The TRADE Experiments

George Imel (Argonne National Laboratory on behalf of all of the MUSE and TRADE Experimental Teams)

Imel, George (ANL) et al.

Outline

- General discussion of relevant techniques
- Selected MUSE results (cannot talk about TRADE without MUSE)
- What TRADE experiments before cyclotron?
- TRADE MSM program—finding the reference core(s)
- Planned TRADE experiments (Phase I, II, and III)
- Relevance to ADS

Background

- TRiga Accelerator Driven Experiment
- Carlo Rubbia and ENEA (Italy)
- Couple a TRIGA reactor with a real spallation source
- 140 Mev cyclotron, probably tantalum target
- Sequence of validation to a real ADS
- Understated value of ADS experiments--preservation of expertise!

Proposed Layout

Plan View with Target Test Area

Imel, George (ANL) et al.

Sequence to Validation

•	CONFIG	SOURCE	KINETICS	FDB
•	MUSE	DD/DT	FAST	NO
•	TRADE	DD/DT	THERMAL	NO
•	TRADE	SPALL	THERMAL	NO
•	TRADE	SPALL	THERMAL	YES
•	ADS	SPALL	FAST	YES

Main Efforts in 2002-2003

- Choice of target
 - tungsten or tantalum or combination
- Thermal hydraulics and safety case
 - although natural convection is probably feasible for less than 20 Kw on target, not enough data are available, so likely will use forced convection on target

Main Efforts (2)

- Physics
 - -benchmark (ANL, CEA, ENEA, FZK)
 - shielding
 - burn-up evaluation
 - not much experience with U-ZrH fuel
 - MSM factors, source multiplication

Preface to Techniques

- One of the major objectives of the MUSE program was to test various methods of determining the sub-critical reactivity level
- Because of time and source intensity constraints, we perhaps did not perform all of the experimentation desired
- We intend to continue the testing in TRADE, also yielding a kind of "generic validation"

General Discussion on Techniques

- Static techniques
 - -MSM
- Dynamic techniques (driven)
 - PNS
 - Source jerk, oscillation
 - Correlation (Rossi, Feynman, transfer function)

General Discussion (2)

- Noise techniques (static on a macroscopic scale but dynamic on a microscopic scale)
 - Rossi, Feynman
 - CPSD/transfer function
- We'll give examples of data on these methods after very brief discussion on theories

General Discussion (3)

- A key is how we move from MUSE to TRADE and on to an ADS
- In this regard, TRADE experiments with Cf, DD, and DT sources are crucial parts of the bridge
- We have developed techniques (of analysis) in MUSE that we need to further qualify on TRADE (different spectrum)

MSM (1)

– Between two states, ρ_1 and ρ_2 , we can write the ratio of count rates at a detector

$$\frac{C_1}{C_2} = \frac{\varepsilon_1 S_1}{\varepsilon_2 S_2} \frac{\rho_2}{\rho_1}$$

Imel, George (ANL) et al.

MSM (2)

- MSM -> ratios of the detector efficiencies and the effective source strengths are not precisely unity with a change in state
- Establish a reference reactivity near critical by rod drop
- Comprehensive measurements already performed in TRADE (many more than MUSE)
- We are finding the TRIGA to be very sensitive to detector and source positions

Pulsed Source (1)

 Point kinetics predicts the prompt decay rate after a pulse to be

$$\frac{1}{\beta - \rho} \left(\beta e^{-\lambda' t} - \rho e^{-\alpha t} \right)$$
$$\alpha = \frac{\rho - \beta}{\Lambda}$$

Pulsed Source (2)

- Point kinetics---flux is separable in (**x**,t)
- We are looking for α , the prompt neutron decay
- MUSE-4 we are seeing complicated time behavior (detector efficiency changes and pulse propagation)

Pulsed Source (3)

- Also have the area method
- One integrates the "prompt area" and the "delayed area"
- Method seems forgiving

$$\rho_{\$} = -\frac{A_p}{A_d}$$

Source Jerk

• Source jerk with intrinsic source background can yield reactivity in dollars directly

$$\rho_{\$} = \frac{C(0) - C(T)}{\int\limits_{0}^{T} C(t)dt + TC(T)} \left(\frac{\Lambda}{\beta} + \sum_{j} \frac{\alpha_{j}}{\lambda_{j}}\right)$$

