Obviously, I 4 listened today, as well. 5 I think you're going to find that the task I'm doing aside from the 6 7 BELT test, which is a nine-inch wide by 8 five-foot long belt -- that's a pretty 9 severe burn test -- there's still plenty 10 of smoke coming off. 11 Don't forget the massive 12 conveyor belts that are underground. Ifa 13 fire starts, you're going to have plenty 14 of smoke. 15 What we're suggesting is, this 16 is a way to significantly reduce it, and I 17 would think that there's two points in 18 both; smoke density, and smoke toxicity. 19 I think any time that you can have less 20 smoke and there is a fire, you're going to 21 have more time for people to get out. 22 In my personal opinion, I think 23 that would be a big consideration for

certainly the toxicity Even with the
carbon monoxide levels you're still going
to get carbon monovide coming off; and
to get carbon monoxide coming off, and
that could be further study. That could
be work that could be done. That
shouldn't be difficult to work out.
Even though we make belts
significantly less than smoke density and
toxicity, is it enough to trigger the
detectors? I don't think that would take
a lot of work to do between conveyor belt
manufacturers and the smoke detection
people.
MR. MUCHO: Of course, the
other end if it is that if it doesn't
ignite initially and it won't propagate,
then it becomes less of an issue of
whether we're getting the CO or smoke,
anyway; right?
MR. MAGUIRE: Yeah. But, as I
showed in the last testing, it's never the
conveyor belt that catches fire first. A
conveyor belt has got a much higher

1	ignition temperature than any other
2	material.
3	The coal dust and the idler
4	grease is going to catch coal is going
5	to catch fire first. That's what's going
6	to cause the fire. So it's only a matter
7	of time.
8	MR. MUCHO: That's not what
9	causes the fire. Causing the fire could
10	be the heating of the conveyor belt
11	conveyed to the heat, to the coal, which
12	then catches fire. So it's the initial
13	starter, but it's not the cause of the
14	fire.
15	MR. MAGUIRE: Yes. But
16	MR. MUCHO: So, in some
17	situations, while this last chart is
18	important, the belt is acting as a medium
19	to start some other material burning.
20	MR. MAGUIRE: I think it's the
21	other way. The other medium is going to
22	cause the belt the catch fire.
23	MR. MUCHO: Well, yeah. Down

1	the line. Since you've got it burning	
2	now, it's coming back and catching the	
3	belt on fire.	
4	I'm starting with friction,	
5	conveying it to the belt to the coal, get	
6	the coal burning. The coal burning gets	
7	the belt on fire.	
8	MR. MAGUIRE: Right.	
9	Unfortunately, if such an event like that	
10	happens, probably, a conveyor belt is	
11	going to start smoldering and catch on	
12	fire.	
13	DR. BRUNE: I have one more	
14	question. We heard today from representa-	
15	tives from Jim Walter Resources that Jim	
16	Walter tried a number of years ago to	
17	utilize BELT standard passing flame	
18	resistant belts, and they went away from	
19	that. I'm not sure whether that was your	
20	brand or somebody else's brand. It really	
21	doesn't matter.	
22	They went away from that, from	
23	what I understand, because this belt	

1	material tended to rub off on the stands
2	and then create piles of rubbing shavings,
3	which then started smoldering and then, in
4	fact, created more of a problem that they
5	had to deal with.
6	If they used this material that
7	the industry belt manufacturer is offering
8	today, would that problem still be a
9	problem that the operators would have to
10	deal with?
11	MR. MAGUIRE: A couple of
12	points. First of all, it wasn't our
13	brand.
14	The second thing is there
15	are a couple of other points. Tom
16	mentioned both here and the previous time
17	that the durability which we agree
18	durability is something you need to look
19	at. Obviously, when we're looking at
20	halogen-free materials, we're going to
21	ensure that the durability is going to be
22	equivalent.
23	He did a lot of the

1	conversations previously comparing PVC
2	belts with rubber belts. PVC is well
3	recognized to have much lower durability
4	and breaks much quicker and causes
5	breaking. It is very aggressive on the
6	idlers, and it builds up coal dust.
7	So there's a lot of splitting
8	and cracking problems. There's a lot of
9	issues with PVC, as well. The durability
10	of PVC is not as high as rubber.
11	He also mentioned about rubber
12	BELT. These were certainly not our
13	formulations. I can attest to them. I
14	would be stunned if our halogen-free
15	materials behaved in that manner, in terms
16	of shavings causing excessive heat because
17	of the way that it operates.
18	All I can tell you is that
19	halogen-free materials, the way you go
20	about it in terms of getting your
21	flammability resistance, if anything, it
22	may be cooler.
23	So I don't quite understand the

1	materials that were used that Tom tried in
2	Jim Walters' mine from the rubber side;
3	but, from our side, we should not expect
4	to see that with our rubber materials,
5	particularly the halogen-free.
6	DR. BRUNE: Thank you.
7	DR. MUTMANSKY: Thank you,
8	Dave. I think we've run out of questions
9	at this moment, and we would like to thank
10	all of those participants this afternoon.
11	I'd also like to thank the
12	Panel for not abandoning us at the end of
13	the afternoon. We appreciate very much
14	everything that our speakers have done for
15	us in terms of giving us data today.
16	We're looking forward to
17	tomorrow's testimony, as well; and we'll
18	invite you back at 9:00 a.m.; is that
19	correct?
20	MS. ZEILER: Yes.
21	DR. MUTMANSKY: Do you have any
22	announcements, Linda?
23	MR. ZEILER: No. I'd say we

1	stand adjourned for the day. Thank you.
2	
3	(Whereupon, the Technical Study
4	Panel on the Utilization of Belt Air and
5	the Composition of Fire Retardant
6	Properties of Belt Materials in
7	Underground Coal Mining adjourned for the
8	day, to reconvene on June 21, 2007 at
9	9:00 a.m.)
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

CERTIFICATE

STATE OF ALABAMA)

COUNTY OF JEFFERSON)

I hereby certify that the above and foregoing deposition was taken down by me in stenotype and the questions and answers thereto were transcribed by means of computer-aided transcription, and that the foregoing represents a true and correct transcript of the testimony given by and witness upon said hearing.

I further certify that I am neither of counsel, nor kin to the parties to the action, nor am I in anyway interested in the result of said cause named in said caption.

Susan Bell, CSR

Notary Public