Source Jerk (2)

- We can also use the prompt approximation (not integrated)
- Problem of where to pick the "prompt drop"

$$\rho_{\$} = 1 - \frac{C_0}{C(T)}$$

Source Oscillation

$$\frac{n'}{n} = \frac{\delta q}{q} \frac{\rho_{\$}}{\rho_{\$} - 1}$$

Transfer Function

- It is the reactor's response to a perturbation
- This is general for fast or thermal reactors--only the time constants change

$$G(s) = \frac{n'(s)}{\rho'(s)} = \frac{n_0}{\Lambda s + \beta - \rho_0 - \sum_i \frac{\lambda_i \beta_i}{s + \lambda_i}}$$

Transfer Function Limits

• Low frequency $G(s) = \frac{n_0}{\rho}$ • Intermediate $G(s) = \frac{n_0}{\beta - \rho}$

$$\frac{\beta -
ho}{\Lambda}$$

Breakpoint at

Imel, George (ANL) et al.

Transfer Function (MUSE vs TRADE)

Imel, George (ANL) et al.

Feynman and Rossi α

 By measuring correlations from individual neutron events, one can determine the decay of individual fission chains (Rossi) or by measuring deviations of the fluctuations from Poisson (Feynman), one can obtain β/Λ

Rossi α

• Probability of correlated counts related to fission power and kinetic parameters

$$p(\tau)dt_g dt_c = \varepsilon_g \varepsilon_c F_0 dt_g dt_c \left(F_0 + \frac{D}{2\alpha\Lambda^2}e^{-\alpha\tau}\right)$$

 Note that F₀ is un-correlated background (fission power)

Feynman α

• Deviation of the variance to the mean

$$y = \frac{\varepsilon D}{\alpha^2 \Lambda^2} \left(1 - \frac{1 - e^{-\alpha \tau}}{\alpha \tau} \right)$$

 Note fission power not explicit, but now ε (detector efficiency)

Instrumentation

- Traditional
 - -CF, MCS, PHA
- New
 - Time marking
 - Each detector event is time stamped and recorded
 - In principle have a complete record of the experiment for later analysis

MUSE 4 Configuration

Imel, George (ANL) et al.

MUSE PNS Example in Core

Imel, George (ANL) et al.

PNS vs Detector Location

PNS with a U-235 fission located at different locations in the experimental channe

Imel, George (ANL) et al.

Very Early Time PNS in Core

Imel, George (ANL) et al.

Early Time PNS in Reflector

Imel, George (ANL) et al.

Key Points on PNS

- Slopes depend on reactivity (good!) but there is not a single slope (bad!)
 - Worsens for deeper subcritical
 - Two (+) schools of thought
 - Fit to multiple slopes because of different time regimes (e.g., source, equilibrium, reflector)
 - Don't assume the generation time is constant

Source Jerk (-500 pcm)

Imel, George (ANL) et al.

Source Jerk (-5000 pcm)

Source Jerk using a Cf-252 source at SC3

Imel, George (ANL) et al.

Key Points on Source Jerk

- Note that you cannot use prompt drop with no inherent source assumption
- Often a problem with statistics at lower reactivities

Cross Correlation

Imel, George (ANL) et al.

CPSD with PNS

Key Points on CPSD

- Method works when not too deeply subcritical
- Measurements in MUSE are more difficult because of the strong intrinsic source---leads to more background ("accidental correlations")

Summary Predictions of $\boldsymbol{\alpha}$

Configuration	Detector	PNS	Cross-Correlation	Source-Jerk	CPSD
	location				
	core	16639 <u>+</u> 23	16674 <u>+</u> 11	15899 <u>+</u> 794	
SC0	reflector	15911 <u>+</u> 30	15824 <u>+</u> 12	15633 <u>+</u> 654	16023 <u>+</u> 228
	shielding	15642 <u>+</u> 45	15708 <u>+</u> 33	15314 <u>+</u> 794	
SC2	all				
SC3	reflector			81889 <u>+</u> 4504	

Rossi- α

Feynman- α

Imel, George (ANL) et al.

Key Points on Rossi- and Feynman- α

- "Low" detector efficiency makes Feynman measurement difficult
- Intrinsic source makes Rossi measurement difficult
- Note both are only a few percent above background

Summary Discussion on MUSE Results

- Two schools of thought on PNS
 - Multiple slopes, where to start?
 - Changing generation time
 - Problem is trying to fit a point kinetics model to a non point kinetics world
- Feynman and Rossi alpha problems
- CPSD problems
- Source jerk

Why Experiments Before Cyclotron ?

- Uncertainties in all the measures
- However---MUSE will produce a report with suggested methods of measurement
- Part of TRADE's objective is to test those methods developed in MUSE
- Generic validation ?
- Blind testing of methods for final validation

Sequence of Validation

•	CONFIG	SOURCE	KINETICS	FDB
•	MUSE	DD/DT	FAST	NO
•	TRADE	DD/DT	THERMAL	NO
•	TRADE	SPALL	THERMAL	NO
•	TRADE	SPALL	THERMAL	YES
•	ADS	SPALL	FAST	YES

2003-2004

- MSM
 - Find the "TRADE core" w/o cyclotron
- Measures with Am-Be, Cf, DD, and DT sources
 - Source importance, source jerk
 - For direct comparison to MUSE
- Noise techniques (Feynman, Rossi and CPSD)
- Have approached "TRADE core" with MSM

TRADE Reference Core

TRADE Mockup Core - 1

Physor 2004 Plenary

TRIGA w/o B-ring fuel

Imel, George (ANL) et al.

MSA Reactivities

5

1

З

Chamber 1 1847

2 2092

3 331

4 CF112

5 CF113

6 CF114

7 CF115

6A 6REP

5A State Ā

6

Imel, George (ANL) et al.

Rho (pcm) 0 -6000

-10000

2

3

1A

2

MSM Correction

All Rods In

State

State

Imel, George (ANL) et al.

TRADE Mockup Core - 2

Source in Center

Subcritical reactivity - Source in center

Imel, George (ANL) et al.

Radial Traverses

DEN / DER / SPEx / LPE

TRADE - H.Philibert, R.Rosa

Cadarache, 12th Progress Meeting - 27 January, 2004

Phase I, II, and III Experiments

- Phase I is 2003-2004 (before cyclotron)
 - MSM
 - Am-Be and Cf source
 - Jerk
 - Oscillation
 - Importance
 - Repeat with DD and DT

Phase I, II, and III Experiments (2)

- Phase II concerns the startup phase of the cyclotron
- Phase III concerns the full range of TRADE experiments, with the cyclotron

Phase II and III

- In these phases, the accelerator is in place
- We will be performing a number of reactivity determinations, using techniques qualified in Phase I
- With cores well characterized (3000-5000 pcm), we will then move into the full TRADE experimental program of operational testing (power, current, reactivity relations)

Operational Experiments

 Other than preliminary measures to determine the reactivity levels, we will most certainly be operating in current mode

$$i_p \propto P \frac{v}{\phi^* Z \rho}$$

Power/Reactivity Relations

 Can perturb reactivity or current to obtain an "operational" reactivity measure

$$\frac{\delta P}{P} = \frac{\delta S}{S} + \frac{\delta k / k}{1 - k}$$

Moving on to an ADS

- With our MUSE experience, we have found that measurement of sub-critical reactivity is not completely straightforward
- However, we have made much progress---it is not a question of whether you can see effects of reactivity changes, but to what level of uncertainty?
- Through TRADE, we hope to gain a better quantification of this

A Reminder

•	CONFIG	SOURCE	KINETICS	FDB
•	MUSE	DD/DT	FAST	NO
•	TRADE	DD/DT	THERMAL	NO
•	TRADE	SPALL	THERMAL	NO
•	TRADE	SPALL	THERMAL	YES
•	ADS	SPALL	FAST	YES

Last Word

- During MUSE program, Western Europe's entire experimental capability actively participated (and often was in the same room!)
- Extremely productive interchanges
- TRADE has generated much the same interest (we hope)
- Programs such as these are the only way to preserve capabilities until we get serious about the next generation of reactors